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Introduction

Econometric analysis of qualitative response models was developed by McFadden

(1981). The dependent variable included in the analysis is intrinsically categorical.

Qualitative variables could be binomial (yes/no), or multinomial. In the multinomial

case, models can be ordered or unordered. In ordered models, as the name suggests,

the dependent variable will be an ordered response; for example, might be a credit

rating on a scale from zero to six. This variable will assume 0, in the lowest category,

and 6 in the greatest one, and we try to estimate the probability of each choice. In

unordered models there is no particular restriction in the values of the dependent

variable, but this variable still being discrete (see Wooldrige, 2002 for details). Then,

we can assume that agents should make their choices in a qualitative sense. But this

models do not capture the interaction between the agents. Interaction means inter-

dependence between individual decisions which are not mediated by markets, Brock

and Durlauf (2001); they study “interaction-based models”, which are mathemati-

cally equivalent to logistic models of discrete choice. By interaction-based models,

they refer to “a class of economics environment in which the payoff function of a given

agent takes as direct arguments the choices of the other agents”.

A natural extension of interaction-based includes asymmetric information, using game

theoretical foundations. Indeed, Aradillas-Lopez (2003), proposed an estimator in or-

der to find the interaction coefficients in a context of economic interaction models

with asymmetric information. “The presence of asymmetric information implies that

agents must construct beliefs about other agents”. If we assume that observed choices

3
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are derived from a Bayesian-Nash equilibrium, these beliefs must be rational and sat-

isfy the conditions consistent with such an equilibrium.

Chapter 1: Econometric models under complete information environment with

game theoretic foundations are used in this chapter to analyze husband and wife labor

force participation. It is allowed multiple equilibria and was designed a mechanism of

equilibrium’s selection. Following Aradillas-López (2008), is used a consistent estima-

tor of interaction parameters α’s in the context of non unique Nash-Equilibrium. We

used “Basal Survey of Savings, Credit and Rural Micro-Finances” in Mexico, made

by BANSEFI as data set in 2004. And it was found that married couples interact

strategically. In average, wives decide not to participate in the labor market if there

husbands participate. A brief survey of games and econometrics is included.

Chapter 2: A semi-empirical likelihood estimator is proposed for models where

agents interact under asymmetric information. The methodology focuses on situ-

ations where some variables that were privately observed when choices were made

become available to the econometrician afterwards. This variables are assumed to

have a finite support. The main feature of the estimator is that structural parame-

ters, beliefs and unknown probability distribution function of these privately observed

variables are estimated simultaneously under the assumption that observed outcomes

are the result of a Bayesian-Nash Equilibrium. The methodology is applied to three

actions and three types of agents. Firms decide to be aggressive, neutral or passive

in their investment decisions. Estimation shows a significant component of strategic

interaction in the case of small and medium size (type) of firms. Interaction is more

significant to small firms than the others.

Chapter 3: This chapter analyzes the technical efficiency in the Mexican man-

ufacturing sector in which determinants and changes of the efficiency since NAFTA
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(North American Free Trade Agreement) are studied using the Panel Data Stochas-

tic Frontier Analysis in its time-invariant and time-variant versions, comparing each

other. It was used the Annual Industry Survey (AIS), which panel data information

allow us to model the efficiency performance of firms in the period 1994-2001. Our

main findings show that Mexican manufacturing firms worked, in average, at almost

23% of its potential product (compared with the best firm performance) and that

there was a slight lost of capacity along time (1994-2001). Additionally, could be

detected structural change, understood it as the change of firms’ ranking observed

in the model and the coefficient of the production function. Moreover, could be de-

tected those firms that were consistent, winners or losers in the process of openness.

Finally, under the assumption of Cournot duopoly competition, there are studied

determinants for R&D investment.



Chapter 1

Estimation of a Multiple
Equilibrium Game with Complete
Information: Husband and Wife
Labor Force Participation in
Mexico

1.1 Introduction

Labor participation has been studied in different contexts, using different method-

ologies. Gong and Soest (2002), for example, investigate labor supply of married

women in Mexico City, using a neoclassical structural model. They found that in-

come elasticity of labor supply is about -0.17, and wage elasticity, is about 0.18. Other

way to focus the same problem has been studied under the named gender problem.

Greenstein (1996), studied “the interaction between the ideologies of wives and their

husbands in order to understand how a division of household labor emerges”, “hus-

bands do relatively little domestic labor unless both they and their wives are relatively

egalitarian in their beliefs about gender and marital roles.” In terms of labor supply,

husband could have influence over his wife in a negative way, in order to forbid her

to participate in labor market.

6
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Calderon-Madrid (2007), using survival analysis, studied “determinants of time spent

in formal and informal sectors by employees, as well as to assess the costs for work-

ers resulting from the mobility between formal and informal job status”; he found

that “workers with less human capital are more likely to be trapped in cycles of long

spells of informal employment followed by short-term jobs in the formal sector and

displaced again to informal jobs”. Orley Ashenfelter (1984), studied the relationship

between macroeconomic analysis and microeconomic analysis of labor supply.

On the other hand, in the context of game theoretical foundations, McFadden (1974)

developed single-person qualitative choice model, and proposed the well known probit

and logit model (see Wooldrige, 2002, pg. 457-516). Heckman (1978), studied models

with structural shift parameters. Brock and Durlaf (2001), study “interaction-based

models”. They define interaction as interdependencies between individual decisions

which are not mediated by markets between the agents. By interaction-based mod-

els, they refer to “a class of economics environment in which the payoff function of

a given agent takes as direct arguments the choices of the other agents”. Bjorn and

Vuong (1984), used a game theoretic approach formulating simultaneous equations

models for a dummy endogenous variables applied to a study of husband and wife

labor force participation. More over, Bjorn and Vuong (1985) extend their pioneer

work introducing Stackelberg equilibrium in which husband is the leader, i.e., the

husband knew what action his wife would take and he optimizes accordingly.

Kooreman (1994), used Bjorn and Vuong’s Nash and Stackelberg econometric frame-

work (likelihood estimation), introducing imposed Pareto optimality. He studies joint

labor force participation decisions of husbands and wives in a sample of Dutch house-

holds. In Stackelberg game, he allows husband and wife to be leader respectively.

Nonetheless, under this framework, economists “have made simplifying assumptions

to avoid multiplicity”1 of equilibrium. Tamer (2003), introduced a bivariate simul-

taneous discrete response model “which is a stochastic representation of equilibrium

1This is the case of Bjorn and Vuong (1984, 1985) and Kooreman (1994), among others.
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in a two-person discrete game”. He analyzed the model in the presence of multi-

ple equilibrium and proposed a parametric and non parametric estimator avoiding

to invoke the coherency condition (see bellow) or imposing ad-hoc structure of the

game in order to fit it in a well behave environment. Pakes, Ostrovsky, and Berry

(2004) study the players’ strategies within the structure of discrete, dynamics games.

Their model is constructed within a basic dynamic game of entry and exit. Golan,

Karp, and Perloff (2007) have a Chapter in their book that study how to estimate

strategies using generalized maximum entropy (GME) framework. Bresnahan and

Reiss (1991), extended qualitative choice models developing econometric models for

discrete games. They modeled the payoff of games where an econometrist observes

qualitative or censored information about agents’ decisions and payoffs. Equations

describing players’ equilibrium strategies depend on the game’s structure and the

equilibrium solution concept. They showed that one can describe the equilibria of a

simultaneous-move Nash game with a linear system of dummy endogenous variables.

They also showed that sequential-move and cooperative models have different, but

related, econometric structure. They apply this framework to models of market entry,

technology adoption, tax auditing, and cooperative family labor supply. Under incom-

plete informational game-theoretical environment, Aradillas-Lopez (2003, 2008) has

proposed likelihood-based procedures “where players unobserved beliefs and the vec-

tor of payoff parameters are estimated simultaneously by solving a well defined sample

analog of the population equilibrium conditions”. He has proposed, for example, a

semi-empirical likelihood estimator where agents interact under asymmetric informa-

tion. He carefully study uniqueness and existence equilibrium problems. Nonetheless,

it is difficult to impalement this kind of models because of lack information in labor

participation surveys in Mexico: they do not capture the incomplete information en-

vironment.

Here, I studied husband and wife labor force participation in Mexico, using estimation

of a simultaneous game with complete information, allowing multiplicity of equilibria,

including a selection mechanism of the optimal equilibrium. Main questions are two:
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a married couple interact strategically when they make their participation decisions

to enter or not in the labor market in Mexico?, or exists some sociocultural items

that lead decisions of participation in the labor market of married people in Mexico?

1.2 Games and econometrics

A strategic game is a model of interacting decision-makers: players. Each player

has a set of possible actions. The model captures interaction between the players

by allowing each player to be affected by the actions of all players. Each player

has preferences about the action profile (the list of all players’ actions). Following

Osborne (2004, pg. 13-14) a strategic game (with ordinal preferences) consist of

1. a set of players

2. for each player, a set of actions

3. for each player, preferences over the set of actions profiles.

Can the agents arrive to an equilibrium state given the interaction between them?

The answer was given by John Nash. Assuming that the players are rational, i.e.,

they choose the best available action; it is possible to reach an equilibrium (no player

has incentives to change the status in which each player is in equilibrium). Nash

equilibrium of strategic game with ordinal preferences is defined as follows:

Definition: The action profile a∗ in a strategic game with ordinal pref-

erences is a Nash equilibrium, if for every player i and every action ai

of a player i, a∗ is at least as good according to player i’s preferences as

the action profile (ai, a
∗
−i) in which player i chooses ai while every other

player j chooses a∗j . Equivalently, for every player i,

ui(a
∗) ≥ ui(ai, a

∗
−i)
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for every action ai of player i, where ui is a payoff function that represents

player i’s preferences2. Osborne (2004, pg. 23).

A generalization of Nash equilibrium can be made. We allow each player to

choose a probability distribution over his set of actions rather than restricting him

to choose deterministic action. Then, mixed strategy can be defined as a probability

distribution over the player’s action. It is important to notice that a mixed strategy

may assign probability 1 to a single action: by allowing a player to choose probability

distributions, we do not prohibit to the players from choose deterministic actions.

This kind of “mixed strategy” can be considered as a pure strategy, Osborne (2004,

pg. 107-108).

There is another class of environment in which agents can interact strategically:

complete information or asymmetric information context. Asymmetric means that

some parties are informed about variables that affect everyone, and some parties are

not.

1.2.1 Discrete Strategy Game

Complete Information

Let be a simultaneous 2× 2 game in its normal representation.

Figure 1

A simple 2 x 2 game

PLAYER 2

Y=1 Y=0

PLAYER 1 Y=1 t1 + α1, t2 + α2 t1, 0

Y=0 0, t2 0,0

2a−i, means actions of players different to player i.
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Where, in general, each player has two mutually exclusive actions: Y=0 or Y=1

(participate or don’t; to be aggressive or don’t; enter or don’t, etc.). Players’ payoffs

depend on their actions: players will receive (t1 + α1, t2 + α2) if they choose (Y =

1, Y = 1); (0, 0) if they choose (Y = 0, Y = 0); (0, t2) if they choose (Y = 0, Y = 1),

and (t1, 0) if they choose (Y = 1, Y = 0). Notice that (α1, α2) appear only in the

case in which each player choose Y=1, separately or together. α′ps try to capture how

other player’s action affects player p, for p = {1, 2}; they are known as “interaction

coefficients”.

Regardless the signs of alpha’s, based on the game in the Figure 1, it is true that:

If t1 + α1 ≥ 0 and t2 + α2 ≥ 0 players will choose (1,1)

If t1 < 0 and t2 < 0 players will choose (0,0)

If t1 ≥ 0 and t2 + α2 < 0 players will choose (1,0)

If t1 + α1 < 0 and t2 ≥ 0 players will choose (0,1)

Now, following McFadden (1974), payoffs can be treated as random decomposed

into deterministic components and random components. Let (X1, ε1)∈ Rk × R and

(X2, ε2)∈ Rk×R. Assume that (ε1, ε2) ' F (·; Ω), where F (·) is known and Ω (variance

and covariance matrix), unknown. Let be:

t1 ≡ X ′
1β1 − ε1

t2 ≡ X ′
2β2 − ε2

Where X ≡ (X1, X2) is the characteristics vector3; β ≡ (β1, β2), unknown param-

eters (deterministic part), and ε ≡ (ε1, ε2), unknown (for the econometrician) error

term (random part). If only pure strategies are considered, players’ optimal actions

are simply given by

Yp = 1{X ′
pβp + αpY−p − εp ≥ 0} (1.1)

3This variables will depend on the nature of the specific game.
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For p = 1, 2. Where Y−p means the action taken by the p player’s opponent, and

1{A} is the indicator function: 1{A} = 1 if A is true, 0 otherwise. Here the objective

is estimate the parameters:

θ = (β1, β2, α1, α2, Ω)

This is a well known model in econometrics studied by Heckman (1978), Schmidt

(1982) and many others. The key issue is Statistical Coherency which is a necessary

and sufficient condition for the likelihood of the model to be well defined:

Pr[(1, 1)|X] + Pr[(0, 0)|X] + Pr[(0, 1)|X] + Pr[(1, 0)|X] = 1

⇔ α1× α2 = 0. But this coherency condition especially eliminates simultaneity from

the model (Kooreman, 1994).

Now assuming that the econometrician knows the signs of the α′s, and that fol-

lowing assumptions hold:

Assumption A1 (Information structure)

i Realizations of (Xp, εp) are common knowledge. There is no sources of private

information.

ii More over, in the context of complete information4 each player knows their

opponent action (or strategy) Y−p.

Assumption A2 (Strategic behavior)

i Under complete informational assumption, players could play pure or mixed

strategies, then multiple equilibria can be allowed.

4When each player doesn’t know its opponent action (strategy), we say there is incomplete in-
formation and players should construct their beliefs about the other player action. Aradillas-Lopez
(2008).
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Assumption A3 (Distributional properties of ε1, ε2, and η)

i (ε1, ε2) are jointly continuously distributed random variables with unbounded

support. They are allowed to be correlated, but are assumed to be independent

of all other variables in the model, known as orthogonality condition. The

conditional support S(εp|ε−p), is assumed to be unbounded for p = 1, 2, for any

possible realization of ε−p

ii Gp(εp) will denote the marginal distribution or εp, with density gp(εp). The joint

distribution of (ε1, ε2) is given by G1,2(ε1, ε2; ρ), where ρ ∈ [−1, 1] summarize

the entire dependence between ε1 and ε2; G1,2(ε1, ε2; ρ) represents unobserved

(to the econometrician) distribution profits. For a given value of ε1 and ε2,

the joint distribution of G1,2 is an invertible function of ρ. This is true for all

(ε1, ε2) ∈ R2.

Pure Equilibria

Now, assuming that the econometrist knows that α1 ≤ 0, and α2 ≥ 0 (parallel results

arrive when α1 ≥ 0, and α2 ≤ 0), R2 would be partitioned as follows:
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Figure 2

(R2 Partition Pure Equilibrium)

(0,1)

(1,0)

(0,0)

(1,1)

Mixed

t2

t1

−α2

−α1

In the blank square named “Mixed” either outcome is likely. Here there are only

pure equilibria but is not clear how to proceed in this case.

Multiple Equilibria

Now, under the assumption that the econometrist knows that α1 ≤ 0, and α2 ≤ 0

(when α1 ≥ 0 and α2 ≥ 0, results are very similar). Let be S(M) the support of the

random variable M , then, if S(ε1, ε2) ∈ R2, the game with complete information will

have multiple equilibria with positive probability for any realization of X unless: (a)

α1 × α2 ≤ 0, if mixed-strategies are allowed (previous case), or (b) α1 × α2 = 0, if

mixed-strategies are ruled out (coherency condition). Now, we can do a partition of
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R2, drawing the regions conformed by the solution of the game when α1 ≤ 0, and

α2 ≤ 0, then:

Figure 3

(R2 Partition Multiple Equilibrium)

(0,1)

(1,0)
(0,0)

(1,1)

Mixed

t2

t1

−α2

−α1

Then we have five regions. Pure strategy equilibrium, R(1,1), R(0,0), R(0,1), and

R(1,0); mixed strategy equilibrium, Rsquare.

In the middle box (Rsquare) there are multiple Nash-equilibrium: two pure, (0,1)

and (1,0), and one mixed. By definition5, mixed strategy equilibrium means that

player 2 will choose Y2 = 1 with probability Π2, and player 1 will choose Y1 = 1 with

probability Π1. But player 2 chooses Π2 such that player 1 is indifferent between

Y1 = 1 and Y1 = 0; player 1, analogously, will choose Π1 such that player 2 would

be indifferent between Y2 = 1 and Y2 = 0. Equalizing expected utility of Y1 = 1 and

Y1 = 0 we found that:

Π2 = − t1
α1

, and Π1 = − t2
α2

5See Osborne (pg. 137-142).
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where (Π1, Π2) ∈ [0, 1]× [0, 1], ∀ t1, t2, α1 and α2 in the multiple equilibrium region

(Rsquare).

In this framework it is allow statistical interdependence between ε1 and ε2. Then,

each region will aport certain amount of probability, according to the joint distribution

of ε1 and ε2. This can be seen in Figure 4, in which is assumed that (ε1, ε2) follows a

Farlie-Gumbel-Morgesten families of joint distributions (see Johnson, et. al. 1999).

Figure 4

(ε1, ε2) Joint Density Function

  (0,0)

  (1,1)

  (0,1)

  (1,0)

Mixed

The main problem here is that:

Pr[(1, 1)|X] + Pr[(0, 0)|X] + Pr[(0, 1)|X] + Pr[(1, 0)|X] > 1
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Econometric models of some discrete games

We are going to survey briefly some econometrics models of discrete games. Pioneer

work is Bjorn and Vuong (1984,1985). They fit into the econometric model the

interaction between two players (wife and husband), under the assumption that the

outcomes of the database came from a Nash and Stackelberg equilibrium. Kooreman

(1994), go further and proposed Pareto optimality. Finally, Bresnahan and Reiss

(1991) and Tamer (2003) elegantly showed, identification of θ is still viable in the

complete information setting if there exists prior knowledge of the signs of strategic

interaction, α′s. Following Kooreman (1994), general setting of Nash equilibrium

(NE), Stackelberg equilibrium (SE) and Pareto optimality (PO) can be summary as

follows:

1. There are 2 players : (Wife and Husband; Small Firm and Large Firm, etc.)

2. There are 2 actions. The action of player p is represented by a dummy variable

for p = {1, 2}:

Yp =

{
1, enter, be aggressive, participate, etc.;

0, don’t enter, don’t be aggressive, don’t participate, etc.

3. Preferences are constructed as follows. Let be

Up(Y1, Y2)

utility function for player p. Combination of action can be named allocation. Assum-

ing ordinal preferences, each player can ranking its four utility levels. This imply that

there is 4! different rankings which means that for two players there are (4!)2 = 576

possible combination of utility ranks. For empirical implementation let be:
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Player 1 Player 2

U1(1, 1) = X ′β1
1 + α1

1 + ε1
1 U2(1, 1) = X ′β2

1 + α2
1 + ε2

1

U1(1, 0) = X ′β1
1 + ε1

1 U2(1, 0) = X ′β2
1 + ε2

1

U1(0, 1) = X ′β1
0 + α1

0 + ε1
0 U2(0, 1) = X ′β2

0 + α2
0 + ε2

0

U1(0, 0) = X ′β1
0 + ε1

0 U2(0, 0) = X ′β2
0 + ε2

0 (1.2)

As mentioned, it was used McFadden’s random utility hypothesis. Notice that there

are eight parameters to be identified:

{β1
0 , β

1
1 , β

2
0 , β

2
1 , α

1
0, α

1
1, α

2
0, α

2
1}

Which is difficult to be solved. Then, an alternative representation of (1.2) can be

proposed:

Player 1 Player 2

U1(1, 1)− U1(1, 0) = α1
1 U2(1, 1)− U2(1, 0) = α2

1

U1(0, 1)− U1(0, 0) = α1
0 U2(0, 1)− U2(0, 0) = α2

0

(1.3)

This representation reduces the number of possible utility rankings per player from 24

to 6. For example, if econometrist knows that α1
1 > 0 and α2

0 < 0, then utility rankings

with U1(1, 1)−U1(1, 0) > 0 and U2(0, 1)−U2(0, 0) < 0 cannot occur. Representation

(1.2) is similar to that in the “simultaneous-move” games as proposed by Bresnahan

and Reiss (1991). Let be:

βp = βp
1 − βp

0 , αp = αp
1 − αp

0, εp = εp
1 − εp

0

for p = {1, 2}. Under this structure of the game we can define an equilibrium concept.
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a) Nash Equilibrium

Following Bjorn and Vuong (1984), player is assumed to maximize their utility func-

tion, given the action of the other player; this means that players adjust their actions

until decisions are mutually consistent. Let {(l, k) = (0, 1)}, then, (k, l) is a Nash

equilibrium if:

U1(k, l) > U1(1− k, l) and U2(k, l) > U2(k, 1− l)

Then, NE will depend on signs of the following utility differences: reaction functions.

For Player 1

U1(1, 1)− U1(0, 1) = X ′β1 + α1 + ε1

U1(1, 0)− U1(0, 0) = X ′β1 + ε1

For Player 2

U2(1, 1)− U2(0, 1) = X ′β2 + α2 + ε2

U2(1, 0)− U2(0, 0) = X ′β2 + ε2 (1.4)

There are 16 different combinations which will determine the equilibrium. In some

cases there are two NE (multiple equilibria); whereas in others don’t exist (remember

the blank square in Figure 2 named “Mixed”). In order to identify the parameters

of the model, when there are multiple equilibria or none, Bjorn and Vuong (1984)

assumed that players choose one of the equilibria at random, such that each equilib-

rium is chosen with equal probabilities. In the other case in which there is not action

chosen (blank square in Figure 2), players are assumed to choose one of the four

allocation with equal probabilities. This has been criticized as ad hoc assumptions.

In terms of identification, notice that α1, α2, β1, β2 are identified, but α1
0, α1

1, α2
0,

α2
1, and β1

0 , β1
1 , β2

0 , β2
1 are not identified separately.

Finally, we want to know the likelihood contributions of each allocation:

{(1, 1), (1, 0), (0, 1), (0, 0)}
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Under certain regularity conditions6 and assumptions made above, we have that for

(0, 1)× (0, 1), there are only 4 possible reaction functions for each player:

From (1.3), define:

For Player 1

U1
1 =

{
U1(1, 1)− U1(1, 0) > 0 and

U1(0, 1)− U1(0, 0) > 0 ⇔ ε1 > −X ′β1 −min(0, α1)

U2
1 =

{
U1(1, 1)− U1(1, 0) > 0 and

U1(0, 1)− U1(0, 0) < 0 ⇔ −X ′β1 − α1 < ε1 < −X ′β1

U3
1 =

{
U1(1, 1)− U1(1, 0) < 0 and

U1(0, 1)− U1(0, 0) > 0 ⇔ −X ′β1 < ε1 < −X ′β1 − α1

U4
1 =

{
U1(1, 1)− U1(1, 0) < 0 and

U1(0, 1)− U1(0, 0) < 0 ⇔ ε1 < −X ′β1 −max(0, α1).

For Player 2

U1
2 =

{
U2(1, 1)− U2(1, 0) > 0 and

U2(0, 1)− U2(0, 0) > 0 ⇔ ε2 > −X ′β2 −min(0, α2)

U2
2 =

{
U2(1, 1)− U2(1, 0) > 0 and

U2(0, 1)− U2(0, 0) < 0 ⇔ −X ′β2 − α2 < ε2 < −X ′β2

U3
2 =

{
U2(1, 1)− U2(1, 0) < 0 and

U2(0, 1)− U2(0, 0) > 0 ⇔ −X ′β2 < ε2 < −X ′β2 − α2

U4
2 =

{
U2(1, 1)− U2(1, 0) < 0 and

U2(0, 1)− U2(0, 0) < 0 ⇔ ε2 < −X ′β2 −max(0, α2).

6See Bjorn and Vuong (1984).
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Nash Model

Players U1
1 U2

1 U3
1 U4

1

U1
2 (1,1) (1,1) (0,1) (0,1)

U2
2 (1,1) (1,1) or (0,0) No NE (0,0)

U3
2 (1,0) No NE (1,0) or (0,1) (0,1)

U4
2 (1,0) (0,0) (1,0) (0,0)

Notice that (U2
2 , U2

1 ) and (U3
2 , U3

1 ) represent a multiple equilibria; whereas, (U2
2 , U3

1 )

and (U3
2 , U2

1 ), represent no equilibria. Likelihood contributions can be derived straight-

forwardly (see Bjorn and Vuong, 1984). Estimation of θ = {α1, α2, β1, β2} can be

made using likelihood framework.

b) Stackelberg Equilibrium

Following Bjorn and Vuong (1985), in a Stackelberg game the role of the players

is asymmetric. One of the players, the leader, is assumed to maximize his utility

anticipating the reaction of the other player, the follower. Formally, allocation (l, k)

is SE with Player 1 being the leader and Player 2, the follower if

U2(k, l) > U2(k, 1− l) and U1(k, l) > U1(1− k, l)

U2(1− k, l) > U2(1− k, 1− l)

or

U2(k, l) > U2(k, 1− l) and U1(k, l) > U1(1− k, 1− l)

U2(1− k, l) < U2(1− k, 1− l)
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Stackelberg Model

Player 2 Player 1

U1
2 U1(1, 1)− U1(1, 0) > 0 ⇔ ε1 > −X ′β1 − α1 (1,1) is SE

U1
2 U1(1, 1)− U1(1, 0) < 0 ⇔ ε1 < −X ′β1 − α1 (0,1) is SE

U2
2 U1(1, 1)− U1(0, 0) > 0 ⇔ ε1 > −X ′β1 − α1

1 (1,1) is SE

U2
2 U1(1, 1)− U1(0, 0) < 0 ⇔ ε1 < −X ′β1 − α1

1 (0,0) is SE

U3
2 U1(1, 0)− U1(0, 1) > 0 ⇔ ε1 > −X ′β1 + α1

0 (1,1) is SE

U3
2 U1(1, 0)− U1(0, 1) < 0 ⇔ ε1 < −X ′β1 + α1

0 (0,1) is SE

U4
2 U1(1, 0)− U1(0, 0) > 0 ⇔ ε1 > −X ′β1 (1,0) is SE

U4
2 U1(1, 0)− U1(0, 0) < 0 ⇔ ε1 < −X ′β1 (0,0) is SE

Where, U i
2, i = {1, 2, 3, 4}, were defined above. As opposite of NE, SE is always

defined uniquely. Notice that β1, α1
1, and α1

0 are identified by the leader ; whereas

β2 and α2 are only identified by the follower. Likelihood function can be derived

straightforward from the last table and a certain distributional assumptions over

(ε1, ε2), see Bjorn and Vuong, 1985.

c) Pareto Optimality

Following Koreman (1994), Pareto optimality can be reach if

(
U1(k, l) > U1(k, 1− l) or U1(k, l) > U2(k, 1− l)

)

and(
U1(k, l) > U1(k, 1− l) or U1(k, l) > U2(k, 1− l)

)

and(
U1(k, l) > U1(k, 1− l) or U1(k, l) > U2(k, 1− l)

)

As before, we assume that the players choose one of the Pareto optimal allocations at
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random, such that each Pareto optimal allocation is chosen with equal probabilities.

Similar to NE and SE, can be derived the likelihood contributions, see Koreman,

1994.

d) Nonlinear Simultaneous Equations Model

Following Tamer (2003), we can say that his paper contributes to the literature on

inference in nonlinear simultaneous equations model. From model describe by

y∗1 = X ′
1β1 + y2α1 + ε1

y∗2 = X ′
2β2 + y1α2 + ε2

yp =

{
1, if y∗p > 0;

0, otherwise.

For p = {1, 2}. If the econometrist knows signs of α′s, as seen, there are two situations:

d.1.) α1 < 0, α2 < 0

If εp has enough support, the theoretical game admits multiple equilibria. In this

case for −X ′
pβp ≤ εp ≤ −X ′

pβp − αp, (p = 1, 2), the econometric model predicts

either (0,1) or (1,0). then, the model provides the following inequality restrictions on

conditional regressions: For,

θ = (β1, β2, α1, α2, Ω)

P1(X,θ) = Pr[(0, 0)|x] = Pr(ε1 < −X ′
1β1; ε2 < −X ′

2β2)

P2(X,θ) = Pr[(1, 1)|x] = Pr(ε1 ≥ −X ′
1β1 − α1; ε1 ≥ −X ′

2β2 − α2)

P3(X,θ) ≤ Pr[(0, 1)|x] ≤ P4(X, θ) (1.5)

where

P3(X,θ) = Pr(ε1 < −X ′
1β1 − α1; ε2 > −X ′

2β2 − α2) +

+ Pr(ε1 < −X ′
1β1;−X ′

2β2 < ε2 < −X ′
2β2 − α2)

P4(X,θ) = Pr(ε1 < −X ′
1β1 − α1; ε2 > −X ′

2β2)
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The upper an lower probabilities on the (1,0) outcome are similar. The bound on the

conditional probabilities provided by the incomplete model are usually much tighter

than the ones obtained from models that treat the (0,1) and (1,0) outcomes as one

event. The bound provided by these models on the (0,1) outcome is

0 ≤ Pr[(0, 1)|x] ≤ 1− P1(X, θ)− P2(X,θ)

If we allow mixed strategies in the underlying game, then the restrictions provided by

the model will be

P1(X,θ) ≤ Pr[(0, 0)|x] ≤ P1(X,θ) + Psquare(X,θ)

P2(X,θ) ≤ Pr[(1, 1)|x] ≤ P2(X,θ) + Psquare(X,θ)

P3(X,θ) ≤ Pr[(0, 1)|x] ≤ P4(X,θ) (1.6)

where

Psquare(X,θ) = Pr[−X ′
1β1 < ε1 < −X ′

1β1 − α1;−X ′
2β2 < ε2 < −X ′

2β2 − α2|x]

Square can be seen in Figure 3.

d.1.) α1 > 0, α2 < 0

Blanket square in Figure 2, represents that some values of the exogenous variables,

either of the four outcomes is likely. In this square, there is no equilibrium in pure

strategies: each player is indifferent between choosing 1 or 0 given that the other is

randomizing. This maps into the model having the following restrictions:

P1(X,θ) ≤ Pr[(0, 0)|x] ≤ P1(X,θ) + Psquare(X,θ)

P2(X,θ) ≤ Pr[(1, 1)|x] ≤ P2(X,θ) + Psquare(X,θ)

P ′
3(X,θ) ≤ Pr[(0, 1)|x] ≤ P ′

3(X,θ) + Psquare(X,θ) (1.7)
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Where P1 and P2 are the same as above and

P ′
3(X, θ) = Pr[ε1 ≥ −X ′

1β1; ε2 < −X ′
2β2 − α2]

and

Psquare(X,θ) = Pr[−X ′
1β1 − α1 ≤ ε1 ≤ −X ′

1β1;−X ′
2β2 ≤ ε2 ≤ −X ′

2β2 − α2|x]

Maximum Likelihood Estimator (α1 < 0 and α2 < 0): Multiple equilibrium

is allowed. This maximum likelihood estimator can be used to consistently estimate

parameters θ. It is considered the model in which there are only three outcomes:

(0,0), (1,1) and (1,0) and (0,1). Given the outcome probabilities given in (1.5).

Assumptions A1-A3 hold, and some regularity conditions7, we have

LML(b) =
1

N

N∑
i=1

[
yi1yi2log(P1(X,b)) + (1− yi1)(1− yi2)log(P2(X,b))

+ ((1− yi1)yi2 + yi1(1− yi2))log(1− P1(X,b)− P2(X,b))
]

(1.8)

where P1 and P2 are defined in (1.5). Using Maximum Likelihood Estimation tech-

niques, the covariance matrix of the above-modified likelihood is

ΩML = E

[
∂P1∂P ′

1

P1

+
∂P2∂P ′

2

P2

+
(∂P1 + ∂P2)(∂P1 + ∂P2)

′

1− P1 − P2

]−1

where ∂P1 and ∂P2 are the derivative vectors of the functions P1(X,b), and P2(X,b)

respectively, with respect to b evaluated in the true parameters θ0.

Incomplete Information

Simultaneous 2× 2 game in its normal representation becomes.

7See Tamer, 2003.
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Figure 5

A simple 2 x 2 game

PLAYER 2

Y=1 Y=0

PLAYER 1 Y=1 t1 + α1π2, t2 + α2π1 t1, 0

Y=0 0, t2 0,0

Following Aradillas-López (2008), we will incorporate the assumption of incom-

plete information. This implies that players don’t know payoff function of the other

one, they should guess about it in order to take their decisions. In this context, we

assume that players do not know Y−p, instead of that, they incorporate beliefs in their

payoff function as follows

π−p = Prp(Y−p = 1|Yp = 1, X)

Which is the player p belief.

Equilibrium beliefs and actions

Given the normal-form of the game (Figure 5) and assumptions (A1)-(A2) (just mod-

ified by its incomplete informational assumption, i.e., players should guess other

players actions), players’ optimal actions are given by

Y1 = 1{X ′
1β1 + α1 Pr1(Y2 = 1|Y1 = 1,X)︸ ︷︷ ︸

π2=Player 1’s beliefs

−ε1 ≥ 0}

(1.9)

Y2 = 1{X ′
2β2 + α2 Pr2(Y1 = 1|Y2 = 1,X)︸ ︷︷ ︸

π1=Player 2’s beliefs

−ε2 ≥ 0}

Where 1{A} is the indicator function: 1{A} = 1 if A is true, 0 otherwise.
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Then, husband and wife will use pure-strategy based on (1.9). Our goal is to

find a pair of self-consistence equilibrium believes that satisfy (1.9). Let be a pair of

scalars π1, π2 ∈ R2 and define:

ϕ1(π1, π2; θ,X) = π1 − G1,2(X
′
1β1 + α1π2, X

′
2β2 + α2π1; ρ)

G2(X ′
2β2 + α2π1)

ϕ2(π1, π2; θ,X) = π2 − G1,2(X
′
1β1 + α1π2, X

′
2β2 + α2π1; ρ)

G1(X ′
1β1 + α1π2)

(1.10)

ϕ(π1, π2; θ,X) = (ϕ1(π1, π2; θ,X), ϕ2(π1, π2; θ,X))

Proposition 1

This is a version of Proposition 1 in Aradillas-Lopez (2008). Given a fix realization

of x ∈ S(X), ρ and the value of θ, then, ϕ(π1, π2; θ,X) can be considered as a function

of (π1π2). If assumptions (A1) and (A2) are satisfied, players’ beliefs are deterministic

given x and a pair of self-consistent beliefs that satisfy (1.9) must solve for (π1, π2)

the system

ϕ(π1, π2; θ,X) = 0 (1.11)

For a given values of x, ρ and θ, roughly speaking, we will say that “there exists

an equilibrium”8 if there exists a pair of (π1, π2) such that (1.11) is satisfied. A detail

analysis of existence, cardinality and uniqueness of the equilibria, can be found in

Aradillas-Lopez (2008).

Estimation of π1 and π2

If there exist a unique solution of the equilibrium system (1.11) for a given values of

x, ρ and θ, it will be denoted as π̂(θ,x) ≡ (
π̂1(θ,x), π̂2(θ,x)

)
.

8Here is allow multiple equilibria. If that were the case, we could choose the smalest π̂1, and uses
it for the analysis. (see Aradillas-Lopez, 2008).
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We are interested in to find π∗(θ,x) (self-consistent beliefs). We estimate it as

follows: take a pair of (π1, π2) ∈ R2. Let be

Q(π; θ,x) = −ϕ(π; θ,x)′ϕ(π; θ,x) (1.12)

With ϕ(π; θ,x), defined in (1.10), so we maximize

max
π∈[0,1]2

Q(π; θ,x) (1.13)

Which give us π̂(θ,x) =
(
π̂1(θ,x), π̂2(θ,x)

)
, estimation of players’ self-consistent

beliefs.

Estimation of θ

Introducing some notation: let be t1 = X ′
1β1 + α1π2 and t2 = X ′

2β2 + α2π1, where

(π1, π2) ∈ R2. Let define,

P1,1(X,θ, π) = Pr(t1 ≥ ε1, t2 ≥ ε2|X; ρ)

P1,0(X,θ, π) = Pr(t1 ≥ ε1, t2 < ε2|X; ρ)

P0,1(X,θ, π) = Pr(t1 < ε1, t2 ≥ ε2|X; ρ) (1.14)

P0,0(X,θ, π) = Pr(t1 < ε1, t2 < ε2|X; ρ)

Define W=(Y,X), and
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L1,1(X,θ, π) ≡ logP1,1(X,θ, π)

L1,0(X,θ, π) ≡ logP1,0(X,θ, π)

L0,1(X,θ, π) ≡ logP0,1(X,θ, π) (1.15)

L0,0(X,θ, π) ≡ logP0,0(X,θ, π)

Then, the conditional log-likelihood of Y given X is given by:

L (W,θ, π) = Y1Y2L1,1(X, θ, π) + (1− Y1)Y2L1,0(X, θ, π) +

+Y1(1− Y2)L1,0(X,θ, π) + (1.16)

+(1− Y1)(1− Y2)L0,0(X,θ, π)

Using the self-consistent equilibrium believes which were found using (1.11), π̂(X,θ),

then we find θ by solving:

max
θ∈Θ

1

N

N∑
i=1

L (Wi,θ, π̂(X,θ)) (1.17)

Where i = {1, 2, ..., N} games.

Matrix of variances and covariances can be found using maximum likelihood esti-

mation techniques (see Amemiya, 1985). Then

ΩMLE = −
[
E

∂2L (W,θ, π)

∂θ∂θ′

]−1

(1.18)

Which is known as Cramer-Rao lower bound.
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1.2.2 Dynamic Games

Empirical industrial organization economists have proposed estimates for dynamic

games of incomplete information. In these models, agents choose from a finite num-

ber actions and maximize expected discounted utility in a Markov perfect equilibrium.

Some econometric methods have estimated the probability distribution of agents ac-

tions in a first stage. In a second step, a finite vector of parameters of the period,

return function are estimated. Agents are forward looking and maximize expected

discounted utility. Like the models surveyed in Rust (1994) or studied in Keane and

Wolpin (1997).

Nonetheless, there is another way to model dynamic games: agents interact strate-

gically and play a Markov perfect equilibrium to a dynamic game. See Pakes, Ostro-

vsky and Berry (2004), Aguirregabiria and Mira (2002), Pesendorfer and Schmidt-

Dengler (2003) and Bajari, Benkard and Levin (2003). Substantive applications of

dynamic games estimators include Jenkins, Liu, McFadden, and Matzkin (2004) to

the browser war.

Bajari and Hong (2006) have developed a semiparametric estimators for dynamic

games allowing for continuous state varaibles and a nonparametric first stage, sim-

ilar to models discussed by Pakes, Ostrovsky and Berry (2004), Aguirregabiria and

Mira (2002), Pesendorfer and Schmidt-Dengler (2003) and Bajari, Benkard and Levin

(2003).

Nonparametric identification results for dynamic discrete games are developed by

Aguirregabiria and Mira (2002) and Pesendorfer and Schmidt-Dengler (2003) in the

context of discrete state space models. Relatively recent works by Heckman and

Navarro (2005) and Aguirregabiria (2005) present identification results for dynamic

discrete choice models allowing for continuous state variables.
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1.3 Labor Participation: Wife and Husband Deci-

sion Game

Let be player 1, husband ; and player 2 wife, in a married couple which play a game

with complete information in order to decide their participation or not in the labor

market. Using the game structure given in Figure 1, Y=1 means participate in the

labor market, and Y=0, don’t participate. As usual, upper-case will denote random

variables and lower-case, particular realizations of this random variables. As men-

tioned, S(U), represents the support of the random variable U ; and the subscript

p ∈ {1, 2} to denote a particular player, and −p to denote the opponent. Strategic

parameters will be represented as (α1, α2) ∈ R2. This parameters summarize the

interaction effect between the players’ actions.

Following Bjorn and Vuong (1984)9 we assume that α1 (husband’s interaction

coefficient) is negative. This means that husband would be affected if his wife decides

to work (because of social considerations, among others). At the same time, it is

assumed that α2 is negative too. The fact that both (α1, α2) were negative, i.e., the

assumption of is hurt for both participate in the labor market is reasonable because

they would be affected because they could have a child, or they would be apart when

work, etc.; and means that multiple equilibria is allowed in the context of complete

information environment.

As mentioned, this kind of models have been widely studied in econometrics, Bres-

nahan and Reis (1991) and by Heckman (1978) in his seminal paper (models with

structural shifts parameters). Blundell and Smith (1993, 1994) on female labour sup-

ply and Schmidt (1981) on simultaneity in bivariate econometrics models.

When multiple equilibrium is allowed, some authors have made ad-hoc assump-

tions: decision process is assumed that come from a “single equilibrium concept”. As

9This is the assumptions which indicates that econometrist knows the signs of α′s. Bjorn and
Vuong (1984) found that interaction parameters in the U.S. where negative.
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it was mentioned, pioneer work is Bjorn and Vuong (1984, 1985). Kooreman (1994),

estimated and compared some microeconometric models for simultaneous discrete

endogenous variables; he used data on the joint labor force participation decisions

of husbands and wives in a sample of Dutch households, under the assumption that

outcomes came from a Nash Equilibrium, Stackelberg Equilibrium and Pareto opti-

mallity. Then, they make simplifying assumptions to respond to the nonuniqueness

problem without invoking the coherency condition.

On the other hand, Tamer (2003), proposed a parametric and nonparametric es-

timator without invoking this coherency condition nor imposing ad-hoc assumptions

to avoid multiplicity equilibria. Our model go forward because not only allows mul-

tiplicity equilibrium, but also designs an equilibrium selection mechanism.

1.3.1 Equilibrium Selection Mechanism

As α1 ≤ 0, and α2 ≤ 0, we have multiple equilibria. Then, players should decide

how to choose the optimal equilibrium. Equilibria will be ordered according to the

husband’s probability to work. In the square area in Figure 3, there are three equi-

libriums: (0,1), mixed, and (1,0). In the first one, husband will work with probability

zero; in the second one he will work with probability Π1 = − t2
α2
∈ [0, 1]; in the third

one, he will work with probability one. Then, it will be considered an ordered response

approach using a linear index.

Let be,

W′γ + η (1.19)

the linear index where W are observable characteristics using exclusion restriction,

which means that we should include some characteristics that are not included in X1

or X2. γ ∈ Rk2 is a vector of parameters and η is unobservable vector. k2 ∈ Z.
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Figure 6

Linear Index

µa µb
(0,1) (1,0)Mixed

where µa and µb are threshold parameters, such that µb ≥ µa. If γi > 0 contributes

husband to work. Finally, η is assumed independent of (ε1, ε2)
10.

According to Figure 3, regions have the following specific expressions:

R(sqr): 0 ≤ t2 ≤ −α2 and 0 ≤ t1 ≤ −α1

R(1,1): t2 > −α2 and t1 > −α1

R(0,0): t2 < 0 and t1 < 0

R(0,1): t2 > 0 and t1 < 0
⋃

t2 > −α2 and 0 ≤ t1 ≤ −α1

R(1,0): t2 < 0 and t1 > 0
⋃

0 ≤ t2 ≤ −α2 and t1 > −α1

Then, we need to construct specific expressions for Pr(1,1), Pr(0,0), Pr(0,1) and

Pr(1,0). But first I will describe informational assumptions.

1.4 Estimation

Assumption A4 (Researcher) Main assumption made here is that distributions of

(ε1, ε2) ∼ G1,2(., .; ρ), and η ∼ F (•) are assumed to be known.

Here, it will be used the Farlie-Gumbel-Morgesten families of joint distributions

(see Johnson, et. al. 1999), then G1,2(., .; ρ) can be expressed as follows:

10This could be relaxed.
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G1,2(ε1, ε2; ρ) = G1(ε1)G2(ε2)×
[
1 + ρ(1−G1(ε1))(1−G2(ε2))

]
(1.20)

where

G(εp) =
eεp

1 + eεp
(1.21)

G(•) is the logistic cdf.

At the same time, we assume that η has a logistic cdf.

F (η) =
eη

1 + eη
(1.22)

Assumption A5 (Researcher) The econometrician has in hand an iid sample of

N games described by the assumptions (A1)-(A4). He observes (Yn, Xn,Wn)N
n=1, and

uses the joint cdf G1,2(., .; ρ) described above with ρ ≤ |1|, and the logistical, F (•),
for η, in order to identify all parameters.

1.4.1 Probabilities

Under the assumptions (A1)-(A5), probability functions for each pair of actions

{(1, 1), (0, 0), (1, 0), (0, 1)} are defined as follow.

Probability of (1,0)

Let be 1{(1, 0)} the indicator function for the simultaneous actions: Y1 = 1 and

Y2 = 0. From the Figure 3, and including the selection mechanism, we have:

1{(1, 0)} = 1{(t1, t2) ∈ R(1,0)}+

1{(t1, t2) ∈ R(square) and W ′γ + η > µb}+

1{(t1, t2) ∈ R(square) and µa ≤ W ′γ + η ≤ µb}
1{U2 ≤ Π2}1{U1 > Π1} (1.23)



35

where U1 and U2 are uniform random variables in [0,1], independent from all random

variables in the game and between them. 1{U2 ≤ Π2}, and 1{U1 > Π1} are called

randomization device. Notice that all possibilities have been considered, because

regions are mutually exclusive from each other.

Now, the conditional probability of {(1, 0)} given X1, X2, W , ε1, ε2, and η is:

Pr[{(1, 0)}|X1, X2,W, ε1, ε2, η] = 1{(t1, t2) ∈ R(1,0)}+

1{(t1, t2) ∈ R(square) and W ′γ + η > µb}+

1{(t1, t2) ∈ R(square) and µa ≤ W ′γ + η ≤ µb}
Π2(1− Π1) (1.24)

Finally, integrating over ε1, ε2,and η, we have:

P(1,0) = Pr({1, 0}|X1, X2, W ) =
∫

ε1

∫

ε2

∫

η

[
1{(t1, t2) ∈ R(1,0)}+

1{(t1, t2) ∈ R(square) and W ′γ + η > µb}+

1{(t1, t2) ∈ R(square) and µa ≤ W ′γ + η ≤ µb}
Π2(1− Π1)

]
g1,2(ε1, ε2; ρ) f(η) dη dε2 dε1 (1.25)

Parallel structure was used in order to find {(1,1)}, {(0,0)}, and {(0,1)} probabil-

ities, so we get:

Probability of (1,1)

P(1,1) = Pr({1, 1}|X1, X2,W ) =
∫

ε1

∫

ε2

∫

η

[
1{(t1, t2) ∈ R(1,1)}+

1{(t1, t2) ∈ R(square) and µa ≤ W ′γ + η ≤ µb}
π2π1

]
g1,2(ε1, ε2; ρ) f(η) dη dε2 dε1 (1.26)
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Probability of (0,0)

P(0,0) = Pr({0, 0}|X1, X2,W ) =

∫

ε1

∫

ε2

∫

η

[
1{(t1, t2) ∈ R(0,0)}+

1{(t1, t2) ∈ R(square) and µa ≤ W ′γ + η ≤ µb}
(1− π2)(1− π1)

]
g1,2(ε1, ε2; ρ) f(η) dη dε2 dε1 (1.27)

Probability of (0,1)

P(0,1) = Pr({0, 1}|X1, X2,W ) =

∫

ε1

∫

ε2

∫

η

[
1{(t1, t2) ∈ R(0,1)}+

1{(t1, t2) ∈ R(square) and µa ≤ W ′γ + η}+

1{(t1, t2) ∈ R(square) and µa ≤ W ′γ + η ≤ µb}
(1− π2)π1

]
g1,2(ε1, ε2; ρ) f(η) dη dε2 dε1 (1.28)

Under assumptions (A1)-(A5), it holds that

P(1,1) + P(0,0) + P(1,0) + P(0,1) = 1

without invoke coherency condition.

1.4.2 Estimation of θ

All parameters are identify, then, using maximum likelihood estimation, we can con-

struct the likelihood function as follows:

L (Y,X,W, θ) =
1

N

N∑
i=1

[
yi1yi2 log(Pi{1,1}) + (1− yi1)(1− yi2) log(Pi{0,0}) +

+yi1(1− yi2) log(Pi{1,0}) + (1− yi1)yi2 log(Pi{0,1})
]

(1.29)
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where Pi{j,k} is the probability to play {j, k} ∈ ({1, 1}, {0, 0}, {1, 0}, {0, 1}) of the

i− th married couple.

Matrix of variances and covariances can be found using maximum likelihood esti-

mation techniques (see Amemiya, 1985). Then

ΩMLE = −
[
E

∂2L (Y,X,W, θ)

∂θ∂θ′

]−1

(1.30)

Which is known as Cramer-Rao lower bound.

1.5 Empirical application

1.5.1 Complete Information

Here, I assumed that husband and wife, they know each other complete when they

interact strategically in order to decide if participate or not in the labor market.

1.5.2 Data base description

In order to characterize the strategic interaction and decisions of Mexican couples of

spouses, particularly, those decisions which are related with the participation in the

labor market, I used the “Encuesta Basal sobre el Ahorro, Crédito y Microfinanzas

Rurales” (Basal Survey of Saves, Credit and Rural Micro-Finances), made by the

“Banco del Ahorro Nacional y Servicios Financieros, Sociedad Nacional de Crédito,

Institución de Banca de Desarrollo” (BANSEFI) and the “Secretaŕıa de Agricultura,

Ganadeŕıa, Desarrollo Rural, Pesca y Alimentación” (SAGARPA), in 2004.

The entire survey was designed as a “natural experiment” in which it is attempt

to capture changes and differences in social, economical and political terms, between

those households in which unless one of its members belongs to one “Popular Credit



38

and Save Society” (SACP, by its acronym in Spanish).

In this survey were interviewed 5767 households randomly selected: 2792 were

“no treatment” and 2975 were “treatment”; distributed in 3 regions: North, Center

and South11. Additionally, the households interviewed were divided in rural or urban

communities. We discarded those couples in which one of its members is greater than

65 years old.

Table 1

Couples N North Center South

Mexico 3884 19.44% 38.59% 41.97%

Yp =





0 If p don’t participate in the labor market

1 If p participate in the labor market

where p ∈ {1, 2}. Then, (Y1, Y2) ∈ {(1, 1), (1, 0), (0, 1), (0, 0)}. Outcomes of the

games can be seen in Figure 7:

Figure 7

Outcomes of the Games

PLAYER 2

(Wife)

Y=1 Y=0

PLAYER 1 Y=1 907 2808

(Husband) Y=0 42 127

11Region=1 (North): Aguascalientes, Baja California, Baja California Sur, Chihuahua, Coahuila,
Durango, Nuevo León, San Luis Potos, Sinaloa, Sonora, Tamaulipas and Zacatecas; Region=2 (Cen-
ter): Colima, Distrito Federal, State of Mexico, Guanajuato, Hidalgo, Jalisco, Michoacán, Morelos,
Nayarit and Querétaro; Region=3 (South): Campeche, Chiapas, Guerrero, Oaxaca, Puebla, Quin-
tana Roo, Tabasco, Tlaxcala, Veracruz and Yucatán.
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Following Bjorn and Vuong (1985), I used social variables available in the survey

which capture market participation decisions.

X1 = {AGEH, EDUCH,KIDS13}

X2 = {AGEW,EDUCW,KIDS13} (1.31)

W = {AGEH2, EDUCH}

Xp is known of the married couple, which reinforce the complete informational

assumption. Covariates of all variables were summarized in the Table 2.

Table 2

Covariates of the Model

Variable Description Mean Std. Dev. Min Max

AGEH Age of the male patner 41.83 11.32 17 65

AGEW Age of the female patner 38.62 10.89 14 65

EDUCH Years of education

(male patner) 7.16 4.52 0 17

EDUCW Years of education

(female patner) 6.81 4.28 0 17

KIDS13 Number of kids

less than 14 years old 1.55 1.31 0 7

AGEH2 Age Square of male patner

(Experience proxy variable) 1878.49 976.075 289 4225

As can be seen, male partner average age is about 41 years old, female partner, is

about 38. Additionally, years of education is about 7 years in both cases. In average,

Mexican couples have 1.55 kids less than 14 years old. It was included the variable

AGEH2 as a proxy of the male experience. Without lose of generality, I assumed that
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couples “flip a coin” when they choose mixed strategies, so Π1 = 0.5 and Π2 = 0.5.

Main results are presented in the next section.

1.5.3 Main Results

Table 3

(Standard Errors in parentheses)

Variable Player 1 Player 2

(Husband) (Wife)

CONSp 4.6126* -1.6807*

(0.4985) (0.2776)

AGEp -0.0385* 0.0125*

(0.0083) (0.0045)

EDUCp -0.0125 0.1894*

(0.0172) (0.0101)

KIDS13P 0.0572 -0.1386*

(0.0644) (0.0378)

αp 13.5730 -1.2276*

(27.6374) (0.1324)

ρ 0.5

(*) Statistically significant at a 5% level.

As an additional assumption, ρ was picked up at 0.5, which means that there is

a positive relationship between (ε1, ε2). There were no significant changes with other

values of ρ.
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Table 4

Linear Index

(Standard Errors in parentheses)

Variable W

AGE2
p -0.1000

(0.2169)

EDUCp -0.0100

(0.0344)

µa -0.0054

(0.0102)

µb -0.0048

(0.0342)

1.5.4 Analysis of results

In both cases AGEp’s parameter were significant; nonetheless, husband’s age was

negative, which means that the more husband’s age the less participation in the labor

market, which is reasonable. On the other hand, female parameter is positive which

means that wives have more incentives to participate in the labor market as they

are older. Social and economic considerations can determine wives to participate

in the labor market; for example, the more age that they have, children becomes

“independent”, and they have “free hands” to decide to work.

Education is not significative in the husband’s case, but in the wife’s case it is

and positive. This means that the more years of education, the more incentives to

participate in the labor market. In recent years, Mexican women have had an active

roll in the labor market; specifically in those cases in which women are more prepared

academically because they could get better jobs.

In the spouses decision to participate or not in the labor market, only wives care

about the children. KIDS13p has negative coefficient, as predicted (Bjorn and Vuong

(1984) obtain the same qualitative result in the female case). This means that children
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are an objective restriction when couple make their decisions to participate or not in

the labor market. In Mexico, traditionally man is less worry about children in general

which is directly related with gender culture in this country.

Interaction strategic parameter is very important in this analysis. As we can

see in Table 2, this coefficient were significant only in the wives’ case. This sign

was negative, and means that they care about here husbands decisions. More over,

she will not participate in the labor market if his husband decide to participate (in

average). The fact that husband’s parameter were not significant means that they

don’t care about their wives decisions (in average) to participate in the labor market.

All the parameters of the selection mechanism were not significant, which means

that they don’t follow this particular mechanism of equilibrium selection. Nonethe-

less, it is interesting that eventhough parameters of EDUC1 were not significant, they

both were negative (See Table 2 and 3).

1.6 Contrafactual Exercise

This section was included as a “contrafactual” (“what if”) exercise, it is just hypo-

thetical. Here is made the assumption that wife doesn’t communicate his husband her

decision to participate in the labor market, and viceversa. Under this assumptions,

there is some interesting results.

1.6.1 Incomplete information

We will incorporate the assumption of incomplete information, seen above. This

implies that players don’t know payoff function of the other one, they should guess

about it in order to take their decisions. In this context, we assume that players do

not know Y−p, instead of that, they incorporate beliefs in their payoff function as

follows
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π−p = Prp(Y−p = 1|Yp = 1, X)

Which is the player p belief.

Using the same data based described above, (Yn, Xn)1962
n=1 , and, for a given val-

ues of θ and using a grid of ρ’s values, we solve (1.11) and found the values of

π̂1(θ,x), π̂2(θ,x), this values characterize behavior of a the set of self-consistent equi-

librium beliefs. Graphically, can be seen in Figure 8:

Figure 8

Self-Consistent Equilibrium Beliefs

0.5

0.55

0.6

0.65

0.7

0.75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

π1
∗(X,θ)

ρ
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0.0262

0.0264

0.0266

0.0268

0.027

0.0272

0.0274

0.0276

0.0278

0.028

0.0282

0.0284

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

π2
∗(X,θ)

ρ

Given the fact that at different values of ρ, the value of θ̂ didn’t change qualita-

tively, then, without lost of generality, we picked-up ρ = 0.5. Values of π̂1(θ,x), π̂2(θ,x)

are presented in Table 2.

Table 5

π̂1(θ,x) π̂2(θ,x)

ρ = 0.5 0.6375 0.0277

Biprobit 0.9438 0.2517

This results is interesting by itself, and help us to answer the question if there ex-

ists some sociocultural items that lead decisions of participation in the labor market of

married people in Mexico. Husband’s believes denote they guess that the probability

of his wife participates in the market is near to zero when he decides to participate;

on the contrary, wife’s believes are greater than 0.5, which means that she believes

that her husband will participate in the labor market when she decides to participate.

More over, self-consistent equilibrium beliefs, i.e., the probability of husband’s

participation, given that his wife participates in the labor market, is a decreasing
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function of ρ, the correlation between private information variables (ε1, ε2); but is

increasing in the wife’s participation case given that husband participate.

Having in hand with this values, we solved (1.17). Results, are compared with

bivariate probit model (approximation to the complete information model) in Table

3.

Table 6

Estimations Results

(Standard Errors in parentheses)

Player 1 Player 2 Player 1 Player 2

Husband Wife Husband Wife

Variable Bivariate Probit Incomplete

AGEp -0.0218* 0.0091* -0.0488* 0.0145*

(0.0047) (0.0032) (0.0113) (0.0059)

EDUCp -0.0009 0.1091* 0.0033 0.1935*

(0.0109) (0.0087) (0.0276) (0.0144)

REGIp 0.00808 0.1755* 0.0241 0.3167*

(0.0691) (0.0459) (0.1669) (0.0783)

KIDS13P N.A. -0.0631* N.A. -0.1145*

(0.0287) (0.0503)

αp 2.6033* -2.1159* 187.8302* -5.7305*

(0.3039) (0.2242) (27.1241) (0.6022)

ρ -0.0538 0.5

(0.0695) Picked up

(*) Statistically significant at a 5% level.
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1.6.2 Analysis of results

In general, both models behaves similarly. Only two variables observe one changing

of sign and are significant in both models: AGEH and α1. Then, this changes only

are observed in the husband equation.

AGEH is negative and significant in the incomplete information model. This

means that the more age of the husband, he will not participate in the labor market,

which sounds logic. On the contrary, AGEW is positive and significant, which means

that wives could participate in the labor market when they reach a mature age. In

this case, they have less restrictions, for example, the attendance of their children.

In the incomplete information case, husband’s equation shows that education,

EDUCH, is not significant. Man has a high propensity to participate in the labor

market despite his education; this can be explained as follows: in Mexico, gender

discrimination or cultural conceptions could be driven decisions of husbands: “he

should work, he is the man of the house, and education doesn’t matter”. Interestingly,

EDUCW is positive and significant, which means that the more wives’ education will

participate in the market labor.

REGI is not significant in husband’s equation and a similar analysis can be made

as in the EDUCH’s case, because cultural behavior. Husband will participate despite

of the region. In the wives’ case, things are different. In this case, the value of the

parameter is positive and significant, this means that regional situations could have

influences in the labor market participation. The positive sign, means that in regions

2 or 3 (center and south), there is more wives’ participation in the market labor

because of economic and sociocultural problems. North is richer and conservative

(culturally speaking), than in the Center region.

As it was mention, KIDS13 only was included in wives’ equation and was negative

and significant. This result is rational: we hope that, the more children less than 14

years old, less wives’ participation in the labor market.

As can be seen, in the bivariate probit model both parameters are negative and

significant, enter-enter, (Y1 = 1, Y2 = 1) hurts both players; nonetheless, in the
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incomplete information model, α1 is positive and significant, and α2 is negative and

significant. This means that husband will participate if he guess that his wife will do

it too; on the contrary, if wife guess that the husband will participate in the labor

market, she will not do it, then, she is affected by her beliefs about the husband’s

actions. Then, we can conclude that husband and wife interact strategically and,

at the same time, that there exists some sociocultural factors that lead behavior of

married couples in Mexico.

1.7 Concluding remarks

Decisions to participate in the labor market can be modeled in the context of the

game theory, and here is presented in the Mexican labor market. In the context of

complete information and multiple equilibrium game, it was modeling specific mecha-

nism of equilibrium selection. Results reveal that participation decisions in the labor

market that come from this game structure have more influence over the wife than

the husband. Husband’s decisions are not essentially affected by wife’s decisions; but,

wife’s decisions are directly affected by his husband’s decisions (α2 < 0 and signifi-

cant). Husband participation decisions are only affected by the age; wife is affected

by age, education and kids less than 14 years old. Finally, all variables from selection

mechanism were not significant.

This results are very important but there is more to do. For example, mecha-

nism of selection could be analyzed in the context of other games with described

characteristics here. Main problem is to get information in order to use this model.

Additionally, simulations can be done in order to better understand under which

conditions works correctly the designed mechanism of equilibrium selection.



Chapter 2

Semi-Empirical Likelihood
Estimation of Manufacturing
Interaction-Based Model with
Asymmetric Information

2.1 Interaction-Based Models

Let us illustrate ideas by considering the following example (similar to the last chap-

ter): suppose we have a 2 x 2 game in which players must simultaneously (i.e., before

observing their opponent’s choice) choose between two actions: “Enter” or “Don’t

Enter”. We can assume the following payoff matrix, without loss of generality:

Figure 1

A simple 2 x 2 game

PLAYER 2

Enter Don’t

PLAYER 1 Enter t1 − π2α1, t2 − π1α2 t1, 0

Don’t 0, t2 0,0

48
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Now suppose that α1 and α2 are known by both players but that t1 and t2 are

private information, but it is common knowledge that they are both independent ran-

dom draws from the same -known by both players- distribution with cdf given by P(t).

π1=Probability that player 1 chooses Enter.

π2=Probability that player 2 chooses Enter.

Let

E1[π2]≡Player 1’s belief that player 2 will choose Enter.

E2[π1]≡Player 2’s belief that player 1 will choose Enter.

Now let E1[u
Enter
1 ] and E2[u

Enter
2 ] be the expected payoff from playing Enter for play-

ers 1 and 2 respectively. Then, due to the linearity of the payoff functions, these

expected payoffs are simply given by:

E1[u
Enter
1 ] = t1 − E1[π2]α1 and E2[u

Enter
2 ] = t2 − E2[π1]α2

Given the fact that the payoff of “don’t enter” has been normalized to zero in

this case, then players 1 and 2 will choose “enter” if and only if E1[u
Enter
1 ] > 0 and

E2[u
Enter
2 ] > 0. This implies that Bayesian-Nash equilibrium beliefs must satisfy

E1[π2] = 1− P(E2[π1]α1) and E2[π1] = 1− P(E1[π2]α2) (2.1)

Now, in order to include econometric considerations for estimating beliefs, we

need to consider the stochastic characteristics of our game. Payoff functions are

unobservable. Suppose t1 and t2 can be expressed as functions of (X1, ε1) and (X2, ε2)

respectively. The following assumptions preserve the stochastic and informational

assumptions of this game.

A1.-X1 ∈ Rk and X2 ∈ Rk are independent draws from the same distribution with

(joint) cdf given by F(x), and corresponding pdf given by dF(x)

A2.-ε1 ∈ R and ε2 ∈ R are independent draws from the same distribution with cdf

given by G(ε).
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A3.-εp is independent from Xp for p ∈ {1, 2}

A4.- At the time the game is played, the realizations of (X1, ε1) and (X2, ε2) are

privately known by players 1 and 2 respectively. This is consistent with the

following situations:

A4.1.- Both players deliberately and effectively conceal the true values of (Xp, εp),

p ∈ {1, 2}.

A4.2.- It could be possible for a player p ∈ {1, 2} to learn the realization of his

opponent’s (X−p, ε−p) but it is not profitable to do so.

A5.- Distributions (F (x), G(ε)) are known by both players.

Suppose that, without loss of generality, we can parameterize private information,

t1 and t2, in the next way:

t1 = β′X1 − ε1, t2 = β′X2 − ε2

where the parameter vector β is known by both players, and is assumed to be the

same. Then, Bayesian-Nash equilibrium conditions become:

E2[π1] =

∫

x

G(β′X1 − E1[π2]α1)dF (x )

(2.2)

E1[π2] =

∫

x

G(β′X2 − E2[π1]α2)dF (x )

Now, suppose some time after the game was played by a random sample of N pairs of

players, the econometrician has access to the M outcomes and the following is true:

B1.-Assumptions (A1-A5) were satisfied when the game was played by each of the

N pairs of players.

B2.-The realizations of {X1,i,X2,i}M
i=1 are now available to the econometrician.
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B3.-The realizations of {ε1,i, ε2,i}M
i=1 are not available to the econometrician.

B4.-The distribution G(ε) is assumed to be known -up to a finite number of parameters-

to the econometrician.

B5.-No particular functional form is assumed for the distribution of F (x ). We only

assume that this distribution does not depend on any of the payoff parameters,

beliefs or the unknown parameters of G(ε).

The methodology proposed here is aimed at the econometric estimation of models

that can be characterized by assumptions B1-B5, but in particular it can be applied

to models in which all agents can belong to one of a finite number of “types”, and each

type is public information, which is our case. Player’s types contain some information

about their private payoffs. This would be the case for example if in the model

presented above exists a partition of Rk, say {X1, ...,XT}, where Xs ∩ Xt = ∅, for all

s 6= t and X1 ∪ ... ∪ XT = Rk, or, which is the same, X1 t ... t XT = Rk (t, means

disjoint union). We say that player p belongs to type τt if and only if X p ∈ Xt.

Then, for all possible applications, the purpose is to estimate simultaneously the

following elements of the model:

1.- The structural payoff parameters (α1 ,α2 and β in the model described above)

2.-Agents’ beliefs (E1[π2] and E2[π1] in the above description)

3.-The unknown parameters of the distribution G(ε) of those variables that are

privately observed when the game is played, and remain unobservable to the

econometrician.

4.- The unknown distribution dF (x ) of those variables that are privately observed

when the game is played, but available afterwards to the econometrician.

Estimation will take place under the assumption that observed outcomes are the

result of Bayesian-Nash equilibria. The link between all these beliefs is given by the
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corresponding equilibrium restrictions that they must satisfy (equation (2.2) in the

example presented above). The issues of existence and uniqueness of an equilibrium

are crucial and they will be addressed later, along with the asymptotic properties of

the proposed model in this paper.

2.2 Brief overview of empirical likelihood (EL)

Empirical Likelihood (EL) was formally introduced by Owen (1988, 1990, 1991). In

its simplest form, EL was proposed as a device to construct non-parametric tests and

confidence intervals for a mean of a random variable Z ∈ R with unknown probability

distribution function (pdf). Suppose we have a random sample {Zi}N
i=1 and we wish

to test if E[Z] = µ. The optimal weights would be the solution of the problem

max
{pi}N

i=1

N∑
i=1

log pi subject to: pi > 0,
N∑

i=1

pi = 1 and
N∑

i=1

piZi = µ

That is, to maximize the empirical log-likelihood
∑N

i=1 pi subject to the weights be-

ing a well-behaved pdf, and the data obeying E[Z]=µ with this pseudo-pdf. Without

the constraint
∑N

i=1 piZi = µ, it is easy to show that the uniform weights pi = (1/N) ∀i
maximize the empirical log-likelihood. This would be the optimal weights if µ = Z

(the sample mean of {Zi}N
i=1). Let l (µ) =

∑N
i=1 log p̂i be the corresponding maximum

EL and define the empirical log-likelihood ratio R(µ) as

R(µ) = −2×
{

l (µ)−
N∑

i=1

log(1/N)

}

where {pi}N
i=1 are the optimal EL weights. Now let µ0 be the true mean of Z.

Owen showed that under fairly general conditions R(µ0)
d−→ χ2

1. This implies that

hypothesis testing and confidence interval could be based on the statistic R(µ0). The

α-level confidence interval, for example, would be constructed as the set of µ ∈ R such

that R(µ) ≤ cα = 1− α. Note that if we wanted to estimate µ by maximizing l (µ),

we would get µ = Z, and the corresponding optimal weights would be the uniform
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weights p̂i = 1/N .

EL was also applied to deal with moments other than the mean, and to handle vector-

valued random variables, where the weights are estimates of a joint pdf. An important

extension was done by Qin and Lawless (1994), who applied EL for general estimating

equations. Suppose that for a random variable Z ∈ Rd there is a parameter θ ∈ Rp

and a vector valued function m(Z, θ) ∈ Rs such that E[m(Z,θ)] = 0. For a fixed θ,

the corresponding EL problem is to solve

max
{pi}N

i=1

N∑
i=1

log pi subject to: pi > 0,
N∑

i=1

pi = 1 and
N∑

i=1

pim(Z,θ) = 0.

Let l (θ) =
∑N

i=1 logp̂i be the corresponding maximum EL. Letting θ0 be the true

parameter value, Qin and Lawless then showed that under some regularity conditions

R(µ) = −2×
{

l (θ0)−
N∑

i=1

log(1/N)

}
d−→ χ2

q

where q is the rank of V ar[m(Z, θ0)]. Confidence regions can be built and hypothesis

can be tested for θ using the statistic R(θ). We can also use EL to estimate θ by

maximizing l (θ). If p=s, then θ̂ is simply given by the solution of
∑N

i=1 m(zi, θ̂) = 0

and the resulting optimal weights are the uniform ones, p̂i = 1/N . The interesting

case is when s > p. The latter case would be the kind of problem econometricians

usually analyze using GMM estimation.

EL was also extended to analyze combinations of parametric and empirical likeli-

hoods. Suppose for example that the conditional distribution of y ∈ R given Z ∈ Rk

is assumed to have a known parametric functional form given by f(y|Z,θ), but that

the marginal pdf of Z is unknown and denoted by dF (z). The joint pdf of (Y,Z) would

then be given by f(y|z,θ)dF (z). Suppose now that we know that E[ψ(Z,θ)] = 0 for

some function ψ ∈ Rp. EL would estimate θ and {pi}N
i=1 by solving
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max
θ,{pi}N

i=1

N∑
i=1

log f(yi|zi,θ) +
N∑

i=1

log pi

subject to pi ≥ 0,
N∑

i=1

pi = 1,
N∑

i=1

piψ(zi,θ) = 0

Qin (1994, 2000) called the combination of parametric and nonparametric likeli-

hoods “Semi-Empirical Likelihood”. Parametric and empirical likelihoods have also

been combined in other settings, as in Qin (1998) for upgraded mixture models where

one sample z1, ..., zn is directly observed form a distribution F (z) while another sam-

ple x1, ...,xn has density
∫

p(x|z)dF (z) where p(x|z) is parameterized as p(x|z,θ).

Parametric and empirical likelihoods have also been combined in Bayesian models.

Lazar (2000) analyzed the product of prior density on the univariate mean and an

empirical likelihood for that mean.

Kitamura (2006) has a comprehensive summary of Empirical Likelihood techniques

in which he studies some computational strategies in order to solve the problems

studied above. The methodology proposed here is a particular case of semi-empirical

likelihood estimation.

2.2.1 Empirical Likelihood and GMM

Every GMM problem can also be estimated using EL. Asymptotic equivalence to first

order approximation between GMM and EL has been well documented in a variety of

settings (Owen (2001) and Kitamura (2006) are the best comprehensive references).

It has also been established that EL improves on the small sample properties of

GMM. However, other closely estimators that improve on the small sample prop-

erties of GMM have also been developed: continuous updating (CUE) -also called

“Euclidian Likelihood” by Owen (2001)- and exponential titling estimators (ET). All

these belong to a class of Generalized Empirical Likelihood (GEL) estimators. To

first order of approximation, they all have the same asymptotic distribution as GMM
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but different higher order asymptotic properties. The natural question would be why

use EL among the GEL family.

A growing body of literature has been devoted to exploring the higher order asymp-

totic properties of EL. The majority of these efforts have been aimed at test statis-

tics. EL has been found to have higher order optimality properties consistently better

than GMM and at least as good as continuous updating estimators. Kitamura (2001)

proves important large deviations optimality results for empirical likelihood vis à vis

GMM. Of 32 simulations performed, EL had greatest power 22 times, while 2-step,

10-step and continuous updating did this 5, 7 and 10 times respectively. He also

found that EL’s power ranking was best for hypothesis further from the null.

The most relevant results to the problem we address here are Newey and Smith (2001).

They compare the properties of GEL and GMM estimators and find that EL has two

advantages: first, they show that its asymptotic bias does not grow with the number

of moment restrictions, while the bias of the other often grows without bound; second,

they show that the bias corrected EL is asymptotically efficient relative to the other

bias corrected estimators.

2.3 Investment Strategy Model

The methodology presented above can be adapted to a number of different economic

situations. Instead of observing n different outcomes of a game played by n different

k -tuples of players (as in the example of the previous sections) we may observe a single

outcome of a game played simultaneously by n different players . The application

presented here corresponds to the latter case.

The 2× 2 game describe above was used to illustrate the properties of the proposed

empirical likelihood estimator. A brief description of an investment strategy model

with asymmetric information is presented here. It involves many players (instead

of only two) and beliefs (each player has more than one opponent now). In this
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model firms must simultaneously make an investment decision in an environment of

asymmetric information. We will now define the meaning of “investment decision”

by specifying the particular space of actions for this model.

2.3.1 The model

For firm i let’s denote: di ≡ Firm’s industry, and ki ≡ Firm’s technological category.

Note that di ∈ {1, 2, . . . , D}, and ki ∈ {LT, SS, SL, HT}1.

Timing of firm’s decisions

At time t the firm must choose to increase or not investment in period t+1. All the

firms make this decision simultaneously (i.e., before observing what other firms have

optimally chosen to do) and in the context of asymmetric information which will be

described bellow. Let’s denote ith firm’s decisions as follows:

Y (i) =





1 If firm is passive.

2 If firm is neutral.

3 If firm is aggressive.

How firms can be affected by others’ decisions is explained next.

2.3.2 Strategic interaction among firms

In economics investment is defined as the act of incurring an immediate cost in the

expectation of future rewards, Dixit and Pindyck (1994). Given the fact that the

investment is relatively irreversible, and there is uncertainty to obtain the future

expected reward, we expect that firms care about the others’ actions in their own

1LT≡low-tech segment, SS≡stable tech-short horizon segment, SL≡stable tech-long horizon seg-
ment, and HT≡hi-tech segment. Hall and Vopel (1997)
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decisions because they could increase (or reduce) the probability of failure in the

expected reward of the investment, seen as a sunk cost. Firms interact in many

dimensions, but because a firm’s relative size in its industry has been consistently

cited as a determinant of investment, as well as market structure, the present model

will attempt to analyze how small, medium and large firms interact. The goal is to

answer the following questions:

1.- Do small firms care about the investment decision made by other small firms?

Do they care about the decisions made by medium and large firms?

2.-Do medium firms care about the investment decision made by other medium

firms? Do they care about the decisions made by small and large firms?

3.-Do large firms care about the investment decision made by other large firms? Do

they care about the decisions made by small and medium firms?

Choice rules will be modeled in such a way that allows us to test separately the

influence of other firms’ investment on a specific firm’s investment decision. In par-

ticular, without loss of generality, we will model how the representative firm (small,

medium or large) could be affected if the others (small, medium or large) decide to

be “aggressive” in the investment sense.

2.3.3 Decision rules

We assume that the decision made by the firms are ordered according to some cri-

teria. Let be the “types”, k = {S,M, L}, if firm is “small”, “medium”, and “large”

respectively:

uk
i = αSπS

A + αMπM
A + αLπL

A + β′Xi + εi (2.3)

Were πk
A is the proportion of the population of size “k” that will choose to be

aggressive. The remaining variables, X and ε, will be described below.
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Optimal decision rules

Given the ordered nature of our model we can define: let be ζ1 < ζ2 “threshold”

parameters (not observed by the econometrician), such that:

Y (i) =





1 (passive) if uk
i ≤ ζ1

2 (neutral) if ζ1 < uk
i ≤ ζ2

3 (aggressive) if uk
i > ζ2

Due to the asymmetric information nature of the model, the proportions πS
A, πM

A ,

and πL
A are not public information. Firms will then maximize the expected version of

the payoff function (2.3). This shall be carefully detailed below.

2.3.4 Strategic interaction

Interaction coefficients

As it was mentioned above, the goal of the model is to estimate the influence of the

other firms’ choices on an individual (representative) firm investment decision. For a

firm of size k = {S, M,L}, αS
A, αM

A , and αL
A indicates the influence of population of

small, medium, and large firms investment decisions respectively, on the firms own

investment choice.

Why would firms interact?

Modern models of firm survival argue that a firm’s innovation capabilities, which are

influenced, for example, by the investment in R&D, determine its chances of surviving

in the long run. It is reasonable, then, to think that firms would interact based in

long-run consequences of investment.
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2.3.5 Determinants of investment

Tobin’s Q compares the capitalized value of a marginal investment in real capital to

its replacement cost. According to the net present value (NPV) theory of investment,

Aradillas-Lopez (2007), the firms should adjust its investments decisions according to

changes in Qi. Then, we used ∆Qi = Qi,t−Qi,t−1: level change in Tobin’s Q from t-1

to t, as explanatory variable. In order to capture the short-term firm’s performance

we used the percentage change of its sales ∆%Si =
(Si,t−Si,t−1)

Si,t−1
. How firms acted in the

past, could influence the future decision, that is why the lag of the decision variable,

yi,t−1, was included: to be passive, neutral or aggressive, in the past period.

2.3.6 Distributional assumptions

Let X≡ {yi,t−1, ∆%Si, ∆Qi}. Then, we will assume the following:

i.-X has a unknown joint cdf given by GX(x ). Whose pdf is denoted as dGX(x ).

ii.- Conditional of X, ε, has a marginal cdf given by F (ε). We will assume a particular

functional form for this distribution with parameters independent of X.

2.3.7 Informational assumptions

We will make the following assumptions regarding the information structure of the

model:

i.- When firms make their optimal choices, variables X and ε, are privately known.

ii.- Variables X and ε become available (for the econometrician) some time after

the optimal choices have been made. The variable ε, remains unknown to the

econometrician.
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2.3.8 Beliefs and equilibrium conditions

As we mentioned above, when making their optimal choices, firms can’t observe the

population proportions of πS
A, πM

A , and πL
A. Firms will then maximize the expectation

in their payoff function (2.3). Let

Ei[π
S
A] = Firm i’s expectation of πS

A

Ei[π
M
A ] = Firm i’s expectation of πM

A (2.4)

Ei[π
L
A] = Firm i’s expectation of πL

A

In equilibrium, due to the informational assumptions of the model, all firms must

have the same beliefs. Let’s denote these beliefs as π̄S
A, π̄M

A , and π̄L
A. Linearity of

the payoff function (2.3) allows to simply plug in these beliefs instead of the true

probabilities in order to compute expected payoffs, which are described as follows.

ūk
i = αSπ̄S

A + αM π̄M
A + αLπ̄L

A + β′Xi + εi (2.5)

Then, decisions of the firms will be driven by:

Y (i) =





1 (passive) if ūk
i ≤ ζ1

2 (neutral) if ζ1 < ūk
i ≤ ζ2

3 (aggressive) if ūk
i > ζ2

(2.6)

2.3.9 Estimation and results

Identification

Identification concerns are very important in interaction-based models. This section

examines issues related to the proposed model. Let’s denote:
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θ1 = (π̄S
A, π̄M

A , π̄L
A)

θ2 = (αS, αM , αL, ζ1, ζ2,β)′ (2.7)

θ = (θ′1,θ
′
2)
′

Now let

δ(θ,X) = αSπ̄S
A + αM π̄M

A + αLπ̄L
A + β′X (2.8)

Conditional of X and πA = {π̄S
A, π̄M

A , π̄L
A}, we have the following results:

Pr(passive|X,πA) = Pr(Y = 1|X,πA) =

= Pr(ūk ≤ ζ1) =

= F (ζ1 − δ(θ,X))

Pr(neutral|X,πA) = Pr(Y = 2|X,πA) =

= Pr(ζ1 < ūk ≤ ζ2) =

= F (ζ2 − δ(θ,X))− F (ζ1 − δ(θ,X))

Pr(aggressive|X,πA) = Pr(Y = 3|X,πA) =

= Pr(ūk > ζ2) =

= 1− F (ζ2 − δ(θ,X))

Where F (•) is the cdf of ε. Using last definition, beliefs can be modeled as follows:

let be K = {S, M,L}

π̄k
A = Pr(aggressive|X, k) =

= Pr(Y = 3|X, k) =

= Ek=K [Pr(Y = 3|X, k)|k = K] =

=

∑N
i=1[1− F (ζ2 − δ(θ,X))]1{k = K}∑N

i=1 1{k = K} (2.9)

Define:
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ψ1(θ,X) ≡ π̄S
A −

∑N
i=1[1− F (ζ2 − δ(θ,X))]1{k = S}∑N

i=1 1{k = S}

ψ2(θ,X) ≡ π̄M
A −

∑N
i=1[1− F (ζ2 − δ(θ,X))]1{k = M}∑N

i=1 1{k = M}

ψ3(θ,X) ≡ π̄L
A −

∑N
i=1[1− F (ζ2 − δ(θ,X))]1{k = L}∑N

i=1 1{k = L}
Ψ(θ,X) ≡

(
ψ1(θ,X), ψ2(θ,X), ψ3(θ,X)

)′
(2.10)

Then, Bayesian-Nash Equilibrium beliefs must satisfy

∫

x

Ψ(θ, X)dGX(x) = 0 (2.11)

Existence of equilibria

For a given value of θ2, we’re interested in knowing if exists a set of beliefs θ1 such

that the equilibrium condition (2.11) is satisfied. A sufficient condition for the exis-

tence of equilibria is that the marginal distribution of ε be continuous. Existence of

equilibria for an arbitrary value of θ2 follows from Brouwer’s Fixed Point Theorem.

Therefore, an equilibrium must exist for θ0
2, the true population values of θ2. Details

are given in the appendix.

Uniqueness of equilibria

Uniqueness is a very important question. If, for the true values of θ2 exist more

than one set of beliefs θ1 that satisfy equilibrium condition (2.11), then we would

have to make additional assumptions about which, among the set of equilibrium be-

liefs, is used by each firm. In our formulation, for example, we would have to assume

that all firms use the same equilibrium beliefs. The question of uniqueness can be

analyzed by looking at the Jacobian
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∇θ1

∫

x

Ψ(θ1,θ
0
2,x )dGX(x) (2.12)

Where as before θ0
2 represents the true population values of θ2. Local unique

equilibrium will be guaranteed if the Jacobian

∇θ1

∫

x

Ψ(θ∗1,θ
0
2,x )dGX(x)

has a rank equal to three -full rank condition-, where θ∗1 is a solution of

∫

x

Ψ(θ1,θ
0
2,x )dGX(x) = 0

A sufficient condition for global uniqueness would be to assume that the Jacobian

∇θ1

∫
x
Ψ(θ1, θ

0
2,x )dGX(x) has either: (i) only strictly positive principal minors or (ii)

only strictly negative principal minors for all θ1 ∈ [0, 1]3. This is a version of Gale-

Nikaido theorem that guarantees that
∫
x
Ψ(θ1, θ

0
2,x )dGX(x) is a one-to-one function

of θ1 and therefore, that the equilibrium is unique. Summarizing, it says that the

Jacobian not only has to be non-singular, but is also has to remain either positive

quasi definite or negative quasi definite for all values of θ1.

Existence and uniqueness have to do with identification of θ1, the vector of be-

liefs. The functional form assumed for the expected payoff function requires two

additional conditions for the identification of θ2. These conditions are necessary for

the asymptotic invertibility of the Hessian for the first order conditions satisfied by

the EL estimator.2

i.- All equilibrium beliefs θ0
1 must be strictly between zero and one. That is, in

equilibrium the population probability of choosing the action to be aggressive

must be strictly positive and this must hold for all type of firms (S,M,L). This

is a necessary condition for identification of θ2.

2The role played by these identification condition is parallel to the one played by the conditions
necessary to assume invertibility of the information matrix in the usual MLE problems.
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ii.- The conditional distributions G(X|k = S), G(X|k = M) and G(X|k = L) are not

identical. This is a sufficient condition for general values of θ0
1 but it becomes

a necessary one for some nontrivial possible values of θ0
1.

Conditions (i) and (ii) together simply require that the proposed interaction be

meaningful. If (i) is violated, then it would be common knowledge for example, that

all small firms choose the same action: they all be neutral, for example. If (ii) is

violated, it would imply that there is no strategic interaction that takes place in

the type dimension (size): there is nothing essentially different between small and

medium firms, etc. Violations to (i) or (ii) seem implausible to reality.

Estimation

Conditional likelihood

Having dealt with identification, we now present the estimator. The log-likelihood

function of Y given X is given by:

log f(Y|X ,θ) = 1{Y = 1}log[F (ζ1 − δ(X,θ))] +

+ 1{Y = 2}log[F (ζ2 − δ(X,θ))− F (ζ1 − δ(X,θ))] +

+ 1{Y = 3}log[1− F (ζ2 − δ(X,θ))] (2.13)

Where F (•) is the ε’s cdf.

Empirical Likelihood estimator

The proposed Empirical Likelihood estimator θ̂
EL

is the solution to:

max
θ,{pi}N

i=1

N∑
i=1

log f(yi|xi,θ) +
N∑

i=1

log pi (2.14)
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subject to

pi ≥ 0,
N∑

i=1

pi = 1,
N∑

i=1

piΨ(xi,θ) = 0 (2.15)

The asymptotic properties of θ̂
EL

are detailed in the appendix. Some of its most

important properties are:

1.- θ̂
EL

has the same asymptotic distribution as the efficient GMM estimator based

on the moment conditions:

E[∇θlog f(Y|X, θ0)] and E[Ψ(X,θ0)]

2.- θ̂
EL

is more efficient than the estimator that solves

max
θ

N∑
i=1

log f(yi|xi, θ) subject to
1

N

N∑
i=1

Ψ(xi,θ) = 0

i.e. the one that also uses the equilibrium conditions but imposes the uni-

form weights 1/N. This shows the importance of simultaneously estimating the

unknown pdf dG(X ) and the parameters of interest.

3.- Using available additional information about the population distribution of X

increases the efficiency of θ̂
EL

.

2.4 Empirical Application

We are trying to know how firms interact with each other given their “type” (size) and

their “actions” (be aggressive, neutral or passive), and considering that they belong

to a particular “industry”. The United States manufacturing sector in which an “in-

dustry” is defined by the SIC classification code (Standard Industrial Classification),

was studied.3. All information was collected from Standard and Poor’s Industrial
3SIC has been replaced by the North American Industrial Classification System (NAICS) codes,

which identify companies according to economic, subsector and industry groups. There is a close
link between them.



66

Compustat-North Amercia data set.

Using Compustat we identified 9 of the most numerous industries whose SIC number

were {2834, 2836, 3674,3845, 2911, 3089, 3312, 3559, 3714}. They belong to the tech

segments 1, 2 and 3, accordingly with Hall and Vopel (1997), who proposed a clas-

sification table for 4-digit SIC industries based on Chandler’s technological segments

(see appendix for details).

Time period considered here was t={1991, 1993, 1995}. The difference between years

is attained in attempt to mitigate the effect of time-dependance. Each industry and

every year were treated as a cross-section, then, all observations were pooled together,

resulting a sample size of 9864. Let PISHIP and PIINV denote the industry-annual

price deflators for the value of shipments and total capital expenditures respectively

taken from the NBER-CES Manufacturing Database.

Decision variable in our model, yist , was constructed as follows5: we used the rate

capital investment, Rist , which is equal to Iist/Kist−1 where:

Iist : net capital investment by firm i. Capital expenditures in property plant and

equipment (Compustat item: data30) deflated by PIINV.

Kist−1 : net capital stock made by firm i at the end of the period t-1. It was measured

as the net value of property, plant and equipment (Compustat item: data8)6,

deflated by an annual capital stock deflator which was constructed for each

industry using PIINV starting in 1958 and ending in 19977.

4Similar exercises were made for each tech-segment, but results essentially didn’t change compared
with the data which were pooled.

5the subscript ist means: the firm i, which belongs to the SIC “s” at year “t”
6This data item is defined in Compustat as “the cost of tangible fixed property used in the

production of revenue, less accumulated depreciation”.
7It was necessary to use a linear projection with the purpose of obtain index’s value for the year

1997, assuming constant depreciation rate across all industries.
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Criteria used for the main variable, yist , was:

yist =





1 If Rist+1 ≤ 0.75 ∗Rist (passive).

2 If 0.75 ∗Rist < Rist+1 ≤ 1.25 ∗Rist (neutral).

3 If Rist+1 > 1.25 ∗Rist (aggressive).

It means that the firm is considered passive if its rate capital investment in the

next period (t + 1) is 25% less or equal than the rate at current period (t). The firm

is considered aggressive if the rate capital investment is 25% greater than the rate

of the current period. A firm will be neutral if its rate capital investment in t+1 is

something in between.

Then we have:

yist =





1 365 firms (37.71%) (passive)

2 193 firms (19.94%) (neutral)

3 410 firms (42.36%) (aggressive)

This tries to model the decisions taken by the firms which supposedly used (2.5)

and (2.6) as action choice criteria. On the other hand, let be

Sist : firms’ net sales (Compustat item: data12)8 deflated by PISHIV. This vari-

able will be used for constructing both: percent change in sales (explanatory

variable) and “size” (type of the firms).

8It was used Employees (Compustat item: data29) as a criteria for determining Sizeist , but
results did not change essentially.
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2.4.1 Size (Type of the firm)

Let’s define Sizeist ≡ Sist

median(Sist )
, as the size (type) of the i’s firm. We have three

“types”: small, medium and large. Criteria which define types used in this paper

were:

Sizeist =





S if i’s firm Sist ≤ 1/3 (Small).

M if i’s firm Sist ∈ (1/3, 2/3] (Medium).

L if i’s firm Sist > 2/3 (Large).

The median, instead of the mean, was used with the purpose of getting away

extremum values in the construction of the size index.

2.4.2 Explanatory Variables

Tobin’s Q was calculated as in Jovanovic and Rousseau (2003).

Qist = FMVist/FBVist

Where FMVist is the Firm Market Value which is the addition of current value

of common equity (Compustat items: data24×data25), book value of preferred stock

(Compustat item: data130) and short and long-term debt (Compustat items: data34×data9).

And FBVist is the Firm Book Value, which is the sum of book value of common

equity (Compustat item: data60), book value of preferred stock (Compustat item:

data130) and short and long-term debt (Compustat items: data34×data9). ∆%Sist =
(Sist−Sist−1

)

Sist−1
, is the percentage change of firm’s net sales, were Sist was computed as

above. yist−1 was derived using the same criteria that defined yist , but for a period

before. Then, we have:

Xist = (yist−1 , ∆%Sist , ∆Qist)
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2.4.3 Semi-Empirical Likelihood Estimation

Given the fact that we have 3 periods, 9 SIC industry and 3 types (S,M,L), there is

81 “moment condition”, i.e., the vector defined in (2.8) here is 1 × 81.

Ψ(θ,X) ≡
(
ψ1(θ,X), . . . , ψ81(θ,X)

)′
(2.16)

and should satisfy

∫

x

Ψ(θ,X )dGX(x) = 0 (2.17)

ε-distribution

We assume that εi is orthogonal to Xist and beliefs. It is also assumed that εi adopts

a logistic distribution.

Λ(ε) ≡ eε

1 + eε
(2.18)

Beliefs Estimation

Let πist ≡ {πS
A,ist

, πM
A,ist

, πL
A,ist

}, vector of beliefs; πS
A,ist

means the probability that

the ith small firm, which belongs to segment s at time t, will be aggressive. Parallel

interpretation can be made to the other parameters. As we have seen, there are

3 periods, 9 SIC industries, and 3 types, then we have 81 probabilities which were

distributed according to the ist-th firm. So, in order to estimate this vector I follow the

next strategy: first, the probability to be aggressive regardless types was calculated:

πA,ist . Once this done, probabilities for each type were calculated as follow:
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πist =





πS
A,ist

= πA,ist × 1{ist ∈ Small }

πM
A,ist

= πA,ist × 1{ist ∈ Medium}

πL
A,ist

= πA,ist

Beliefs modeled this way capture behavior of small, medium and large firms, i.e.,

probability to be aggressive of each type of firm.

Conditional likelihood

Under the distributional assumption of ε, and using (2.8), conditional likelihood func-

tion (2.13) can be expressed as follows:

log f(yist|X ist ,πist , θ) = 1{yist = 1}log[Λ(ζ1 − δ(Xist ,θ))] +

+ 1{yist = 2}log[Λ(ζ2 − δ(Xist ,θ))− Λ(ζ1 − δ(Xist , θ))] +

+ 1{yist = 3}log[1− Λ(ζ2 − δ(Xist ,θ))]

(2.19)

Then we will get the estimator by solving (for details, see the appendix):

max
θ,{pist}N

ist=1

N∑
ist=1

log f(yist|X ist ,πist , θ) +
N∑

ist=1

log pist (2.20)

subject to

pist ≥ 0,
N∑

ist=1

pist = 1,
N∑

ist=1

pistΨ(Xist , θ) = 0 (2.21)

Using Lagrange multipliers technique, is straightforward to show that

N∑
ist=1

log f(yist|X ist ,πist ,θ)−
N∑

ist=1

log(1 + ν ′Ψ(Xist , θ))−NlogN (2.22)

where ν ∈ R81, are Lagrange multipliers.



71

Estimation results

NPV theory of capital investment predicts a positive coefficient for ∆Qist , however,

economic theory does not provide a clear prediction for the sign of any remaining

covariates in X ist . Extremum values of the sample were eliminated because they

were source of bias.

By solving (2.22) we found next results summarized in Table 1 and Table 2. All

Lagrange multipliers were equal to zero statistically significant, which means that

model fits well:

Table 1. Estimation Results

for strategic coefficients

(Standard Errors in parentheses)

αS 0.7989*

(0.3574)

αM 0.6356*

(0.3082)

αL 0.3122

(0.3015)

(∗) Statistically significant at a 5% level.

The estimates for αS and αM were significant at 5% confidence level. Both were

positive, which means that small and medium firms care about actions of their own

type. For example, small firms will be aggressive if they believe that other small firms

would be aggressive. Parallel analysis could be made for the medium size firms. On

the other hand, the coefficient αL was not statistically significant. It means that large

firms are not affected by decisions made by other large firms.

The hypothesis test9 H0 : αS + αL = 0 was rejected, which means that small firms

care about the large firms decisions tending to be aggressive if they believe that large

9All hypothesis test were made at 5% level of significance.
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firms will be aggressive. The hypothesis of H0 : αM + αL = 0 was rejected too. The

analysis for medium firm is the same as in the small firm case. It can be notice that

|αS + αL| > |αM + αL|, and |αS| > |αM | > |αL|. This means that small firms are

more worried about others’ decisions than medium and large size firms. Small firms

would be aggressive if they believe that medium or large firms would be aggressive.

That can be reasonable explained using “survivor” analysis.

Table 2. Estimation Results

for private information variables

(Standard Errors in parentheses)

yist−1 -0.6310*

(0.0774)

∆%Sist -0.1767*

(0.0684)

∆Qist 0.0937*

(0.0240)

ζ1 -1.5137*

(0.2765)

ζ2 -0.6005*

(0.2721)

(∗) Statistically significant at a 5% level.

About private information variables, we can say that the sign of the coefficient

∆Qist was significant at 5% confidence level and positive, as predicted by the NPV

theory of investment. Coefficient of ∆%Sist , i.e., the variable that captures the short

run behavior of the firms, has negative sign and is significant. It means that, at

least in the short run, firms tend to be non aggressive, ceteris paribus. Finally, last

period firms’ behavior, yist−1 , has a negative significant coefficient. It means that past

behavior of the firms, drive them to be non aggressive in the next period. It could

be understood as an adjustment that firms make considering how they acted in the

past, as if they correct in a conservative way using their past experiences. Finally,
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both cutoffs were negative and significant at 5% confidence level. It was rejected the

hypothesis that H0 : ζ1 = ζ2, which means that, just as it was said, there are three

decisions to be made: passive, neutral and aggressive10. Given (2.5) and (2.6), we can

conclude that firms start to make their decisions at a certain desutility level, specially

those that decide to be passive or neutral. This confirms that being aggressive is the

“best” state in this game.

2.5 Conclusions

Asymmetric information is the appropriate setting for a number of interaction based

models. This asymmetric information exists because players can’t observe (at least

some of) the variables that determine other players’ payoffs and therefore, their

choices. Econometric estimation of these models entrails the estimation of players’

beliefs which are almost always unobservable. Using proxy variables for these beliefs

is not a satisfactory answer to the problem. However, assuming that the observed

behavior is the result of a Bayesian-Nash Equilibrium implies that these beliefs must

satisfy a set of clear-cut conditions. These conditions involve the unknown distri-

bution of the privately observed variables. In a number of cases, portions of these

privately observed variables may become available to the econometrician after the

game was played.

In this case, estimation seems almost suited for semi-empirical likelihood methods11.

This allows us to simultaneously estimate payoff parameters, beliefs and unknown dis-

tribution of the privately-observed-available-afterwards-to-the-econometrician vari-

ables. Such an estimator was proposed, and its main properties were mentioned.

Most importantly, the vast literature on EL shows that it has better small sample

10If ζ1 = ζ2, it means that the model should be dichotomic, in other words, decisions variable only
would take two actions: be passive or aggressive.

11Empirical means “non parametric”.
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properties than GMM -which could also be used for these models- it is also com-

putationally more convenient; no first step estimators or weight matrix are needed.

Identification issues and uniqueness of equilibrium are very important, and fortu-

nately more tractable than they are in general in perfect information models.

An application for investment model was analyzed and estimated here. In this model

we have three actions: firms decide to be passive, neutral or aggressive in the invest-

ment sense; and there are three types: small, medium and large firms. We analyzed

how they interact with each other. We found evidence that small firms care the most

about the other firms’ action of their own and different type (medium and large).

Same result can be applied to medium size firms but less strongly than small size.

Large firms do not care about others’ actions, maybe because they are “strong” and

have certain “self-confidence” at the moment of make their investment decisions, or

maybe the market structure helps them.

An extension of this model could be to deal with dynamic models in which the change

of interaction coefficients (“α′s”) over time was permitted . In particular, this model

can be extended to deal with panel data structure, but ordered response models in

panel data are relatively difficult to estimate, because of the nonlinear structure of

the model in which fixed effects do not disappear simply applying the first difference

technique (Bo Honore (2002)).
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Appendix C2.1

Existence of equilibria

To prove the existence of a solution of (2.5), note that the equilibrium conditions

∫

x

Ψ(θ, X)dGX(x) = 0

can be expressed as

π̄S
A =

∫

x

∑N
i=1[1− F (ζ2 − δ(θ,X))]1{k = S}∑N

i=1 1{k = S} dGX(x)

π̄M
A =

∫

x

∑N
i=1[1− F (ζ2 − δ(θ,X))]1{k = M}∑N

i=1 1{k = M} dGX(x)

π̄L
A =

∫

x

∑N
i=1[1− F (ζ2 − δ(θ,X))]1{k = L}∑N

i=1 1{k = L} dGX(x)

Now assuming that the marginal distribution of ε is continuous, so the resulting

probabilities are continuous (logistic distribution assumed here satisfy this condition).

Then, for an arbitrary value of the parameter θ2 the right hand side of the equation

presented above is a continuous function of the left hand side vector, θ1. Therefore,

the right hand side is a continuous mapping form [0, 1]3×[0, 1]3 and by Brower’s Fixed

Point Theorem, it has a fixed point. Since this true for an arbitrary value of θ2, it

must hold for θ0
2, the true vales of the parameters. This proves that an equilibrium

exists.12

¤

Asymptotic properties of θ̂
EL

Suppose the following conditions are satisfied.

Ap1.- All equilibrium beliefs are strictly between 0 and 1.

12In our application, it holds but the mapping is [0, 1]81 × [0, 1]81
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Ap2.- Identification conditions discussed above are satisfied.

Ap3.- The log-likelihood log f(Y |X,θ) satisfy the usual technical conditions for

asymptotic consistency and normality of MLE.

Ap4.- The sample jacobian matrix for equilibrium conditions 1
N

∑N
i=1∇θΨ(xi,θ),

converges uniformly in probability to its expected value if θ converges to θ0.

A5.- Technical conditions for the asymptotic normality of
√

N 1
N

∑N
i=1∇θΨ(xi,θ0)

are satisfy.

Let

I0 = V ar[f(Y |X,θ0)], A0 = E[∇θΨ(xi,θ0)], B0 = E[Ψ(xi,θ0)Ψ(xi, θ0)
′]

Then we have that:

√
N(θ̂

EL − θ0) →d N(0,Ω)

Where

Ω = (I0 + A′
0B

−1
0 A0)

−1

Proof:

The corresponding Lagrangian for the EL estimation problem is given by

L =
N∑

i=1

log f(yi|xi,θ) +
N∑

i=1

pi +

+ λ(1−
N∑

i=1

pi)−Nν ′
N∑

i=1

piΨ(xi, θ)

λ ∈ R and ν ∈ R3 are lagrange multipliers.

F.O.C. with respect to pi yield
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λ = N and pi = 1
N(1+ν′Ψ(xi|θ))

, i = {1, 2, ..., N}.

Plug-in back pi in our moment condition
∑N

i=1 piΨ(xi, θ) = 0, we have:

1

N

N∑
i=1

Ψ(xi, θ)

1 + ν ′Ψ(xi, θ)
= 0

Solving this non linear equation, we can determine: ν̂(θ). Equivalently, this

Lagrange multipliers can be found solving the next minimization problem:

min
ν∈R3

−
N∑

ist=1

log(1 + ν ′Ψ(xi,θ))

Then, we can obtain p̂i, and plugging back in to the joint semi-empirical likelihood:

N∑
ist=1

logf(yi|xi,θ)−
N∑

i=1

log(1 + ν ′Ψ(xi,θ))−N log N

θ̂
EL

and ν should satisfy the first order conditions:

S1,N(θ̂
EL

,ν) ≡
N∑

i=1

∇θ log f(yi|xi, θ̂
EL

)− 1

N

N∑
i=1

∇θΨ(xi, θ̂
EL

)′ν

1 + ν ′Ψ(xi, θ̂
EL

)
= 0

S2,N(θ̂
EL

,ν) ≡ 1

N

N∑
i=1

Ψ(xi, θ̂
EL

)

1 + ν ′Ψ(xi, θ̂
EL

)
= 0

Which means that solving (2.23), we can obtain the expected estimators. Using this

estimators, we can determine the asymptotic properties of them as follows.

A first order Taylor series approximation around (θ0,0) yields:

(
0

0

)
=

(
S0

1,N

S0
2,N

)(
−IN −A′

N

AN −BN

)(
θ̂

EL − θ0

ν

)
+ op(N

−1/2)

Where,
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S0
1,N =

1

N

N∑
i=1

∇θ log f(yi|xi, θ0)

S0
2,N =

1

N

N∑
i=1

Ψ(xi,θ0)

IN =
1

N

N∑
i=1

∇θ,θ′ log f(yi|xi, θ0)

AN =
1

N

N∑
i=1

∇θΨ(xi,θ0)

BN =
1

N

N∑
i=1

Ψ(xi,θ0)Ψ(xi,θ0)
′

Then, under regularity conditions, we have:

IN →p I0, AN →p A0, BN →p B0

and

√
NS0

1,N√
NS0

2,N

→d N (0,Σ), where, Σ =

(
I0 0

0 B0

)

Therefore,

( √
N(θ̂

EL − θ0)√
Nν

)
→d N (0,Ω)

Where,

Ω =

(
−I0 −A′

0

A0 −B0

)−1 (
I0 0

0 B0

) (
−I0 −A′

0

A0 −B0

)−1′

and so we get √
N(θ̂

EL − θ0) →d N (0, (I0 + A′
0B

−1
0 A0)

−1)

As we claimed. 2
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Appendix C2.2

Empirical Strategy

In order to reach convergency in the minimization problem exposed above, we can

use the logarithm function proposed by Owen (2001):

log∗(z) =





log(z) if z > ε

log(ε)− 1.5 + z/ε− z2/(zε2) if z ≤ ε

for some ε > 0 (one recommended to use is ε = 1
N

)

At the same time, the initial values of ν were values near to 0. Results are pre-

sented at the next page.

SIC Sector Description

SIC Ns %

2834 222 22.93

2836 86 8.88

3674 138 14.26

3845 146 15.08

2911 83 8.57

3312 80 8.26

3559 67 6.92

3089 54 5.58

3714 92 9.5

Total 968

2834: Tech Segment 1. Pharmaceutical Preparations.

2836: Tech Segment 1. Biological Products, Except Diagnostic Substances.
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3674: Tech Segment 1. Semiconductors and Related Devices.

3845: Tech Segment 1. Electromedical and Electrotherapeutic Apparatus.

2911: Tech Segment 2. Petroleum Refining.

3312: Tech Segment 2. Steel Works, Blast Furnaces (Including Coke Ovens), and

Rolling Mills.

3559: Tech Segment 2. Special Industry Machinery, Not Elsewhere Classified.

3089: Tech Segment 3. Plastics Products, Not Elsewhere Classified.

3714: Tech Segment 3. Motor Vehicle Parts and Accessories.

Source of Variables (from COMPUSTAT North America)

data4: Current Assets Total.

data8: Property, Plant, and Equipment-Total (Net).

data12: Sales (Net) Total.

data24: Price-Close.

data25: Common Shares Outstanding.

data29: Employees.

data30: Property, Plant, and Equipment-Capital Expenditure (Schedule V).

data33: Intangibles.

data34: Debt in Current Liabilities.

data60: Common Equity-Total.

data130: Preferred Stock-Carrying Value.



Chapter 3

Technical Efficiency in the Mexican
Manufacturing Sector: A
Stochastic Frontier Approach

3.1 Introduction

A basic assumption in microeconomic theory is that firms, in general, are homoge-

neous. Such is represented by the perfect competition framework in which all the

firms are assumed to operate at the same level of efficiency. Nonetheless, there are

many studies that have shown precisely the contrary (Caves 1989), and Mexico is not

the exception to such finding. Moreover, in the last times firms have gradually been

exposed to a strong open economy in the worldwide and Mexican firms too. One

could expect an improvement in the development of firms which were exposed into

the competition environment. In fact, NAFTA (North American Free Trade Agree-

ment), had this as one of its main purposes. But, in practice, what happened? This

paper analysis the technical efficiency in the Mexican manufacturing sector in which

determinants and changes of the efficiency from the beginning of NAFTA, 1994 to

2001, are measured using the Panel Data Stochastic Frontier Models.

81
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NAFTA transformed Mexico from an inward-looking economy into largely open econ-

omy (Calderon and Voicu, 2004). Tariff politics were designed in order to open Manu-

facturing sector gradually giving it the opportunity to have more competitive firms. A

good indicator that could help to measure that impact is the productivity (efficiency)

at firm level and its evolution. There are many ways for modeling it. Calderon and

Voicu (2004), for example, studied a detailed analysis of performance of Mexican

manufacturing firms between 1993 and 2000. They constructed the estimators of in-

dividual plant productivity and investigated the relationship between trade reforms

and plant performance, using Levinshon and Petrin (2001) methodology instead of

Olley and Pakes (1996) which seems to be more restrictive. They found that “access

to imported inputs is more significant vehicle for productivity enhancing effects of

trade openness, and that investment in technology is, by far, most strongly corre-

lated with plant productivity”.

In this work we used the main information gathered in Annual Industrial Survey

(AIS) which allows us modeling efficiency (productivity) using Panel Data Stochastic

Frontier technique developed below, in order to show determinants of the poor de-

velopment observed by Mexican manufacturing sector, in contrast to the optimistic

projections that were made. At the same time, we try to explain that the crisis was

not the main reason of this poor development, but the lack or lost of efficiency ob-

served. A good survey of studies realized using the AIS for Mexico, can be found

in Calderon and Voicu (2004). However, none of them has used the methodology

presented here.

3.2 Panel Data Stochastic Frontier Model

The field of the stochastic frontier estimation of technical (and cost) efficiency is

enormous and growing (Greene 2002). Most of studies are based on the fixed effects
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model (Schmidt and Sickles 1984) and random effects model (Pitt and Lee 1981). In

both cases time invariant technical efficiency is assumed. This could be questionable,

particularly in a long panel. As an alternative approach, the Battese and Coelli’s

(1992) parametrization of time-effects has been proposed. Following (Kumbahakar

and Lovell, 2000, pg. 63-114), I present a brief review of stochastic frontier models

in order to estimate the technical efficiency.

3.2.1 Cross-Sectional Production Frontier Models

It is assumed, in general that cross-sectional data on the quantities of N inputs used

to produce a single output are available to the econometrist for each of I producers.

A production frontier model can be written as

yi = f(xi; β) · TEi (3.1)

where yi is the scalar product output of the producer i, i = 1, ..., I; xi is a vector of

N inputs used by producer i; β is a vector of technology parameters to be estimated,

and f(xi; β) is the production frontier; in other words, f(·) measure the possibility to

reach the maximum product given different combinations of inputs and technological

parameters, β.

Then, rearranging (3.1), we have

TEi =
yi

f(xi; β)
(3.2)

which defines technical efficiency as the ratio of observed output to maximum feasi-

ble output. Indeed, yi achieves its maximum feasible value of f(xi; β) if, and only if,

TEi = 1. Otherwise TEi < 1 provides a measure of the shortfall of observed output

from maximum feasible. It is important to notice that f(xi; β) in (3.1) is determin-

istic, which means that if there is a shortfall in (3.2) should be attributed, directly,

to the inefficiency. This model does not capture some random shocks, that could

explain that shortfall in the production process, shocks that are not under producers’
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control. To incorporate producer-specific random shocks into the analysis requires

the specification of a stochastic production frontier as follows

yi = f(xi; β) · exp{vi} · TEi (3.3)

where [f(xi; β) · exp{vi}] is the stochastic production frontier, which is defined for

two parts: the deterministic one, f(xi; β); and, the stochastic1 one: exp{vi}. Then,

technical efficiency can be represented in this way

TEi =
yi

f(xi; β) · exp{vi} (3.4)

here, yi achieves its maximum feasible output of [f(xi; β) · exp{vi}] if, and only if,

TEi = 1. Otherwise TEi < 1 provides a measure of the shortfall of observed output

from maximum feasible output in an environment characterized by exp{vi}. Technical

efficiency can be estimated using either the deterministic production frontier model

given by equations (3.1) and (3.2), or the stochastic production frontier model given

by the equations (3.3) and (3.4).

The goal is to estimate the technical parameters, β′s, and the technical efficient

measure, TEi. There is more than one way to achieve this objective. Here, I will

mention some estimation techniques in the cross-section case, in order to be deeper

in panel data stochastic frontier analysis case, which will be cover with more detail.

Then, cross-sectional frontier model can be estimated as follows2:

Deterministic Production Frontier





1 Goal Programing

2 Corrected Ordinary Least Squares

3 Modified Ordinary Least Square

1Note: assumptions about this component will be specified below.
2For details, see Kumbhakar and Lovell, 2000. Pg. 66-95.
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Stochastic Production Frontier





1 Normal-Half Normal Model

2 Normal-Exponential Model

3 Normal-Gamma Model

4 Method of Moments Approach

3.2.2 Panel Data Production Frontier Models

Evidently, panel data (repeated observation on each producer, or, the same producer

followed in more than one period) contains more information than does a single cross

section. Have access to panel data is convenient in more than one sense: First,

conventional panel data techniques can be adapted in order to estimate stochastic

production frontier models. Second, repeated observations on a sample of producer

can serve as a substitute for strong assumptions made in the cross-sectional environ-

ment. Finally, since adding more observations on each producer generates information

not provided by adding more producers to a cross-section, the technical efficiency of

each producer in the sample can be estimated consistently as T → ∞, T being the

number of observations on each producer.

Panel data can be balanced (each producer is observed T times) and unbalanced

(producer i is observed Ti ≤ T ). In this study we use a balanced panel. Again,

we assume that there is more than one inputs (multiple inputs) that are combined

using certain technology (represented by the production function), which result is a

single output. There are two main assumptions to be done having in hand a panel

data: Can be allowed that technical efficiency vary across producer, but is assumed

to be constant through time for each producer, this model is known as time invariant

technical efficiency ; this assumption could be implausible in long panels. That is

why we include the assumption of time variant technical efficiency which allows that
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technical efficiency vary across producer and through time for each producer.

Time-Invariant Technical Efficiency

Set up of the model: we assumed to have I producers (i = 1, ..., I), followed in

T periods (t = 1, ...T ). A Cobb-Douglas production frontier with time-invariant

technical efficiency:

lnyit = β0 +
∑

n

βnlnxnit + vit − ui (3.5)

where:

yit: is the output of the producer i at time t,

β0: is the intercept,

βn: are the “technological parameters”,

xnit: is the vector of inputs of the production function of producer i at time t,

vit: two-sided “noise” component. Production can be affected by random shocks out

side the control of producers.

ui: shocks attributed to the technical efficiency.

Then, vit represents random statistical noise and ui ≥ 0 represents technical in-

efficiency3. Notice that technical change is not allowed, since ui does not vary over

the time, but vary over producers. This model is very similar to a conventional panel

data model with producer effects but without time effects, the only difference is that

producer effects are required to be nonnegative. Again, parameters of the model, and

technical efficiency can be estimated in a number of ways.

3Notices that: lnyit − (β0 +
∑

n βnlnxnit + vit) = −ui, but lnyit ≤ (β0 +
∑

n βnlnxnit + vit),
which implies that ui must be positive.
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The Fixed-Effects Model: Assumptions:

1. ui ≥ 0

2. vit are iid (0, σ2
v)

3. We make no distributional assumptions on the ui

4. We allowed ui to be correlated with regressors or with the vit.

Given that ui does not vary in time, it is treated as fixed (nonrandom) effects, then,

can be considered as specific intercept parameters, which can be estimated along with

the βns. Consequently, the model can be estimated by applying OLS to:

lnyit = β0i +
∑

n

βnlnxnit + vit (3.6)

where β0i = β0 − ui are producer specific intercepts. After the estimation we can

employ the normalization

β̂0 = maxi{β̂0i} (3.7)

then, ui are estimated using

ûi = β̂0 − β̂0i (3.8)

notice that this ensures the assumption that ui ≥ 0. Producer-specific estimates of

technical efficiency are then given by

TEi = exp{−ûi} (3.9)

we can observe that in this model at least one producer is assumed to be 100%

technical efficient, and the rest of producers measure their efficiency relatively to this

“benchmark” producer(s).

Fixed-effect model is quite simple to be calculated, and has nice consistency

properties, and provides consistent estimates of producer-specific technical efficiency.
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Nonetheless, fixed-effects model have some potentially drawback: ui not necessarily

capture only the time-invariant technical efficiency, capture all phenomena (such as

the regulatory environment, as an example). Then, the econometrist can confound

variation with technical efficiency with variation in other effects. That is why in the

literature was proposed the next model.

The Random-Effects Model: In this framework we assumed that ui is ran-

domly distributed with constant media and variance, but uncorrelated with the re-

gressors and the error term vit. There is no another assumption to be done about ui,

only that it should hold the nonnegative requirement. Again, it is assumed that vit

have zero expectation and constant variance. Under this assumptions we are able to

include time-invariant regressors in the model.

lnyit = [β0 − E(ui)] +
∑

n

βnlnxnit + vit − [ui − E(ui)]

= β∗0 +
∑

n

βnlnxnit + vit − u∗i (3.10)

This random-effects model fits exactly into the one-way error components model

in the panel data literature (see Baltagi 2005 pg. 107-8), then can be estimated by

the standard two-step Generalized Least Squares (GLS) method. In the first step

all parameters are estimated using OLS. The two variance components are estimated

by any of several methods. In the second step β∗0 and the βns are reestimated using

feasible GLS. There is only one intercept term to be estimated because β∗0 does not

depend on i, because by assumption E(ui) is a constant. Once β∗0 and βns have been

estimated using feasible GLS, the u∗i can be estimated from the residuals by means

of

û∗i =
1

T

∑
t

[
lnyit − β̂∗0 −

∑
n

β̂nlnxnit

]
(3.11)

And finally, the estimations of ui are obtained by means of the normalization:
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ûi = maxi{û∗i } − û∗i (3.12)

These estimates are consistent as both I → ∞ and T → ∞. Estimates of

producer-specific technical efficiency can be obtained by substituting ûi in (3.9).

There is more than one ways of estimates ui, for example, using best linear unbi-

ased predictor (BLUP), (see Kumbahakar and Lovell, 2000, pg. 101).

Finally, in the time-invariant framework we can assume certain distributions of

the errors and estimate parameters and technical efficiency using maximum likelihood.

Maximum Likelihood: This technique is widely used in empirical analysis. In

this work was used. The general setup of the model is:

(i) vit ∼ iid N(0, σ2
v)

(ii) ui ∼ iid N+(0, σ2
u)

(iii) vit and ui are distributed independently of each other, and of the regressors.

Pit and Lee (1981) used this assumptions to estimate technical efficiency using

panel data. We will use this parametric specification of the random effects model

which adds the normality and half-normality assumptions4, considering the ineffi-

ciency as time-invariant. The density of u is given by

f(u) =
2√

2πσu

exp
{
− u2

2σ2
u

}
(3.13)

the density function of v = (v1, ..., vT )′, which depends on time, is

f(v) =
1

(2π)T/2σT
v

· exp
{−v’v

2σ2
v

}
(3.14)

then, given the independence assumption the joint density function of u and v is

4N+ represents the normal distribution when the support of the error term ui is positive.
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f(u,v) =
2

(2π)(T+1)/2σuσT
v

· exp
{
− u2

2σ2
u

− v’v

2σ2
v

}
(3.15)

the joint density of u and ε = (v1 − u, ..., vT − u)′ is

f(u, ε) =
2

(2π)(T+1)/2σuσT
v

· exp
{
− (u− µ∗)2

2σ2∗
− ε′ε

2σ2
v

+
µ2
∗

2σ2∗

}
(3.16)

where

µ∗ = − Tσ2
uε

σ2
v + Tσ2

u

σ2
∗ =

σ2
uσ

2
v

σ2
v + Tσ2

u

ε =
1

T

∑
t

εit

consequently, the marginal density function of ε is

f(ε) =

∫ ∞

0

f(u, ε)du (3.17)

=
2[1−Φ(−µ∗/σ∗)]

(2π)T/2σ
(T−1)
v (σ2

v + Tσ2
u)

1/2
· exp

{
− ε′ε

2σ2
v

+
µ2
∗

2σ2∗

}
(3.18)

where Φ(·) is the standard normal cumulative distribution. Then, we assumed that

the econometrist have in hand sample of I producer, each observed at for T periods

of time, so the likelihood function is

lnL = constant− I(T − 1)

2
lnσ2

v −
I

2
ln(σ2

v + Tσ2
u)

+
∑

i

ln
[
1−Φ

(
− µ∗i

σ∗

)]
−

∑
i ε
′
iεi

2σ2
v

+
1

2

∑
i

(µ∗i
σ∗

)2

(3.19)
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This log likelihood function can be maximized with respect to the parameters to

obtain maximum likelihood5 estimates of β, σ2
v and σ2

u. Next step is to obtain esti-

mates of producer-specific time-invariant technical efficiency. We start deriving the

conditional distribution (u|ε), using its definition:

f(u|ε) =
f(u, ε)

f(ε)

=
1

(2π)1/2σ∗[1−Φ(−µ∗/σ∗)]
· exp

{
− (u− µ∗)2

2σ2∗

}
(3.20)

which is the density function of a variable distributed as N+(µ∗, σ2
∗), where N+ in-

dicates that is positive normal distribution. Then, the mean (or the mode) of this

distribution can be used as a point estimator of technical efficiency, then we have:

ûi = E(ui|εi) = µ∗i + σ∗

[
φ(−µ∗i/σ∗)

1−Φ(−µ∗i/σ∗)

]
(3.21)

The estimators of ui are consistent as T →∞. And, again, ûi can be substituted in

the equation (3.9) in order to obtain the producer-specific estimates of time-invariant

technical efficiency.

Time-Variant Technical Efficiency

If the econometrist have access to a long panel, it is plausible to think that tech-

nical efficiency is not constant. Particularly in a competitive environment. Then,

we expect that technical inefficiency changes over time. Then, we are able to relax

the assumptions that the producer-specific technical efficiency is time-variant. As in

time-invariant model, the estimation of a time-varying technical efficiency model can

be reach using fixed or random effects and maximum likelihood approach.

5Remember that we are in the “second step” in which we have already estimated u and v, then
“observable” variables in this likelihood function are estimation errors that come from observable
data (x and y), ε.
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Fixed-Effects Models and Random-Effects Models: Cornwell, Schmidt,

and Sickles (1990), and Kumbhakar (1990) were the first to propose a stochastic

production frontier panel data model with time-varying technical efficiency.

lnyit = β0t +
∑

n

βnlnxnit + vit − uit

= βit +
∑

n

βnlnxnit + vit (3.22)

where β0t is the production frontier intercept common to all producers in period t,

βit = β0t − uit is the intercept for producer i in period t, an all other variables are

as previously defined. The objective is to obtain the estimates of the parameters

describing the structure of production technology, and the second objective is to

obtain producer-specific estimates of technical efficiency. The main problem is the

identification of the intercept, in order to reduce the amount of I · T intercepts to

another amount handle, Cornwell, Schmidt, and Sickles (1990) addressed this problem

by specifying

βit = Ωi1 + Ωi2t + Ωi3t
2 (3.23)

which reduces the number of intercept parameters to I*3. But, most importantly

is that this specification allows technical efficiency to vary through time, and in a

different manner for each producer. We can delete uit from (3.22), estimate the βns,

from the residuals, and regress the residuals on a constant t and t2 to obtain esti-

mations of (Ωi1, Ωi2, Ωi3) for each producer. Then we can estimate βit and can be

defined β̂0t = maxi{β̂it} as the estimated intercept of the production frontier in the

period t. The technical efficiency of each producer in period t is then estimated as

TEit = exp{−ûit}, where ûit = (β̂0t − β̂it). Thus, similar that in the time-invariant

case, in each period at least one producer is consider to be 100% technical efficiency,

but it can change through time.
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Maximum Likelihood: This procedure is too similar to the time-invariant, then

we arrive to the next likelihood function6:

lnL = constant− I

2
lnσ2

∗ −
1

2

∑
i

a∗i − I · T
2

lnσ2
v

− I

2
lnσ2

u +
∑

i

ln

[
1−Φ

(
− µ∗i

σ∗

)]
(3.24)

where:

µ∗i =
(
∑

t βtεit)σ
2
v

(σ2
v + σ2

u

∑
t β

2
t )

σ∗ =
σ2

vσ
2
u

σ2
v + σ2

u

∑
t β

2
t

a∗i =
1

σ2
v

[∑
t

ε2
it −

σ2
u(

∑
t βt · εit)

2

σ2
v + σ2

u

∑
t β

2
t

]

maximizing the log-likelihood function, ln L, we can estimate β, βt, σ2
v and σ2

u. Anal-

ogously, we can derive ui|εi ∼ N+(µ∗i, σ2
∗), and an estimator of ui can be obtained

from the mean (or the mode) of ui|εi.

ûi = E(ui|εi) = µ∗i + σ∗

[
φ(−µ∗i/σ∗)

1−Φ(−µ∗i/σ∗)

]
(3.25)

Finally, an alternative time-varying technical efficiency models was proposed by

Battese and Coelli (1992), the model is based in next equations:

lnyit = β0t +
∑

n

βnlnxnit + vit − uit

= βit +
∑

n

βnlnxnit + vit (3.26)

6For details see Kumbahakar and Lovell, 2000, pg. 110-113.
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where

uit = β(t) · ut (3.27)

more than one author have proposed a particular functional7 to β(t), but in this work

we followed the specification proposed by Battese and Coelli (1992):

β(t) = exp{−γ(t− T )} (3.28)

which has another parameter that should be estimated, γ. The function β(t) satisfies

the properties: (i) β(t) ≥ 0 and β(t) decreases at an increasing rate if γ > 0, and

increases at a decreasing rate if γ < 0, or remains constant if γ = 0. Distributional

assumptions are normal for vit and truncated normal for ui, and is used maximum

likelihood to obtain estimates of all parameters in the model. The log-likelihood and

its partial derivatives are in their paper, they showed that (ui|εi) ∼ iid N+(µ∗∗i, σ2
∗),

where εi = vi − β · ui and

µ∗∗i =
µσ2

v − β′εiσ
2
u

σ2
v + β′βσ2

u

σ2
∗ =

σ2
uσ

2
v

σ2
v + β′βσ2

u

β′ = (β(1), ..., β(T ))

if γ = 0 which implies that β(t) = 1, and β′β = T , technical efficiency is time

invariant and µ∗∗i and σ2
∗ collapses to their time invariant version described in (3.16).

The minimum square error predictor of technical efficiency is

E(exp{−uit}|εi) = E(exp{β(t) · ut}|εi)

=
1−Φ(β(t)σ∗ − µ∗i/σ∗)

1−Φ(−µ∗i/σ∗)

· exp
{
− β(t)µ∗i +

1

2
β(t)2σ2

∗
}

(3.29)

7Lee and Schmidt (1993).
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In this paper we will compare both: Pit and Lee (1981), and Battese and Coelli’s

(1992) approaches. Results from two models will be compared. In the two specifi-

cations alike, we will use maximum likelihood estimator instead of least squares; the

standard errors where corrected using bootstrap techniques8, with 1000 replications.

3.2.3 The Model

The functional form in this work, for the sake of parsimony, will be Cobb-Douglas

as was described in the last section9; despite its simplicity, it has proved to be a

surprisingly good description of technology (Hayashi, 2000. Pg. 63). Then the model

is:

Production Function

yit = f(lit, kit, oit) + vit − uit (3.30)

i = 1, 2, ..., 4348;

t = 1, 2, ..., 8, (1994, ..., 2001)

Where10,

f(lit, kit, oit) = a + β1lit + β1kit + β1oit (3.31)

8For bootstrapping techniques, a useful guide is Handbook of Econometrics, 4, Methodology and
theory for the bootstrap P. Hall (1994).

9The analysis could be done using a deterministic transcendental logarithmic (translog) produc-
tion function (Greene 1997):

lnyit = lnαi + λt +
∑

βklnkit +
∑

β2k(lnxkit)2 + 1
2Σq 6=wγqw(lnxqit)(lnxwit) + εit

where, k = 1, ..., p; i = 1, ..., N ; t = 1, ..., ti and q = 1, ..., p;w = 1, ..., p, q 6= w

10F (L,K, O) = ALβ1Kβ2Oβ3 , such that β1 + β2 + β3 = 1; then, lnF (•) = f(l, k, o) = lnA +
β1lnL + β2lnK + β3lnO = α + β1l + β2k + β3o, where α = lnA, l = lnL, k = lnK, and o = lnO
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y is log of net value of total sales; l, log of value of the labor force; k, log of value of

the net capital stock; o, log of value of other inputs, including value of the electrical

consumption (see Section 3 below). It is important to recall that the error term u

will be: ui, in the time invariant model, and uit, in the time varying one.

Inefficiency Analysis

In order to identify the sources of inefficiency, as a second step, uit (estimated) is

modeled using OLS. Explanatory variables are the following ones: 3 dummy variables

and 2 decision variables.

ûit = g(hit) + Wit (3.32)

hit = (Exportit, RDit, Publicityit, ERit, πit) (3.33)

Assuming g(•) linear, then,

ûit = δ0 + δ1Exportit + δ2RDit + δ3Publicityit + δ4ERit + δ5πit + Wit (3.34)

Where dummy variables are: Exportit, 1 if firm i exports at time t, 0 otherwise; RDit,

1 if firm i invests in Research and Development at time t, 0 otherwise and Publicityit,

1 if firm i invests in publicity at time t, 0 otherwise. On the other hand, decision

variables are: ERit, which represents exchange rate (Mexican pesos per dollar), and

πit, which represents the annual inflation rate (based in Producer Price Index). Wit

is the OLS error term, which must satisfied the classical assumptions.

The first three dummy variables include those qualitative aspects that could have

influence in the efficiency of the firms. For example, one could expect that those

export oriented firms being more efficient than those whose behavior is inward looking.
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Similar analysis can be made in the R&D case. At the same time, publicity was

included in order to capture behavior of those firms related with the competition,

and how this kind of investments affect, or not, the efficiency; we expect that the

more aggressive in publicity investment, the more efficiency the firm would have; this

is not necessarily true, but could be understood as a signal of efficiency: a poor firm

will not invest in publicity. Finally, exchange rate and inflation rate were included in

order to capture their influence in the efficiency as indicator of “external influences”

in the internal decisions of the firms.

3.3 The Mexican Manufacturing Sector Data Set

The data set used here has been obtained from the Annual Industrial Survey (AIS)

applied to the Mexican manufacturing sector (sample). The full data set observes

6867 firms; nonetheless, we discarded those data which were uncompleted and unable

to be analyzed because of the lack of information. Thus, we have in hand a panel-data

sample with 4348 manufacturing firms followed 8 periods (1994-2001), and distributed

in 9 subsectors (See appendix). Descriptive statistics for the data used in this study

are given in Table 1:
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Table 1. Descriptive Statistics

Variables Means Standard Deviation Description

Production (Y) 218699.00 1132205.00 Thousands of Mexican Pesos

Labor (L) 21978.23 60315.36 Thousands of Mexican Pesos

Capital (K) 46482.96 219831.00 Thousands of Mexican Pesos

Other Inputs (O) 152382.20 816043.80 Thousands of Mexican Pesos

Export 1 if exports

0 otherwise

RD 1 if firm spend in R&D

0 otherwise

Publicity 1 if firm spend in Publicity

0 otherwise

Exchange Rate (ER) 7.968588 2.01293 Mexican Pesos / Dollars

Inflation () 17.72844 12.62997 % (From Price Productor Index)

* Lowercase: y, l, k and o, are logs of its corresponding uppercase.

Behavior of the manufacturing sector, export oriented, shows three different stages

as could be seen in Figure 1: first, the number of exporting firms raised 56 percent

since NAFTA, 1994 to 1997 (crisis period). The second period shows an important

failure (-10 percent) only in one year (1997-1998). Since then, the number of export

manufacturing firms has been relatively constant (1998-2001). Additionally, Figure

2, shows that the exporting sector share of total production value at 1994 was 57

percent and grew gradually until 1997 when achieved its maximum value: 77 percent.

Since then, there have not had significant changes and its share on total production

value is around 74 percent.
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1994 1995 1996 1997 1998 1999 2000 2001

32% 40% 44% 50% 45% 47% 47% 45%

Firms 1,392 1,732 1,911 2,185 1,962 2,024 2,023 1,948
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Figure 1: Manufacturing Export Sector Evolution (1994-2001)

1994 1995 1996 1997 1998 1999 2000 2001

Share 57% 67% 70% 77% 73% 74% 74% 73%

55%

60%

65%

70%

75%

80%

Figure 2:
Total Production Value Manufacturing Export Share (1994-2001)

In order to capture these changes, the empirical strategy will be the next: 1)

we will study the whole period: 1994-2001, additionally, as the manufacturing sector

seems to have had a structural change, we will try to capture it dividing main period in

two parts: 2) 1994-1997 (Mexican Crisis period); 3) 1998-2001 (Transitional period).
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3.4 Empirical Results

The stochastic frontier panel data model was estimated, as was mentioned, using the

maximum likelihood method which standard errors were corrected using bootstrap

techniques (1000 replications). The estimated coefficients of Equation (3.31) in its

two models, time-invariant and time varying, are presented in Table 2.

3.4.1 Period 1994-2001: Production Function Results

Coeff. t-value Coeff. t-value

Cosntant 2.4273 0.43 1.9855 32.48

l=ln(L) 0.1136 41.15 0.1255 44.31

k=ln(K) 0.0194 10.63 0.0224 12.31

o=ln(O) 0.8603 360.46 0.8623 362.63

Time Invariant Model Time Variant Model

Table 2. Production Function Estimated Coefficients

(1994-2001)

This is the calculation of the Cobb-Douglas coefficient. Then, the constant term

in a Cobb-Douglas function represents the total factor productivity, and is a variable

which accounts for effects in total output not caused by inputs. In time invariant

model, the constant term was no significant, this means that the the effects in total

output depends only of the inputs. On the contrary, in time variant model the con-

stant term was significant, which means that there is effects in total output driven by

other reasons and not caused by inputs, which make sense since we allowed technical

efficiency changes in each period (time-varying model).

All coefficient inputs (time invariant and time variant models) are positive and

statistically significant at 1-percent level; results are very similar between two models.

Eventhough constant term in the time invariant model was no significant, we can

estimate ui using the steps described in section 2. Then, having in hand estimated
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inefficiencies for both models, ui and uit, we can compare them. The correspondence

between both sets of estimation draws attention: Table 3 shows that pairwise corre-

lation is near to 1 (0.9148).

Time Invariant Time Variant

Mean 1.7310 1.5080

Standar Dev. 0.2063 0.1907

Correlation

Table 3. Analysis of Estimated Technical

Inefficiencies

0.9148

We can rank, in terms of inefficiency11, producers of the Mexican manufacturing

sector using both models: time-invariant and time-variant. We observe that time-

invariant model reproduces, in more than one case, the ranking of time-variant model

as can be seen in Figure 3. However, distribution of inefficiency is different between

time-invariant and time-variant models as can be seen in inefficiency kernel12 esti-

mated distribution (Figure 4). For instance, mean and standard deviation is greater

in time-invariant case, ûi, compared with time-variant ûit case13. This implies less

variability in time-variant model of inefficiency. Eventhough this difference between

models exists, the ranking made for both models is almost the same as it will be seen

11Which is analogous if we express it in terms of efficiency, because we use a monotone trans-
formation of error terms ( ˆTEi) = exp(−ûi). The scatter plot of ( ˆTEi) = exp(−ûi) versus
( ˆTEi) = exp(−ûit) is very similar to Figure 3.

12We use Epanechnikov kernel function:

f̂ = f̂(x) =
1

nh

n∑

i=1

K
(xi − x

h

)

where
K(u) =

3
4
(1− u2)1{|u|≤1},

where 1{A} = 1 if A holds; 0, otherwise. Optimal bandwidth was used. See Pagan and Ullah (1999),
pg 28.

13Time-invariant mean and standard deviation were 1.73 and 0.21 respectively; time-variant mean
and standard deviation were in turn 1.51 and 0.19.
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Figure 3. Inefficiencies 
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Time Invariant (uti) vs. Time Variant Models (utvd)
Figure 4. Inefficiencies, Kernel Density Estimation of

3.4.2 Period 1994-2001: Sources of Inefficiency

Table 4 presents a second step analysis in order to identify sources of inefficiencies

from the two models. Since ui is given in proportional terms, the absolute magni-

tudes of the coefficients give the proportional impacts (Greene, 2002). Results in both
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models, suggest that exports and publicity are significant in explaining variation in

efficiency. Exports impulse the efficiency (negative sign)14, and publicity reduces it

(positive sign), maybe because of its impact in the costs. In particular, R&D has am-

biguous results: in the expected direction, time invariant model shows that R&D is

a source of efficiency (negative sign and significant). On the contrary, in time variant

model, R&D is not significant. Figure 1A in appendix could help us to explain the

problem: it shows us the number of firms that invested on R&D. It should be no-

ticed that from 1994 to 1997, the percentage of total number of firms that invested in

R&D grew from 9 to 23%; since then, this percentage felt until it reached 16 percent

and stayed. It seems that time-variant model capture this behavior which explains

that R&D was not statistically significant. Finally, neither exchange rate nor infla-

tion15 has statistic significance. It means that inefficiency depends on firm’s internal

structure and decisions rather than external influences such as prices or exchange rate.

Coeff. t-value* Coeff. t-value*

Constant 1.7343 774.78 1.5046 732.34

Export -0.0195 -9.03 -0.0088 -4.2

R&D -0.0147 -4.76 -0.0032 -1.14

Publicity 0.0115 4.87 0.0118 5.47

ER 0.0005 0.95 0.0001 0.27

0.00001 0.938 0.00001 0.07

*Standard Errors Bootstrap Corrected.

Time Invariant Time Variant

Table 4. Second Step Regression Results

pi

3.4.3 Period 1994-2001: Firms Performance

Using ˆTEi in both models, time-invariant and time-variant, we can compare perfor-

mance between firms, in terms of the “benchmark” explained in section 2. Table

5, shows the ten most efficient firms in the manufacturing sector and their levels of

14Increases in ui imply lower efficiency (Greene, 2002).
15Producer Price Index percentage change is used in this case as a measure of inflation rate.
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technical efficiency over the period 1994-2001 using both models: time-invariant and

time-variant.

Table 5. Firms Rank Based on Stochastic Frontier Model with

Time-Invariant and Time-Variant assumptions

#Id Time Time SIC Description

Invariant Varying Classif.

1654 1 1 351214 Industrial Gas Manufacturer

376 2 2 314002 Cigarette Manufacture

1510 3 3 351214 Industrial Gas Manufacturer

775 4 4 351214 Industrial Gas Manufacturer

1434 5 5 351214 Industrial Gas Manufacturer

1362 6 6 351214 Industrial Gas Manufacturer

477 7 8 314002 Cigarette Manufacture

1067 8 10 351214 Industrial Gas Manufacturer

3704 9 7 355003 Natural or Synthetic Pieces

or Articles Rubber Manufacture

1536 10 9 382106 Joint and Repairer of Machinery

and Equipment for other

Specific Industries

In general, the two models fit very well and almost coincide; in fact, the first

six firms have the same rank in both models; on what remains, they have minimum

differences. Interestingly, six firms of the top ten, including the first one, were clas-

sified as 351214 (Industrial gas manufacture) and the total number of firms in this

classification represents, surprisingly, only 0.34% of the whole manufacturing sector.

Those that are ranked as 2nd and 7th (2nd and 8th, respectively, considering

time-variant model), were classified as 314002 (Cigarettes manufacture). The 9th

(or 7th in time-variant case) was classified as 355003 (Natural or synthetic pieces or

rubber manufacture articles) and, finally, 10th (or 9th in time-variant model) was



105

classified as 382106 (Manufacture, joint and repair of machinery and equipment for

other specific industries).

It seems that time-invariant model underestimate potential efficiency of the firms

because of the contrast that can be seen between models. For example, the most

efficient firm (1654) worked at 76% of its potential output in the time-invariant model,

whereas worked near to 97% of its potential output in time-variant model (see Table

5.1). Although this happened, the important thing is that the ranking fitted well

between models as was said before.

Table 5.1. Firms Performance Indices Based on Stochastic Frontier

Model with Time-Invariant and Time-Variant Assumptions

#Id Time Time

Invariant Varying

1654 0.7646 0.9664

376 0.7402 0.9355

1510 0.6237 0.8450

775 0.6141 0.7845

1434 0.5190 0.7261

1362 0.5061 0.7088

477 0.4680 0.6178

1067 0.4650 0.5812

3704 0.4547 0.6199

1536 0.4518 0.6055

Finally, following the time-invariant model, in average, manufacturing sector, as a

whole, is working at 18 percent of its potential product (1994-2001); on the other hand,

considering the time-variant version of our model, which includes certain dynamic

behavior, we observed a falling in efficiency. Indeed, should be highlight that in

1994 the manufacturing sector as a whole was working at almost 24 percent of its

potential product; on the contrary, in 2001 was working at 22 percent (see Figure 4A

in Appendix).
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3.4.4 Period 1994-1997 vs. 1998-2001: Production Function

Now, in order to capture structural change, if there exists, analysis will be done by

dividing the whole period in two parts: 1994-1997 (Crisis) and 1998-2001 (Transi-

tion). Considering the length of both symmetric periods, 4 years each, we are able to

use time-invariant assumption, explained in Section 2 above, for modeling technical

efficiency.

Coeff. t-value Coeff. t-value

Cosntant 2.4794 0.25 2.4886 0.33

l=ln(L) 0.1464 39.83 0.0978 25.76

k=ln(K) 0.0287 11.70 0.0222 8.49

o=ln(O) 0.8329 274.70 0.8832 265.08

1994-1997 1998-2001

Table 6. Production Function Coefficients

Given the time invariant assumption, in both cases the constant was no significant.

In both periods, capital (k) and other inputs (o) are relatively similar: 0.0287 vs. 0.222

and 0.8329 vs. 0.8832 respectively; but, that is not the case of the labor force which

was 0.1464 in the first four years and 0.0978 in the next period.

Taking account the fact that our model was expressed in logs, then, coefficients of

the production function can be understood as elasticities. The relevant one is β1: the

elasticity of the production with respect to the labor force. Indeed, this coefficient felt

from 1994–1997 to 1998–2001, i.e., in the first period, ceteris paribus, a 1% increment

in labor would lead approximately 0.14% increase in output; in the second period,

the same increase in labor (1%), would lead only 0.09% increase in output, less than

in the first period. It means that productivity of the labor decayed between periods.

Inefficiency measure, ui, is notably different between two periods as can be seen in

Figure 5. There is not a clear pattern in the scatter plot which means that inefficiency
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changed in time, eventhough the distribution of inefficiency in both periods was rel-

atively similar (see Figure 6). Another component that gives us information about

the existence of structural change is the relatively low pairwise correlation coefficient

between inefficiency estimated in both periods: 0.4685.

1994-1997 1998-2001

Mean 0.9927 1.0264

Standar Dev. 0.1291 0.1197

Correlation

Table 7. Analysis of Estimated Technical

Inefficiencies

0.4685

0
.5

1
1.

5
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2.
5
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Time Invariant Model (1994−1997) vs. (1997−2001)
Figure 5. Inefficiencies 
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Time Invariant Model (1994−1997) vs. (1997−2001)
Figure 6. Inefficiencies, Kernel Density Estimation

3.4.5 Period 1994-1997 vs. 1998-2001: Sources of Ineffi-

ciency

Results are shown in Table 8.

pi

Coeff. t-value* Coeff. t-value*

Constant 0.9884 552.79 1.0267 520.87

Export -0.0075 -3.84 -0.0080 -4.34

R&D -0.0135 -4.5 0.0024 0.95

Publicity 0.0147 7.46 0.0045 2.18

ER 0.0006 0.6 -0.0003 -0.03

-0.00004 -0.33 0.000005 0.01

*Standard Errors Bootstrap Corrected.

1994-1997 1998-2001

Table 8. Second Step Regression Results

In both periods the constant term is positive and significant. In both cases, export is

a source of efficiency (negative sign). On the other hand, as was seen above, spending

on publicity reduces the efficiency of the firm in both periods. As in the whole

period, neither exchange rate (ER) nor inflation rate (π), as decision variables, were

significant. Figure 2A and 3A in the appendix, could help to understand why: in the
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first one, exchange rate (ER) shows only one important change (1994/12-1995/01)

which is the crisis period; since then, eventhough ER rises, monetary policy in Mexico

seems to have been efficient and ER was stabilized. In the second one, the inflation

rate was drawn. In the first period (1994-1997), inflation rate dramatically arouse,

even more than 50 percent; since then, fall gradually until certain stabilization. Then,

instability of those variables in the first period could have been the reason because of

what firms did not take account them as a decision variables.

Finally, the main source that could explain the structural change is R&D variable.

Indeed, in the period 1994-1997 R&D, as expected, was negative and significant

which means that a major efficiency was observed. But in period 1998-2001 was not

significant which means that firms lost the confidence in R&D as a source of efficiency

(see Figure 1A in the appendix).

3.4.6 Period 1994-1997 vs. 1998-2001: Firms Performance

Table 9, shows firms ranking comparison between periods.
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iid
Rank 1994-

1997
Efficiency

Rank 1998-

2001
Efficiency subsector

376 1 0.8247 4 0.6846 31

1654 2 0.7217 1 0.8484 35

2298 3 0.6994 1705 0.3618 31

1510 4 0.6943 2 0.7080 35

775 5 0.6900 3 0.7026 35

1067 6 0.6582 18 0.5701 35

1362 7 0.6423 8 0.6238 35

477 8 0.6347 21 0.5619 31

1434 9 0.6275 5 0.6535 35

162 10 0.6177 1280 0.3712 32

3704 20 0.5644 9 0.6210 35

2361 256 0.4626 7 0.6298 35

2310 2310 0.5237 10 0.6174 35

3645 2885 0.3483 6 0.6451 33

Table 9 Firms Rank and Performance Indices Based on the Stochastic

Frontier Model (1994-1997 vs. 1998-2001)

In general, the top ten firms of the first period (1994-1997) worked at 68 percent of

their capability (in average); in the second period, 1998-2001, there is a slight losing

of technical efficiency because, in average, the firms worked at 67 percent of their

capability.

Behavior of firms in terms of efficiency measure, reveals that some enterprises

have been consistent, but, at the same time, it is possible to detect some winners and

some losers. Then, we can define as “consistent” firms those that belong to top ten

in the first period and in the second period too (eventhough, they were not in the

same ranking); we can define as “winners” those firms that do not belong to top ten

in first period but in the second one they are; and, finally, we defined: “losers” to

those firms that were in top ten in the first period and were not in the second one.

Taking account this classification, we have 6 “consistent” firms which, surprisingly,

are the same first six firms ranked in the Table 5 of both models that were seen before,
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including 5 firms (the first one too) that are classified as 351214 (Industrial gas man-

ufacture) and, ranking in 2nd place, classified as 314002 (Cigarettes manufacture).

The most efficient firm worked at 82 percent of its potential output16. “Winners” are

4, but the relevant one is identified as 3645 (see first column of Table 9) which in

the first period was placed in 2885th; in the second period, this firm was ranked in

the 6th place and is classified as 332001 (Manufacture and repair of furniture, wood

mainly). This firm worked at 35 percent in the first period and at 65 percent at the

second period. Finally, there are 4 “losers”, but the relevant one is the firm number

2298 (see Table 9) which is classified as 312200 (Food preparation and mixture for

animals) that felt from 3rd place to 1705th place; moreover, this firm worked at 70%

of its potential output in the first period and at 36%, in the second one.

The manufacturing sector, as a whole, in the first period (1994-1997), according

with this model (time-invariant), was working at 37 percent of its capacity; in the

second period (1998-2001) felt and worked at 36% of its potential output.

Then, the 1995’s Mexican crisis was not itself the main cause of lacking develop-

ment of the manufacturing sector, but the absence of R&D investments; weak capa-

bility of adaptation for “fighting” successfully against the foreign firms; and lacking

development of efficiency in the new scenario. Despite this facts, there were some

firms that “survived” to the openness and were “consistent”; whereas other firms

were “winners” and other firms were “losers” in the process.

3.5 R&D Strategic Interaction

In the context of NAFTA, we would expect that interaction between firms have had

place. Considering, for example, the survivor analysis, we expect that firms increase

its investment in R&D, taking account that they believe that other firms like them

would do the same thing. In order to capture interaction behavioral between firms,

16Should be remembered that time-invariant model seems to underestimate the potential efficiency
of the firms. And we should remember that this efficiency is related to the “benchmark” firm(s).
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in particular strategic interaction between the two most important firms of each six

digit manufacturing sector in R&D decisions17, we assume that this two firms interact

under a Cournot competition; in other words, each firm should decide the quantity

given the expected action to the other firm and the demand structure.

In the simplest model of Cournot competition, we assume that the demand struc-

ture is given and unknown by the econometrician. Then, each firm maximize its

profits, and price is a commonly known decreasing function of total output. We as-

sume that each firm has a cost function c(qi), which is a “marginal constant function”.

This function is an increasing function of the qi. Market price is set at a level such

that demand being equal to the quantity produced by two firms (duopoly). Assuming

Nash equilibrium, we can conclude that q1 = q1(q2). Symmetric result is obtained for

q2. Given the equilibrium quantity, firms observe their equilibrium profits, Π∗
i .

3.5.1 Assumptions

A1. Each of two firm in six digit level produce an homogeneous product. Firms do

not cooperate, and because of its size have market power, and compete in quan-

tities, choosing quantities simultaneously. The econometrician does not observe

this quantities, neither firm’s equilibrium profits Π∗
i (latent variable). Player 1

and player 2 are distinguished each other for the size (which is determined by

its sales share): player 1 is the largest firm in each couple of players.

A2. It is assumed that Π∗
i , derived from Nash equilibrium, can be expressed as

follows:

Π∗
i = β′Xi + εi (3.35)

for i=1,2.

Following Aradillas-Lopez, (2003),

17By “most important” we understand those firms whose market share set them in the first and
second place of all this six digit industry.
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A3. X1 ∈ Rk and X2 ∈ Rk are independent draws from the same distribution with

(joint) cdf given by F(x), and corresponding pdf given by dF(x)

A4. ε1 ∈ R and ε2 ∈ R are independent draws from the same distribution with cdf

given by G(ε).

A5. εi is independent from Xi for i ∈ {1, 2}

A6. At the time the game is played, the realizations of (X1, ε1) and (X2, ε2) are

privately known by players 1 and 2 respectively.

A7. Distributions (F (x), G(ε)) are known by both players.

Now, suppose that some time after the game was played, the econometrician have

access to M outcomes of the players and the following is true:

B1.-Assumptions (A1-A7) were satisfied when the game was played by each of the

N pairs of players.

B2.-The realizations of {X1,i,X2,i}M
i=1 are now available to the econometrician.

B3.-The realizations of {ε1,i, ε2,i}M
i=1 are not available to the econometrician.

B4.-The distribution G(ε) is assumed to be known -up to a finite number of parameters-

to the econometrician.

B5.-No particular functional form is assumed for the distribution of F (x ). We only

assume that this distribution does not depend on any of the payoff parameters,

beliefs or the unknown parameters of G(ε).

3.5.2 Decision rule

Now, let us define decision rule. There are two kind of actions that players can choose

in this model: “to be aggressive” or “not” in the investment of R&D sense. A firm

will be “aggressive” (yi = 1) if 1[Π∗
i > 0], where 1[A] is the indicator function: equal

to 1 if the event A is true, zero, otherwise.
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3.5.3 The Model

Under this criteria, we are trying to determine the probability of being aggressive

(yi = 1), given the characteristics of the firms, i.e., Pr(yi = 1|x).

ε-distribution

As was said, we assumed that εi is orthogonal to Xi. In order to be parsimonious

and without losing of generality, we suppose that εi adopt a logistic distribution.

Λ(ε) ≡ eε

1 + eε
(3.36)

Then, following Wooldridge (2001) pg. 457-469,

Pr(yi = 1|x) = Pr(Π∗
i = β′Xi + εi > 0|x)

= Pr(εi > −β′Xi|x) (3.37)

= Λ(β′Xi)

Solving (3.37) by maximum likelihood methods, we can find the betas.

3.5.4 Empirical application

Let be yi = 1 if there is a positive increment of R&D investment between period t and

t+1, yi = 0 otherwise. Periods taken account in this model were t ∈ {94, 96, 98}. The

difference between years was made in order to mitigate the time influence. M=235,

which means that there were 470 firms. That is why were used Standard Errors

corrected by bootstrap (1000 replications).

Variables

Dependent variable: this is a dichotomous variable yi, which values are 1, if i′s

firm is aggressive, i.e., if i′s firm increase its R&D investment between t and t+1;

zero otherwise. The firm taken account in this case was the smallest one of the two
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firms considered here, in each six digit industry.

Other firm’s actions: there is a dichotomous variable too, y−i, which criteria is the

same that was taken in the dependent variable. These are the biggest firms, according

with the size criteria, which was constructed using the market share in each sector.

Herfindhal index: market structure could have influence in the competence between

the two most important firms in each six digit manufacturing sector. Then, the

concentration of the industry influence in the decisions of the firms is capture by

Herfindhal index18, Hi.

Price producer index: evidently, changes in the prices affronted by the producer

could affect his R&D investment decisions. We expect a negative influence between

price producer index, Pi, and R&D investment decisions.

Xi = {y−i, Hi, Pi}M
i=1 (3.38)

where M=235.

3.5.5 Results

Solving (3.37), and using (3.38), we have:

18In general, manufacturing sector is not concentrated. On average, Herfindhal index reach the
value of 0.13.
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Table 1. Estimation Results

(Standard Errors19 in parentheses)

y−i 1.8049*

(0.4609)

Hi 2.6404*

( 1.3866)

Pi -0.0153*

(0.0021)

(∗) Statistically significant at a 5% level.

This result shows, that the decision made by the largest firm, i.e., if there it is

aggressive in the R&D investment sense, impulses the smaller one to be aggressive,

and this can be seen in the sign of the coefficient which is positive and statistically

significant. On the other hand, the more concentrated the industry is, the more

aggressive the smaller one tends to be; this can be explained evoking the survivor

analysis. In a competitive context (perfect competition), firms can survive with higher

probability, without necessity of being aggressive in the R&D investment; on the

contrary, in a concentrated industry firms need to invest in R&D in order to compete

and survive, that is why the coefficient sign is positive and statistically significant.

Finally, as was expected, an increase of the general level of prices that producers

affront, tends to restrain the R&D investment impulse of the smaller firm: this can

be seen in the negative sign of the coefficient, which is statistically significant too.

Considering the structure of the model, “logit model”, we can calculate marginal

effects (∂yi/∂Xi) which are presented in table 2.

19Bootstrap corrected using 1000 replications
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Table 2. Marginal Effects

(Standard Errors in parentheses)

y−i 0.2472*

(0.1011)

Hi 0.2208*

(0.1127)

Pi -.0013*

(0.0002)

(∗) Statistically significant at a 5% level.

Sign of marginal effects have been inherited of the coefficients signs. The proba-

bility of smaller firm tending to be aggressive is 0.25. In other words, for each large

firm that increase its R&D investment, 1/4 of firms will increase its R&D investment

too. Similar analysis can be made with the other coefficients.

3.6 Conclusions

Manufacturing sector in Mexico is not homogenous. This assertion is confirmed by

the models presented in this paper: each firm observes different level of efficiency.

For instance, the worst firm in time-invariant model (1994-2001) was working at

2.4 percent of its capacity (2.8 percent in time-variant model), compared with the

“benchmark” firm20; the best one (which is the same in two models), classified as

351214 (Industrial gas manufacture), was working at 76 percent of its capacity (97

percent in time-variant model). In average, manufacturing sector was working at 18

percent of its potential product (23 percent in the time-variant case), understanding

20The worst firm is the same in these two models and is classified as 311301 (Preparation and
packaging of fruits and vegetables).
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“potential product” in comparison with the best firm(s) performance to the manufac-

turing sector. At the same time, should be highlight that in 1994 the manufacturing

sector as a whole was working at almost 24 percent of its potential product but in

2001 at 22 percent, which means a loss of its capacity.

On the other hand, the second part of this paper shows the existence of structural

change. Indeed, the model in which a partition of the whole period was made: 1994-

1997 and 1998-2001, shows how some firms were “consistent” keeping its performance

in top ten ranking; how an other firms were “winners” remaining in top ten ranking

in the second lapse; and finally, how some firms were “losers”, i.e., those firms that in

the first period were in top ten and not in the second one. Then, eventhough the crisis

period (1995), the second lapse (1998-2001) shows certain stability, however, there

was a lost of the potential capabilities of the manufacturing sector, maybe because of

the openness and the entrance of foreign manufacturing products since NAFTA.

Finally, calls the attention that “industrial gas manufacture” had 6 firms in the

top ten ranking (in both models) which means that NAFTA seems have not had an

important effect in another manufacturing subsectors; on the contrary, seems that had

a harmful effect in whole manufacturing sector given the loss of competence observed.

It seems that manufacturing sector was resistent to the openness in those cases

in which natural resources give some advantages (gas resources, tobacco (natural

conditions), etc.); but, its not the case of those firms in which was necessary to

compete (“fight”, in the IO jargon). This firms should have been more efficient.

In terms of R&D decisions we can say that, under a Cournot competition equi-

librium, firms care about other actions, in particular, smaller firms tend to be ag-

gressive if the biggest one of the six digit manufacture sector, is aggressive. Actually,

the probability that small firms would tend to be aggressive is 0.25. NAFTA created

competence between the two most important firms in each six digit manufacturing

sector.
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Appendix C3

Table 1A. Manufacturing Sector Classification

31 - Manufacture of Food, Beverages and Tobacco

32 - Textile, Wearing Apparel and Leather Industries

33 - Manufacture of Wood and Wood Products, Including Furniture

34 - Manufacture of Paper and Paper Products, Printing and Publishing

35 - Manufacture of Chemicals and Chemical, Petroleum, Coal, Rubber and

Plastic Products

36 - Manufacture of Non-Metallic Mineral Products, except Products of

Petroleum and Coal

37 - Basic Metal Industries

38 - Manufacture of Fabricated Metal Products, Machinery and Equipment

39 - Other Manufacturing Industries

It was used the Mexican Classification of Activities and Products (MCAP) in its

1994 version, which is compatible with Uniform International Industrial

Classification (UIIC) at four digit level.
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Table 2A.Firms in each manufacturing subsector

Subsector Firms %

31 819 18.84

32 664 15.27

33 160 3.68

34 357 8.21

35 901 20.72

36 285 6.55

37 101 2.32

38 1,010 23.23

39 51 1.17

Total 4,348 100

1994 1995 1996 1997 1998 1999 2000 2001

% Firms 9% 10% 17% 23% 19% 16% 16% 16%

0%
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R&D Investments
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Figure 1A. Percentage of Total of Firms that Invested in R&D (1994-2001)
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1994 1995 1996 1997 1998 1999 2000 2001

Efficiency 23.95% 23.76% 23.56% 23.24% 23.18% 22.97% 22.79% 22.60%

22.50%

22.70%
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Change of Efficiency Time-Variant Model
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Figure 4A
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