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vida académica, sus enseñanzas son los pilares que sostienen esta tesina.

Finalmente, quiero agradecer a mi familia por habérmelo dado todo. Hubiera
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Abstract

Emission taxes are widely used by governments to reduce emissions and en-

courage investment in cleaner technologies. We show that in a duopoly with

strategic substitutes a higher price of emissions does not necessarily lead

to the adoption of cleaner production methods or lower emissions. In fact,

the emissions-to-output is a U-shaped function of the strictness of policy

and firms may find it optimal to invest into cleaner technologies in order to

credibly commit themselves to higher production levels in the future, which

may offset the reduction in emission intensity. The main conclusion is that

emission taxes are significantly limited in their ability to provide incentives

that spur both technology adoption and pollution reduction, proving that one

must refrain from claiming that stricter environmental policy is always ben-

eficial for the environment.
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1 Introduction

Now that ecological crises are becoming more frequent, governments face the

overwhelming task of appropriately designing environmental policies that induce

the adoption of less pollution-intensive technologies. Our immediate intuition

might suggest higher emission taxes, as firms would then have an incentive to in-

vest in cleaner production processes in order to reduce compliance costs. Indeed,

there is a large amount of literature that provides a theoretical justification for this

positive relationship and it is commonly assumed in empirical tests of induced

innovation hypothesis (Perino & Requate, 2012).1 However, a recent strand of

literature has questioned this monotonic relationship between environmental reg-

ulation stringency and adoption incentives.2 The intuition behind this skepticism

can be summarized as follows: firms first respond to an increase in policy strin-

gency by investing more in environmental R&D and by reducing output; however,

this decrease in output reduces firms’ incentives to invest in cleaner production

technologies. This reasoning thus reveals a mixed picture for the effectiveness of

emission taxes in inducing the adoption of cleaner production methods.

Perino and Requate (2012) found that the relationship between policy strin-

gency and the rate of technology adoption in an industry is non-monotonic and,

if firms are symmetric, is inverted U-shaped. In other words, the number of firms

that adopt a cleaner technology is initially increasing in the tax rate but is eventu-

ally decreasing once policy becomes sufficiently strict. Nevertheless, the authors

assume that there is a continuum of small firms choosing between two alternative

production technologies and do not model the output market explicitly. Bréchet

1See Requate (2003) for a survey.
2For a synthesis of this literature, see Calel (2011).
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and Meunier’s (2014) analysis shows that this result is robust to the introduction

of the output market.

Earlier studies on technology adoption in oligopolistic markets with a continu-

ous technology choice have emphasized the strategic role of R&D in the presence

of environmental regulation, as it can be used by firms to influence market equi-

librium. Unfortunately, these considerations make the analysis quite complex and

the results are seldom clear. For example, Carlsson (2000) and Ulph (1997) found

that, in such a setting, the effectiveness of tax emissions in inducing the adoption

of cleaner production technologies is ambiguous. By specifying linear functions,

Dijkstra and Gil-Molto (2011) are able to use Ulph’s (1997) two-stage model to

study the relationship between emission intensity, determined by the production

technology, and the emission tax. The authors find that, although this relation-

ship can be U-shaped, this is not necessarily the case as emission intensity can

also be monotonically declining in the tax. In a more recent article, Dijkstra and

Gil-Molto (2014) show that their results hold in general when firms choose their

emission intensity and output levels simultaneously. Thus, their findings suggest

that the U-shaped relationship in Perino and Requate (2012) and Bréchet and Me-

unier (2014) might not always carry over to the case of imperfect competition with

a continuous choice of technology.

The purpose of this paper is twofold. First, it aims at showing that the reversal

of Perino and Requate (2012) and Bréchet and Meunier’s (2014) U-shaped rela-

tionship is not as conceivable as they state. The model in this paper shows that a

monotonically declining emissions-to-output ratio arises only if, as is assumed in

Dijkstra and Gil-Molto (2014), positive production with zero emissions is possi-

ble. This assumption, of course, is highly unrealistic. Second, the paper general-
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izes Dijkstra and Gil-Molto’s (2011) two-stage linear example since, contrary to

their static generalization, a dynamic model both allows for strategic commitment

and better reflects the long-run nature of investments in cleaner technology.

Whether emission intensity is U-shaped or monotonically declining in the

emissions tax rate is not only of theoretical importance, but has significant impli-

cations for policy as well. If policymakers wish to reduce environmentally harm-

ful impacts at the source, by inducing firms to substitute or modify their less clean

technologies, a stricter policy may be counterproductive if emission intensity is

U-shaped in the emission tax. Thus, by discarding the possibility of a monotoni-

cally declining emission-to-output ratio misleading policy recommendations may

be avoided.

It is important to note that this paper focuses on investment into cleaner pro-

duction technologies rather than on innovation. In order to motivate the assump-

tions behind the model, we will make this distinction clear. Requate (2005) sub-

sumes a paper under a model of innovation if it contains either a stochastic ele-

ment, a patenting system or spillovers. As our model contains neither one of these,

it is one of technology adoption. However, it does not abstract from the innovation

process altogether, as firms take the findings of previous R&D activities as given

and decide whether to implement them or not. Furthermore, we can assume that

these discoveries are the result of R&D on firm-specific techniques and, hence,

do not entail spillovers or patents. These assumptions are plausible and consistent

with empirical work. For example, Frondel, Horbach, and Rennings (2004) found

that internal environmental audits and the preparation of environmental reports

are particularly important for the implementation and operation of cleaner tech-

nologies, as these instruments identify both the environmental impacts and the
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saving potentials at each stage of the production process. These observations also

motivate Mabrouk, Kurtyka, and Llerena’s (2015) model, in which a monopolist

can either invest to develop a process integrated clean technology or bargain with

external eco-industry to use an end-of-pipe technology.

The rest of this article is organized as follows. We set up the model in Section

2. In Section 3 we characterize the behavior of emission intensity, output and total

emissions with respect to the tax rate. Section 4 contains an illustrative example

using linear demand and quadratic installation costs. Section 5 concludes.

2 The Model

Let us set out our simple model of technology adoption in a duopolistic market.

While it is a generalization of Dijkstra and Gil-Molto’s (2011) specification, it

modifies it in one important aspect: firms cannot eliminate emissions completely,

except by ceasing production altogether.

Consider two profit-maximizing firms subject to an emissions tax t. Each firm

i, i = 1,2, produces qi and sells its output at market price P(Q), where Q ⌘ q1+q2

is industry output. We shall assume that the inverse demand function P(Q) is

downward sloping and is not too convex. In other words, it satisfies P0(Q) < 0

and

P0(Q)+P00(Q)qi  0. (1)

Assumption (1) ensures that goods are strategic substitutes and, hence, that

firms are competing rivals. In addition, it guarantees stability and uniqueness of

the Cournot equilibrium (Gaudet and Salant, 1991).

6



The production activities of the firms generate pollution. Firm i’s emissions ei

are given by

ei = (1+ εi)qi, (2)

where εi 2 [0,α] denotes the type of technology the firm has installed which, in

turn, emits 1+ εi pollutants per unit of output. If the firm did not invest in abate-

ment, εi = α . On the other hand, if the firm acquired the cleanest technology

available, εi = 0. The latter implies that a firm cannot reduce its emission inten-

sity below one effluent per unit of output, reflecting the fact that perfectly clean

production is impossible.

The firm’s production cost function is C(qi) with C0(0) = 0, C0 > 0 for qi > 0,

and C00 > 0. Furthermore, for production to be profitable in the absence of taxes

we impose

P(0)>C0(0). (3)

In order to avoid scenarios in which firms find it optimal to produce nothing

and sell this nothing at an infinite price, we assume that

lim
q!0

⇥

P(2q)+P0(2q)q�C0(q)
⇤

is finite.3 (4)

Changing the production process is, of course, costly. If a firm wants to reduce

its emissions-to-ouput ratio to 1+ εi, it must spend F(εi) in order to make the

necessary modifications. This abatement cost function satisfies F(α) = F 0(α) =

3This problem is known to arise with isoelastic demand functions. See Tramontana, Gardini,

& Puu (2010).
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0, F 0(εi) < 0 for εi in [0,α), and F 00 > 0. In other words, the cost of reducing

emission intensity is continuous, positive and strictly convex for εi < α .

The model is a two-stage game. In the first period, firms simultaneously

choose their technology types and make the necessary modifications to their pro-

duction processes. In the second stage, after observing the emission-to-output

ratios, firms compete in quantity. As is usual, we will only focus on symmetric

subgame perfect equilibria.

Firm i’s profits πi can be written as

πi = P(Q)qi �C(qi)� t(1+ εi)qi �F(εi)

= πo
i (qi,q j)� tei �F(εi), (5)

where πo
i (·) denotes firm i’s profits before taxes and payments to capital.

3 Adoption and Emission Taxes

3.1 No Emission Taxes

Let us begin by considering the case with no emission taxes, i.e., t = 0. Although

the results of this section are intuitive and fairly obvious, they will prove useful in

deriving the non-monotonic relationships of section 3.2.
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In the last stage of the game, firm i maximizes its profit with respect to qi and

takes εi, ε j, and q j as given, where j 6= i. That is, it solves

max
qi�0

P(Q)qi �C(qi)�F(εi). (6)

Assumption (3) implies that firm i’s first-order condition with respect to qi is given

by

P(Q)+P0(Q)qi =C0(qi). (7)

From (1) it follows that the second-order condition for profit maximization

2P0(Q)+P00(Q)qi �C00(qi) 0 (8)

is satisfied.

Since εi does not appear in either firm’s first-order condition, it is clear that

neither q1 or q2 depend on εi. Thus,

∂qi

∂εi
=

∂q j

∂εi
= 0. (9)

Anticipating that its choice of εi will not affect the outcome of the second-stage

of the game, firm i faces the following maximization problem in the first-period

max
εi2[0,α]

P(Q)qi �C(qi)�F(εi). (10)
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Differentiating (10) with respect to εi yields first-order condition

�F 0(εi) = 0. (11)

The second-order condition for profit maximization is that

�F 00(εi) 0, (12)

which is true by assumption.

Given our assumptions on F(·), first-order condition (11) implies that εi = α .

In other words, the firm does not modify its production process.

3.2 Positive Emission Taxes

With positive emission taxes, firm i’s second-period profit function now becomes

P(Q)qi �C(qi)� t(1+ εi)qi �F(εi). (13)

The first-order condition with respect to qi is

∂πo
i (qi,q j)

∂qi
= t(1+ εi). (14)

where πo
i (·) is defined as before. As can be easily verified, the second-order

condition for profit maximization is the same as in the zero tax case.

Assumption (1) implies that, for every (εi, ε j) chosen in the first-period, the

equilibrium outcome of the second-stage is unique and given by [qi(t,εi,ε j), q j(t,εi,ε j)].
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Furthermore, this equilibrium vector must satisfy the system of equations

∂πo
i [qi(t,εi,ε j),q j(t,εi,ε j)]

∂qi
= t(1+ εi) (15)

∂πo
j [qi(t,εi,ε j),q j(t,εi,ε j)]

∂q j
= t(1+ ε j). (16)

Totally differentiating (15) and (16) with respect to εi yields (the arguments of

qi and q j will often be dropped for the sake of clarity.)

∂ 2πo
i

∂q2
i

∂qi

∂εi
+

∂ 2πo
i

∂q j∂qi

∂q j

∂εi
= t (17)

∂ 2πo
j

∂qi∂q j

∂qi

∂εi
+

∂ 2πo
j

∂q2
j

∂q j

∂εi
= 0. (18)

Solving for ∂qi/∂εi and ∂q j/∂εi we find

∂qi

∂εi
=

t
∂ 2πo

j

∂q2
j

∂ 2πo
i

∂q2
i

∂ 2πo
j

∂q2
j

�
∂ 2πo

i

∂q j∂qi

∂ 2πo
j

∂qi∂q j

 0 (19)

∂q j

∂εi
=

�t
∂ 2πo

j

∂qi∂q j

∂ 2πo
i

∂q2
i

∂ 2πo
j

∂q2
j

�
∂ 2πo

i

∂q j∂qi

∂ 2πo
j

∂qi∂q j

� 0. (20)

It can be shown that if assumption (1) holds, then the denominator of both deriva-

tives is positive (proof in Appendix). This assumption also implies that the numer-

ator of (20) is positive. Thus, q j is increasing in εi. Since πo
j (·) is concave by (8),

we can conclude that qi is decreasing in εi. These results are fairly intuitive. Given

a positive emissions tax, a larger εi means that firm i faces a higher marginal cost
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and, consequently, it must produce less. Since qi and q j are strategic substitutes

by (1), firm j increases its output in response to said reduction.

Totally differentiating equations (15) and (16) with respect to t yields the fol-

lowing system of equations

∂ 2πo
i

∂q2
i

∂qi

∂ t
+

∂ 2πo
i

∂q j∂qi

∂q j

∂ t
= (1+ εi) (21)

∂ 2πo
j

∂qi∂q j

∂qi

∂ t
+

∂ 2πo
j

∂q2
j

∂q j

∂ t
= (1+ ε j). (22)

Solving for ∂qi/∂ t obtains

∂qi

∂ t
=

(1+ εi)
∂ 2πo

j

∂q2
j

� (1+ ε j)
∂ 2πo

i

∂q j∂qi

∂ 2πo
i

∂q2
i

∂ 2πo
j

∂q2
j

�
∂ 2πo

i

∂q j∂qi

∂ 2πo
j

∂qi∂q j

. (23)

This expression cannot be signed unambiguously. Whereas the denominator,

as mentioned above, is positive, the numerator can be either positive or negative.

In fact, if firm i’s emission intensity is considerably lower than that of its rival, its

output can actually rise with an increase in the emissions tax. The intuition behind

this result is better understood in terms of the firms’ reaction curves. As can be

seen in Figure 1, a higher tax rate shifts both curves to the left, as production is

now more expensive. However, if firm 2’s emissions-to-output ratio exceeds that

of its rival, it could be the case that firm 2’s reaction curve shifts so far to the

left that the new equilibrium occurs at point B. In this case, firm 1 would end up

increasing its production after the tax hike.
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Figure 1: Firms reaction functions before and after a tax increase

If firms are symmetric - i.e., have a common emissions-to-output ratio ε - then

(23) reduces to

∂qi

∂ t
=

(1+ εi)
∂ 2πo

i

∂q2
i

+
∂ 2πo

i

∂q j∂qi

 0, (24)

where the inequality follows from (1) and (8).

In the first stage of the game, firms perfectly anticipate how their technology

choices will affect second period behavior. Firm i thus solves

max
εi2[0,α]

πo
i [qi(t,εi,ε j),q j(t,εi,ε j)]� t(1+ εi)qi(t,εi,ε j)�F(εi), (25)

where πo
i (·), qi(t,εi,ε j), and q j(t,εi,ε j) are defined as above.
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As shown in the Appendix, it follows from (14) that the first-order condition

with respect to εi is



P0(Q)
∂q j

∂εi
� t

�

qi �F 0(εi) = 0. (26)

Rearranging yields



P0(Q)
∂q j

∂εi
� t

�

qi = F 0(εi). (27)

The intuition behind (27) is straightforward. Notice that investments in cleaner

production methods have two positive effects on a firm’s profit margin. On the

one hand, a reduction in the firm’s emissions-to-output ratio leads to a contraction

in its rival’s output and, hence, increases the price of its current output. On the

other hand, a cleaner production process allows a firm to pay less taxes per unit

of output. First-order condition (27) tells us that, at the optimum, the revenue

increase resulting from a reduction in emission intensity must equal its marginal

cost.

The second order condition in the first period is given by

"

∂ 2πo
i

∂qi∂q j

∂qi

∂εi
+

∂ 2πo
i

∂q2
j

∂q j

∂εi

#

∂q j

∂εi
+

∂πo
i

∂q j

∂ 2q j

∂ε2
i

� t
∂qi

∂εi
�F 00(εi) 0. (28)

Note that the term in square brackets and
∂ 2q j

∂ε2
i

cannot be signed without ambi-

guity. The sign of the former clearly depends on the curvature of both the demand

and the cost function, whereas that of the latter will depend on their third deriva-

tives. Nevertheless, we know that the firm’s second order condition is satisfied

when t = 0. Hence, if π(·) is a smooth function, it follows from (12) that the sum
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of the first three terms in (28) is small relative to F 00(ε) for low t. Consequently,

second order condition (28) will be satisfied as long as we assume that the dis-

economies of abatement F 00(·) are large relative to the emissions tax rate. This

assumption seems plausible.

It can be seen from (25) that the symmetric equilibrium ε will be a function

only of t. Totally differentiating (27) with respect to t and imposing symmetry

yields the following solution for dε
dt

dε

dt
=�

⇢

∂ 2πo
i

∂qi∂q j
+

∂ 2πo
i

∂q2
j

�

∂q j

∂εi
� t

�

∂qi

∂ t
+

∂πo
i

∂q j

∂ 2q j

∂ t∂εi
�qi

∂Q
∂εi

⇢

∂ 2πo
i

∂qi∂q j
+

∂ 2πo
i

∂q2
j

�

∂q j

∂εi
� t

�

+
∂πo

i

∂q j

h

∂ 2q j

∂ε2
i

+
∂ 2q j

∂ε jεi

i

�F 00(εi)

, (29)

where

∂Q

∂εi
=

∂qi

∂εi
+

∂q j

∂εi
. (30)

We are now ready to characterize the industry’s equilibrium level of abatement

ε as a function of the emissions tax rate t.

Proposition 1. In the symmetric equilibrium,

i When the emissions tax rate t is low, emission intensity 1+ε is decreasing in

t.

ii Emission intensity 1+ ε can be either increasing or decreasing in the emis-

sions tax t for intermediate values of t.

iii When the emissions tax rate t is high, emission intensity 1+ε is increasing in
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t.

The proof is given in the Appendix. The intuition behind Proposition 1 is as

follows. When the tax rate t is small, production levels are relatively high and,

consequently, a lower emissions-to-output ratio leads to a substantial increase in

revenue. Since it is relatively inexpensive to reduce emission intensity when the

the emissions-to-output ratio is large, firms initially respond to tax hikes by invest-

ing in cleaner production methods. As t continues to increase, however, one of the

following two scenarios will eventually arise. In the first scenario, the marginal

cost of reducing emission intensity becomes so high as to exceed the correspond-

ing revenue increase. In this case, firms will actually find it optimal to adopt a

more pollution-intensive production method and cutback on production. In the

second scenario, it is profitable to adopt the cleanest technology available, so that

emission intensity is equal to one effluent per unit of output. Since it is not pos-

sible to reduce emission intensity any further, firms have no other alternative than

to contract output in response to additional tax hikes. However, the revenue loss

from increasing emission intensity decreases as output falls, so that it is eventually

profitable to disinvest from cleaner technologies.

Although this result is quite similar to that in Dijkstra and Gil-Molto (2014),

it differs in one important aspect: whereas their model allows for a monotonically

decreasing emissions-to-output ratio, Proposition 1 shows that this can never be

the case in ours. The reason is that, contrary to what is assumed here, it is pos-

sible for a firm to adopt a nonpolluting technology at a finite cost in their model.

Therefore, firms might actually find it profitable to invest in ever cleaner tech-

nology, constantly pay lower emission taxes and monotonically increase produc-

tion as t rises. However, Proposition 1 tells us that if emission intensity cannot
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fall below some predetermined ratio then the emissions-to-output ratio cannot be

monotonically declining in the tax rate. Since our assumption is a better descrip-

tion of reality, our result shows that the non-monotonicity relationships derived in

Perino and Requate (2012) and in Bréchet and Meunier (2014) are robust to the

introduction of the output market and the assumption of a continuous technology

choice.

We can now use Proposition 1 to study the behavior of output as a function of

the emissions tax. Let us denote the equilibrium output of the game by q, which

is a function only of t. The total change in q due to an increase in t is given by

dq

dt
=

∂qi(t,εi,ε j)

∂ t
+

∂qi(t,εi,ε j)

∂εi

dεi

dt
+

∂qi(t,εi,ε j)

∂ε j

dε j

dt

=
∂qi(t,εi,ε j)

∂ t
+



∂qi(t,εi,ε j)

∂εi
+

∂qi(t,εi,ε j)

∂ε j

�

dε

dt
, (31)

where the last equality results from imposing symmetry and qi(t,εi,ε j) and q j(t,εi,ε j)

are defined as before.

Note that an increase in the emissions tax rate t has both a direct and an in-

direct effect, as shown by the first- and second-terms in (31), respectively. As a

direct consequence, an increase in taxes causes a firm’s marginal costs to rise and,

thus, leads to lower output. Nevertheless, a firm may respond to this increase by

investing in abatement that, in turn, lowers marginal costs and increases output.

As shown in Corollary 1, these two opposing effects may cause q to behave non-

monotonically in t.

Corollary 1. In the symmetric equilibrium of the game,

i. Output q is decreasing in the emissions tax rate t when t is either very high or
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very low.

ii. For intermediate values of the emissions tax rate t, output q can be either

increasing or decreasing in t.

The proof is shown in the Appendix. Nevertheless, the intuition behind Corol-

lary 1 is straightforward. Since emission intensity cannot fall below one pollutant

per unit of output, firms must start making tax payments once the emissions tax

rate t becomes positive. In other words, when t=0, a small increase in t causes

a firm’s marginal costs to rise and its output to contract. As mentioned above,

however, firms eventually find it optimal to adopt more pollution-intensive tech-

nologies and cutback on production.

The assumption that the emissions-to-output ratio cannot be reduced to zero

plays an important role in Corollary 1. Without this assumption, an arbitrarily

large tax rate t could actually induce firms to invest in a nonpolluting production

process and, hence, production would eventually be increasing in t. In fact, this

phenomenon arises in (Dijkstra & Gil-Molto, 2011, 2014) and it is the reason why

output can be a U-shaped function of the emissions tax rate in that model.

Having characterized the behavior of q and ε , we can now analyze the rela-

tionship between firm emissions e and the emissions tax rate t. Given that we

are focusing on symmetric equilibrium only, the behavior of industry emissions

E = e1 + e2 is identical. Totally differentiating (2), which is a function only of t,

yields
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de

dt
=

dε

dt
q+(1+ ε)

⇢

∂qi(t,εi,ε j)

∂ t
+



∂qi(t,εi,ε j)

∂εi
+

∂qi(t,εi,ε j)

∂ε j

�

dε

dt

�

=
dε

dt
q+(1+ ε)

dq

dt
, (32)

where
dq
dt

is as defined in (31).

Once again, we can only sign (32) when the emissions tax t is either very

low or very high. Since both emission intensity 1+ ε and output q are decreas-

ing in the tax rate when t is low, it follows that total emissions are declining for

small t. We know from Proposition 1 and Corollary 1 that, for sufficiently high

tax rates, firms disinvest from cleaner production technologies and reduce output.

As a consequence, the revenue loss that would result from a higher emissions-

to-output ratio decreases, as output is now lower. This, in turn, causes firms to

respond to higher tax rates t with even more disinvestment and output reduction.

Thus, output becomes increasingly low as the tax rate continues to rise. As shown

in the Appendix, this reduction in output offsets the increase in emission intensity,

leading to a decrease in total emissions. Corollary 2 summarizes these results.

Corollary 2. In the symmetric equilibrium,

i Total emissions E are decreasing in the emissions tax t when t is either very

low or very high.

ii For intermediate values of t, total emissions E can be either increasing or

decreasing in t.
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This non-monotonic behavior is mainly driven by the dynamic structure of the

game, since Dijkstra and Gil-Molto (2014) have already shown that total emis-

sions are monotonically decreasing in the tax rate when firms choose output q

and the level of abatement ε simultaneously. The intuition behind Corollary 2 is

straightforward. As mentioned above, a firm can increase its output in response

to a tax hike if its emissions-to-output ratio is considerably lower than that of its

rival. Thus, by adopting a cleaner technology, a firm can credibly commit itself

to a higher activity level in the second-stage and pressure its rival into produc-

ing less. Anticipating this, the rival firm may find it in its best interest to do the

same, since its market share would otherwise shrink. These investments can, in

principle, result in an increase in the industry’s output that offsets these reductions

in emission intensity, thereby leading to an increase in the industry’s emissions.

Therefore, a higher tax can potentially induce technological improvements that

are pollution-increasing.

4 Example

This sections contains an example that closely follows the one provided by Dijk-

stra and Gil-Molto (2011), with the exception that is not possible to have positive

production with zero emissions. Whereas our previous analysis did not charac-

terise emission intensity behavior precisely for intermediate values of t, a simple

linear example suffices to obtain the U-shaped relationship found in Perino and

Requate (2012).
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Consider a duopoly facing inverse demand function

P(Q) = a�Q. (33)

Marginal costs of production are constant and normalized to zero. The abate-

ment cost function is given by

F(εi) =
γ

2
(α � εi)

2 . (34)

Firm i’s profits can thus be written as

πi = [a�Q� t(1+ εi)]qi �
γ

2
(α � εi)

2 . (35)

In the second stage of the game, firms maximize profits with respect to output

and take everything else as exogenous. Firm i’s first-order condition with respect

to qi is

qi = a�Q� t(1+ εi). (36)

The second order condition is given by

∂ 2πi

∂q2
i

=�2. (37)

As is usual, we can use both firms’ first-order conditions to solve for qi(t,εi,ε j)

and q2(t,εi,ε j). Thus, given the vector (t, εi, ε j), Cournot equilibrium in the
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second period of the game is

qi(t,εi,ε j) =
1

3
[a� t(1+2εi � ε j)], i = 1,2. (38)

In the first stage of the game, each firm engages in abatement in order to

influence the resulting Cournot equilibrium. In other words, firm i solves

max
εi2[0,α]

1

9
[a� t(1+2εi � ε j)]

2 �
γ

2
(α � εi)

2 (39)

which follows from substituting both qi(t,ε1,ε2) and q j(t,ε1,ε2) as defined in

(38) into (35). Firm i’s first-order condition with respect to εi, after imposing

symmetry, can be written as

�
4t [a� t(1+ ε)]

9
+ γ(α � ε) = 0. (40)

The second order condition with respect to εi is

8

9
t2 � γ  0. (41)

As mentioned above, second order condition (41) will be satisfied if the dis-

economies of abatement, represented by γ , are large relative to the emissions tax

rate t.

Solving (40) for ε yields

ε(t) =
αγ � 4

9
t(a� t)

γ � 4
9
t2

. (42)
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Substituting (42) in (38) obtains

q(t) =
γ

3

"

a� t(1+α)

γ � 4
9
t2

#

. (43)

The denominator in (42) and (43) is positive by (41). Note that, in equilibrium,

q > 0 and ε < α only if a� t(1+α)> 0. However, if a� t(1+α) 0, then we

have a corner solution with q = 0 and ε = α . In other words, positive production

ceases to be profitable and, hence, firms do not invest in abatement.

Finally, substituting (42) and (43) into (2), we obtain

e(t) =
γ[(1+α)γ � 4

9
at][a� t(1+α)]

3[γ � 4
9
t2]2

. (44)
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Figure 2: Total output Q, industry emissions E, and emission intensity 1+ε as

functions of the tax rate t (a = 1, c = 0, α = 1, γ = 4/25).

With the benefit of having closed-form solutions for ε , q, and e, we can now

study how firms respond to increases in the tax rate t more precisely. Differenti-

ating (42) and (43) with respect to t yields
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dε

dt
=�

4
⇥

4
9
at2 �2(1+α)γt +aγ

⇤

9
⇥

γ � 4
9
t2
⇤2

(45)

dq

dt
=�

γ
�

(1+α)γ + 4
9
t [(1+α)t �2a]

 

3
⇥

γ � 4
9
t2
⇤2

. (46)

As is shown in the Appendix, the derivative of q with respect to t is unam-

biguously negative. In other words, a higher tax rate always leads to a subsequent

decrease in output. When t is small, output is relatively large and, hence, so is the

extra revenue from abatement. Firms therefore find it profitable to reduce emis-

sion intensity in response to a tax hike in this case. Since output is monotonically

decreasing in the tax rate, the extra revenue from abatement is eventually so small

that firms actually begin to adopt more pollution-intensive technologies. Thus, as

can bee seen in the Appendix, emission intensity displays a perfectly U-shaped be-

havior. Although the emissions-to-output ratio is increasing for sufficiently large

taxes, it can be shown that total emissions E are monotonically decreasing in t.

Figure 2 illustrates these results, which we now summarize in Proposition 3.

Proposition 3. In the symmetric equilibrium,

i Output q is monotonically decreasing in the emissions tax rate t.

ii Emission intensity 1+ ε is a U-shaped function of t.

iii Industry emissions E are monotonically decreasing in t.
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As mentioned above, these results differ from Dijkstra and Gil-Molto (2011)’s

two-stage linear model with quadratic installation costs in one important aspect:

production and emission intensity are, respectively, always decreasing and U-

shaped functions of t in our example. In contrast, it is possible for the emissions-

to-output ratio to be monotonically decreasing in t with production exhibiting a

U-shaped behavior in their model. This difference is, of course, due to our more

realistic emission abatement specification.

5 Conclusion

This paper has examined the response of a duopoly to a higher emission tax rate

in terms of its output, abatement technology, and total emissions. The model pre-

sented in Section 2 showed that the relationship between the emission intensity of

production and the stringency of environmental policy is non-monotonic. For low

values of the tax rate, firms find it profitable to adopt a cleaner production process

since output is large; however, if the tax rate is high, it is no longer worthwhile to

invest in cleaner production methods, as output is low. In fact, similar to Perino

and Requate (2012), this relationship is U-shaped for the case of linear demand

and quadratic installation costs. Therefore, a stricter environmental policy may

have negative effects on the environment, as it may induce the adoption of dirtier

technologies.

Furthermore, the paper highlights the importance of the information trans-

mission mechanism in influencing firm behavior. In contrast with the open-loop

case in which firms choose output and emission intensity simultaneously, total

emissions do not necessarily decrease with higher taxes and, contrary to what one
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might expect, may actually increase. The explanation behind this somewhat coun-

terintuitive result is that, by investing in a cleaner technology, a firm can credibly

commit itself to a higher activity level in the future that may very well offset the

reduction in pollution intensity. Therefore, a tax hike can lead to technological

improvements that are pollution-increasing.

These findings show that emission taxes are significantly limited in their abil-

ity to provide incentives that spur both technology adoption and pollution reduc-

tion, proving that one must refrain from claiming that stricter environmental pol-

icy is always beneficial for the environment. However, it remains to determine

whether other policy tools, such as command-and-control instruments, also lead

to non-monotonic behavior in oligopolistic markets. This analysis is left for future

research.
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6 Appendix

Lemma 1 The denominator of (19) and (20) is positive.

Proof of Lemma 1 First note that

0 �
∂ 2πo

i

∂q j∂qi
>

∂ 2πo
i

∂q2
i

,

where the first inequality follows from assumption (1) and the second from the

downward sloping demand function P(Q) and the convexity of C(q). Thus,

�

�

�

�

∂ 2πo
i

∂q j∂qi

�

�

�

�

<

�

�

�

�

∂ 2πo
i

∂q2
i

�

�

�

�

. (47)

We therefore have that

∂ 2πo
i

∂q2
i

∂ 2πo
j

∂q2
j

�
∂ 2πo

i

∂qi∂q j

∂ 2πo
j

∂qi∂q j
=

✓

�
∂ 2πo

i

∂q2
i

◆

 

�
∂ 2πo

j

∂q2
j

!

�

✓

�
∂ 2πo

i

∂q j∂qi

◆

 

�
∂ 2πo

j

∂qi∂q j

!

=

�

�

�

�

∂ 2πo
i

∂q2
i

�

�

�

�

�

�

�

�

�

∂ 2πo
j

∂q2
j

�

�

�

�

�

�

�

�

�

�

∂ 2πo
i

∂q j∂qi

�

�

�

�

�

�

�

�

�

∂ 2πo
j

∂qi∂q j

�

�

�

�

�

>

�

�

�

�

∂ 2πo
i

∂q2
i

�

�

�

�

�

�

�

�

�

∂ 2πo
j

∂q2
j

�

�

�

�

�

�

�

�

�

�

∂ 2πo
i

∂q2
i

�

�

�

�

�

�

�

�

�

∂ 2πo
j

∂q2
j

�

�

�

�

�

= 0,

where the inequality follows from (47). ⌅
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Proof of Equation (27) Differentiating (25) with respect to εi yields

∂πo
i

∂qi

∂qi

∂εi
+

∂πo
i

∂q j

∂q j

∂εi
�F 0(εi)� tqi � t(1+ εi)

∂qi

∂εi
= 0.

Collecting terms,



∂πo
i

∂qi
� t(1+ εi)

�

∂qi

∂εi
+

∂πo
i

∂q j

∂q j

∂εi
�F 0(εi)� tqi = 0.

From (14) it follows that the term in square brackets is equal to zero, thus

yielding first-order condition (27). ⌅

Proof of Proposition 1 To prove part (i), evaluate the left-hand side of (27) to

obtain

∂πi

∂εi

�

�

�

�

εi=α

=



P0(Q)
∂q j

∂εi
� t

�

qi  0, (48)

where the inequality follows from (20). Thus, εi  α when t > 0. Since εi = α

when t = 0, emission intensity is decreasing in the tax rate when t is small.

To prove part (iii), let us define t⇤ as

t⇤ =
∂πo

i (0,0)

∂qi
. (49)

In other words, t* is the emission tax rate at which firms no longer find it prof-

itable to produce in the second stage of the game, regardless of their respective

emission intensities. Anticipating this, firms do not invest in abatement and set

ε = α for t � t⇤. Since εi  α by (48), it follows that emission intensity must
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eventually be an increasing function of t. ⌅

Proof of Corollary 1 The first term in (31) is negative by (24). The term in

square brackets is given by

∂qi

∂εi
+

∂qi

∂ε j
=

∂qi

∂εi
+

∂q j

∂εi

=

t

✓

∂ 2πo
j

∂q2
j

�
∂ 2πo

j

∂qi∂q j

◆

∂ 2πo
i

∂q2
i

∂ 2πo
j

∂q2
j

�
∂ 2πo

j

∂qi∂q j

∂ 2πo
i

∂q j∂qi

=

t

✓

∂ 2πo
j

∂q2
j

�
∂ 2πo

j

∂qi∂q j

◆

✓

∂ 2πo
j

∂q2
j

�
∂ 2πo

j

∂qi∂q j

◆✓

∂ 2πo
j

∂q2
j

+
∂ 2πo

j

∂qi∂q j

◆

=
t

✓

∂ 2πo
j

∂q2
j

+
∂ 2πo

j

∂qi∂q j

◆  0,

where the first and second equalities follow by imposing symmetry and the last

inequality follows from (1) and (8).
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If πo
i (·) is a smooth function, it is straightforward to verify that

lim
t!0

dq

dt
=

(1+α)
∂ 2πo

i

∂q2
i

+
∂ 2πo

i

∂q j∂qi

+(0)



�
q0

F 00(α)

�

=
(1+α)

∂ 2πo
i

∂q2
i

+
∂ 2πo

i

∂q j∂qi

 0,

where q0 denotes equilibrium output per firm when t = 0. Thus, industry output

is decreasing in the tax rate when t is small.

Recall that ε is increasing in the tax rate for large values of t. This implies that

the second-term in (31) is negative and, hence, that total output is decreasing in

the tax rate when t is high. ⌅

Proof of Corollary 2 We have already shown that total emissions E are decreas-

ing in the tax rate t when t is small. It remains to prove that E is also decreasing

in t when t is large. To do so, note that q ! 0 as t ! t⇤, where t⇤ is as defined

in (49). This implies that the first term in (32) approaches zero while the second

term in (32) becomes negative as t ! t⇤. ⌅

Proof of Proposition 3 To prove part (i), first note that the denominator in (46) is

positive by (41). Thus, the sign of (46) is completely determined by the expres-

sion in curly braces, which we will denote by φ . The first and second derivatives

of φ with respect to t are

∂φ

∂ t
=

8

9
[(1+α)t �a] (50)
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and

∂ 2φ

∂ t2
=

8

9
(1+α)> 0. (51)

Hence φ is a convex function of t and has a global minimum at

to =
a

(1+α)
. (52)

Evaluating φ at to yields

(1+α)[γ �
4

9
t2
o ]> 0,

where the inequality follows from (41). We thus conclude that q is monotonically

decreasing in t.

To prove part (ii), we focus on the expression in curly braces in (45), which

we will denote by θ . The first and second derivatives of θ with respect to t are

given by

∂θ

∂ t
=

8

9
at �2(1+α)γ

and

∂ 2θ

∂ t2
=

8

9
a > 0.

Hence θ is also a convex function of t and reaches a global minimum at

t 0 =
9γ

4a
(1+α).

Note that t 0 � to if and only if γ � 4
9
t2
o � 0, which is true by (41). As mentioned
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above, however, we have a corner solution for t > to.
4 Thus, assuming an interior

solution, the relevant global minimum is found at to.

Evaluating φ at t = 0 and t = to, we have that

θ
�

�

t=0
= aγ � 0 (53)

and

θ
�

�

t=to
=�a[γ �

4

9
t2
o ] 0, (54)

where the second inequality follows from (41).

Since θ is a convex function with a global minimum at t = to, it behaves

monotonically in [0, to]. This, in combination with inequalities (53) and (54),

implies that there exists a tax rate t⇤ such that θ is positive for all t 2 [0, t⇤] and

negative for all t 2 [t⇤, to]. Thus, ε is a U-shaped function of t.

To prove part (iii), let us begin by differentiating (44) with respect to t. It is

straightforward to verify that

de

dt
=�

γ

3
⇥

γ � 4
9
t2
⇤3

⇢

4γ

9
[a� t(1+α)]2 +



γ(1+α)�
4at

9

�2

+
8t

9
[a� t(1+α)]



4t

9
a� γ(1+α)

��

.

The sign of de
dt

is thus determined by the expression in curly braces, which we

4In this case, ε = α and dε
dt

= 0
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now denote by η . Differentiating η with respect to t yields

∂η

∂ t
=�

24

9
(1+α) [a� t(1+α)]



γ �
4

9
to t

�

,

where to is as defined in (52).

Notice that γ � 4
9
to t � 0 if t  to, since

γ �
4

9
tot � γ �

4

9
t2
o � 0,

where the last inequality follows from (41). Hence η is a decreasing function of t

in [0, to].

Evaluating η at t = to obtains

η
�

�

t=to
=



γ(1+α)�
4t

9
a

�2

� 0. (55)

Since η is monotonically decreasing in [0, to] and positive at to, it follows that

η is positive for all t 2 [0, to]. This implies that total emissions are decreasing in

the tax rate.5 ⌅
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