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Abstract

Causal Inference with Time-Varying Continuous Interventions: Evaluating the Mexican

Universal Health Insurance Program Seguro Popular

by

Curtis Huffman Espinosa

Doctor of Philosophy in Economics

El Colegio de México, A.C.

Dr. Edwin van Gameren, Chair

In Mexico, over 50 million people without health insurance in 2001, now have a state-

protected health coverage via the public insurance system Seguro Popular (SP). Here we

assess the impact of SP on the human and material resources needed to meet the new

demand for health services. This has required new procedures, which in turn motivated

the development of a robust estimator, available to the community as a do-file for the

statistical software Statar. In Chapter 1 we analyze the implications of different causal

assumptions in evaluating SP. There we show the need to push forward Propensity Score

methods so as to accommodate time-varying continuous treatments. In Chapter 2, we

present a new semiparametric procedure that allows researchers to distill causal quantities

in these contexts. This is accomplished by bringing together the literature on continuous

and dynamic treatments. The proposed procedure allows researchers to estimate Mean

and Quantile Dose-Response Functions by applying local regression methods to appropri-

ately weighted samples that control for time-dependent confounding. It is in this Chapter

that we estimate and discuss the impact of SP. Given the complexity behind the proce-

dure discussed in Chapter 2, in Chapter 3 we present a robust estimator that facilitates

causal analysis in dynamic settings with continuous treatments. All of our estimates sug-
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gest that, on the average, SP has effectively had a positive impact on the Mexican Ministry

of Health’s resources. However, we find compelling quantitative evidence that the pro-

gram has proven most helpful in less vulnerable territories, leaving behind those in greater

need.
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Chapter 1

Seguro Popular and the Supply of

Health Care Services

In this Chapter we assume different degrees of homogeneity in Seguro Pop-

ular’s intervention and analyze their implications for its evaluation. All of

our estimates suggest that, on the average, the Seguro Popular program

has effectively had a positive impact on Secretaría de Salud’s (the Mexican

Ministry of Health) resources. However, quantile and interaction treatment

effects also suggest that the program may be leaving behind some of the

most vulnerable geographical areas.
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1.1 Introduction

By the end of 2012 Mexico reached a truly immense landmark in its journey towards

universal health insurance coverage. Some 50 million people uninsured in 2001, basically

all informal workers and their families, now have a state-protected health coverage via

the public insurance system Seguro Popular (SP). This is without any doubt the most

important financial effort to provide health insurance for the uninsured the country has

ever made since the creation of its social security system in 1943. However, it would be

naive to assume that achieving universal health coverage, as it has been referred to [31],

has automatically been translated into the human and material resources needed to meet

the new demand for health services. In this paper we examine the degree to which this has

happened.

We make two distinct contributions. First, although the goal of the SP is to increase

access to health care, surprisingly few papers have examined its impact on the service

delivery in general, and on the provision for human and material resources involved in the

supply of health care services in particular; that is, on the supply side of the health care

services. So far, the evaluations of SP have mainly focused on the effects on out-of-pocket

health payments, catastrophic expenditures, health, and labor force participation –a notable

exception is a paper by Bosch and Campos [5]. However, since the program’s funding

goes without strict earmarking, whether these financial resources managed to translate

into resources associated with the provision for healthcare services is an important matter

that deserves attention.

Secondly, in working out the implications of turning to a number of simplifying statis-

tical and causal assumptions (dichotomizing an otherwise continuous time-varying treat-

ment) in order to apply existing propensity score methods, we show the need for a further

extension to the time-varying continuous context. The pursuit of such research agenda

will allow researchers to incorporate causal assumptions otherwise very hard to work with,

given the current state of knowledge we have.
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All of our estimates suggest that, on the average, more human and material resources

followed geographical areas with higher degrees of SP coverage. Even more so, analyzing

the heterogeneity behind the average treatment effects, quantile and interaction treatment

effects indicate that the SP program has had distributional effects on said resources, leav-

ing behind some of the most vulnerable parts of the country. Whether this is an unintended

effect of the program or not, its inequality implications need to be addressed openly, for it

means that a different kind of public health policy is needed to attend to the most vulnera-

ble part of the population in the country.

The paper proceeds as follows. Section 1.2 presents a short institutional background,

the main features of the program and reviews the evaluation literature related to SP. Section

1.3 describes the data, and Section 1.4 presents the empirical strategies. In Section 1.5 we

present the corresponding estimates, and finally in Section 1.6 we conclude with a brief

discussion of our results.

1.2 Evaluating Seguro Popular

Seguro Popular (Popular Health Insurance, SP) was launched as a pilot program in

2002 and remained so until the end of 2003. At that time, it covered roughly 2.2 million

people previously uninsured in a total population of about 100 million, of which over 50

percent lacked any health insurance coverage, leaving them effectively outside the social

health protection system. By that same time, the new Ley General de Salud –General

Health Law– (LGS) launched the Sistema de Protección Social en Salud –System of Social

Protection in Health– (SPSS) and just over 10 years later the SP covers more than 55 million

people.

Enrollment into the System is voluntary, and is granted to all legal residents in Mexican

territory who lack health insurance, ascertained with the mere declaration of the applicant.

Figure 1.1 shows the evolution of this huge effort to provide health insurance for the unin-

sured.



4

Figure 1.1: Seguro Popular Rollout
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It’s noteworthy that the LGS specified that the Federal Government and the states were

to share the responsibility, being the later responsible for managing the resources allocated

by the Federation for the service delivery in general. The funding of SP has a tripartite

structure: a social contribution from the federal government, covered annually by the fed-

eral government directly proportional to the number of beneficiaries (the main source of

funding); a solidarity contribution, covered both from the federal government and states

according to health indicators such as infant and adult mortality; and a family contribu-

tion, a fee introduced to replace out-of-pocket payments made at the time of the delivery of

services, although families can be classified into a non-contributory regimen based on the

household’s income. By 2012, the beneficiaries had access to a package of 284 health ser-

vices and interventions listed in the Catálogo Universal de Servicios Esenciales de Salud

(Universal List of Essential Health Services, CAUSES).

Previous Impact Evaluations

Key findings of the many evaluations of SP include that SP affiliates see reduced their

out-of-pocket health expenditures [50, 15, 3, 28, 18, 37, 2] and catastrophic health ex-

penses [20]. Increments in the use of services have also been reported [32, 50, 15, 37],

as well as positive effects not just on the self-reported health of the beneficiaries [50], but

also in some biomarkers [37].

Another strand of the evaluation literature of SP has focused on its impact on the labor

market, as the program might be creating perverse incentives to work in the informal

sector. However, here the evidence is mixed. Some studies find negligible or no effects

[11, 36, 1, 6], while others find that the SP actually has a negative effect on the creation of

formal jobs, especially in small and medium sized firms [5].

Surprisingly, practically no attention has been given to the effects that the expansion

of this nationwide health insurance program might have on the service delivery in general;

that is, on the supply side of the health care services. So far, only [5] have tackled this

issue providing evidence that the SP program has had a positive impact on the number of
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physicians, nurses and clinics in the Mexican municipalities. These authors followed a

difference-in-differences approach conceptualizing the implementation of the SP program

as an event that occurs in the municipalities once more than 10 individuals have been

affiliated.

Of course, the chosen unit of analysis and the way researchers operationalize the treat-

ment play an important role in the nature of the findings. In this regard, two aspects of

Bosch and Campos’ [5] strategy are worth mentioning. First, it’s not clear that the mu-

nicipality is the natural unit of analysis regarding human and material health resources.

In Mexico, the basic regional administrative unit in charge of the operation of health-

care services and programs is the Sanitary Jurisdiction (SJ). Mexican SJs are, in general,

comprised of several municipalities which vary greatly both in area and population.1 Sec-

ondly, more than 10 individuals is hardly a clear sign of SP coverage across such diverse

geographic areas as the Mexican municipalities.

In the remainder of the paper we contribute to the evaluation literature of SP going

deeper in assessing heterogeneous effects of SP on basic resources for the provision for

healthcare services. It is a well known fact that every impact evaluation incorporates in its

empirical strategy both statistical and causal assumptions about the data-generating pro-

cess [38], and that imposing different assumptions leads to different causal models and

quantities to be estimated. On our part, we focus on the SJ as unit of analysis, assess-

ing the implications of a set of different statistical and causal assumptions. Whenever

possible, we test the compatibility of these assumptions with the data. However, not all as-

sumptions lend themselves to receive empirical scrutiny. Most importantly, regarding our

estimates, everything will be predicated on the validity of the no-confounding assumption,

also known as selection-on-observables or ignorability. In other words, that we have iden-

tified and measured all possible variables whose effect may be confounded with that of the

SP coverage.

1Details in Section 1.3.
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1.3 Data

We have merged the administrative records of SP containing the number of families

and individuals affiliated from 2002-2013 with the federal records of infrastructure and

human resources employed by the Secretaría de Salud –Mexican Ministry of Health–

(SSA). These are the state’s primary resources used in providing health care services to

the population not insured by any of the traditional public institutions. The SSA data is

available at a yearly frequency disaggregated at the health establishment (service outlet)

level, and nowadays it’s possible to retrieve this data from 2001 to 2014 from the Sistema

Nacional de Información en Salud –National Health Information System– (SINAIS) web

site: http://www.sinais.salud.gob.mx/.

Figure 1.2 shows the evolution of key resources involved in the supply of health care

services along with the coverage of the SP program. There we can see that the increased

coverage of the SP program seems to be associated with a growing number of physicians

and nurses in day-to-day contact with patients (providing clinical care) as well as with the

number of doctors’ offices in its national aggregate. In the rest of the paper we shall focus

on these three variables since they seem most fundamental in the provision for healthcare

services. Unfortunately, the SINAIS database does not go any further back than 2001 and

we cannot appreciate properly whether these trends correspond to a change in the historical

tendency of the variables. It is, however, from this apparent association that we strive to

disentangle a causality relationship.

Only 19% of the municipalities in Mexico register an SSA health establishment, which

hardly makes it the best unit of analysis for our purposes. In all our estimates we use

the sanitary jurisdiction as unit of analysis and aggregate the data accordingly. There are

242 SJs in Mexico and none of them cross states. However, 9 out 2,457 municipalities

cross sanitary jurisdictions. For lack of better data access, in aggregating the data we have

treated these municipalities as a sanitary jurisdiction in themselves. Leaving us with a

panel of 233 units across 13 years.
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Figure 1.2: National Evolution of Key Resources and SP Coverage

0
10

20
30

40
50

60
M

ill
io

ns
(B

en
ef

ic
ia

rie
s)

20
40

60
80

10
0

12
0

14
0

T
ho

us
an

ds
(P

hy
si

ci
an

s,
 N

ur
se

s 
an

d 
D

oc
to

r’s
 o

ffi
ce

s)

2001 2003 2005 2007 2009 2011 2013
Year

Physicians with day−to−day contact with patients
Nurses with day−to−day contact with patients
Doctor’s offices
SP Beneficiaries

Source: Personal elaboration based on data from the Sistema Nacional de Información en Salud (National Health Information System)

and Seguro Popular administrative records

As noted before, the sanitary jurisdiction is the basic regional administrative unit of the

SSA in charge of the operation of healthcare services. Also important to note is that, given

the variation in size and population across SJs, we focus on the density of SSA’s material

and human resources, not in their absolute numbers, in all cases relative to the population

that lack labor-related health insurance coverage provided by public institutions such as

Intituto Mexicano del Seguro Social (IMSS), Instituto de Seguridad y Servicios Sociales

de los Trabajadores del Estado (ISSSTE), Petróleos Mexicanos (PEMEX), the Ministry of

Defense or the Navy. The same reference population is used for the SP coverage, only this

time expressed as a proportion.
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1.4 Empirical Strategy

In view of the possibility to draw on the SINAIS database for annual series of SJ’s

characteristics, ranging from a year prior to the implementation of SP –since the SP pro-

gram started as a pilot during 2002– to 2014, the combination of difference-in-differences,

which has the additional advantage of controlling for individual permanent effects, with

Propensity Score (PS) methods seem best suited to assess whether human and material

resources followed the new entitlement to meet the new potential demand for services.

Under an unconfoundedness assumption, also known as the assumption of selection on

observables, these methods allow removing all biases in comparisons in assessing the

treatment effect by adjusting for differences in a set of covariates.

We use a set of 7 variables. We focus on the density (relative number) of doctors’

offices, staffed and non-staffed hospital beds, physicians and nurses, both with and without

day-to-day contact with patients (with and without clinical duties). In particular, at any

given point in time, we look for the effects SP has had on the change (increment) in the

density of these human and material resources, conditioning on their levels prior to the

exposure to SP.

It is our argument that these 7 covariates help to explain why some sanitary juris-

dictions make the most of SP, both in terms of affiliation and making new investments.

Indeed, it is likely that the relative easiness with which it might be possible to expand the

offer of health care services may be behind both the roll-out of the SP program and the

response to it. A case in which a particular coverage pattern may have followed sanitary

jurisdictions disposed to have also a particular response to the program. In other words,

our basic assumption is that the infrastructure and personnel of the SSA that were already

on the ground before the affiliation effort are both the major determinants of the SP roll

out pace, and a clear sign of the difficulties each SJ face to translate financial means into

basic resources needed to provide health care services.

In using the density of these resources as covariates in a PS framework, we are assum-
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Figure 1.3: Causal Diagram Implicit in Observational Studies with Time-independent

Confounding

X

U

A Y

Where U are unobserved exogenous variables, common causes of the level of exposure to treatment A and pretreatment covariatesX,

and Y the outcome.

ing that, conditioning on them, the SP coverage can be considered as good as randomly

assigned. In this way the treatment is therefore assumed independent of the potential

outcomes, and so the treatment assignment mechanism is said to be ignorable. How to ad-

equately control for these variables, on the other hand, depends on the causal assumptions

behind the particular research design.

Propensity Score Methods with Time-independent Confounding

Figure 1.3 represents the usual (with simple treatment) causal assumptions behind the

PS approach, where U represents unobserved (therefore connected by dashed arrows) ex-

ogenous variables, common cause to both the treatment and the outcome, as in our case

investment performance or facility; A represents the causal variable, SP coverage; X a

vector of covariates such as the density of doctors’ offices, hospital beds, physicians and

nurses; and Y some outcome variable, in our case the increment in the density of resources.

Coarsening an Underlying Treatment Variable

As for the classic PS approach, much of the work has focused on the case where units

of analysis are exposed to one of two possible values of the causal variable, treatment
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Figure 1.4: Distribution of SP Coverage Across Sanitary Jurisdictions in 2009
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Source: Personal elaboration based on data from the administrative records of the Seguro Popular program

or control, at a given point in time, and values for an outcome are assessed some time

subsequent to exposure [44, 45, 47]. To apply these traditional methods in evaluating

SP, we need to operationalize SP coverage as a dichotomous variable for every SJ, much

as Bosch and Campos [5] did for municipalities, while making the strong assumption of

no-multiple-versions-of-the-treatment.2

Looking at figure 1.1 we can see that by 2009, SP had reached roughly 50% of the

population without traditional health insurance, and figure 1.4 shows the distribution of

this coverage across sanitary jurisdictions, exhibiting a fair number of observations on

every treatment level in a relatively symmetric distribution around .5.

This suggest an almost natural way to dichotomize the SP coverage: around its median

in 2009. In this way, the upper half of the distribution in 2009 is taken as the treatment

2Another potential approach for handling the multiple versions of SP coverage would be to focus on
particular levels of exposure, however, our sample size for each version (no two are exactly the same) limits
the effectiveness of this approach.
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group, and the lower half as control.

Using this dichotomized version of the SP coverage in 2009, we control for the 7

covariates corresponding to the year 2001, that is the year prior to the implementation of

the SP program in its pilot phase.

Note that every estimate obtained following this design (Fig. 1.5), implicitly assumes

that every SJ with an SP coverage roughly above 50% has being exposed to the same

treatment regimen. Of course, compounding different levels of coverage into one single

regimen misses the opportunity to exploit the most part of the SP coverage variability.

Moreover, ignoring multiple versions of treatment can result in biased estimates due to

inadequate control for confounding. Also, even if confounding is not a problem, this

fuzziness in the treatment complicates the interpretation of causal quantities making it

more subtle.

Nevertheless, even though we cannot say that the median dichotomized coverage cor-

responds unambiguously to a single homogeneous intervention, provided we have ade-

quately controlled for confounding for the SP coverage (not just the median dichotomized

version), we can potentially interpret the causal effect derived from this approach as the

effect of comparing two randomized interventions. Think of a randomized control trial

where levels of coverage are randomly assigned among SJs with the same characteristics,

in one arm according to the distribution of levels above the median coverage, and, in the

other arm, according to the distribution of levels under the median coverage. All of it under

the (strong) assumption of no unmeasured confounding for the continuous SP coverage,

something we can put to empirical test.

In this setting, the matching is performed by making use of two algorithms that au-

tomatize covariate balance optimization Genetic Matching (GM) [10], an evolutionary

search algorithm to determine the weight each covariate is given; and Covariate Balanc-

ing Propensity Score (CBPS) [24], which models treatment assignment while optimizing

the covariate balance in a Generalized Method of Moments (GMM) framework. The idea

behind the CBPS is simple and consist of adding to the usual score vector of the treatment
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Figure 1.5: Causal Diagram Implicit in Median Dichotomized Continuous Treatment
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Where U are unobserved exogenous variables, common causes of the level of exposure to treatment A and pretreatment covariatesX,

R the dichotomized (coarsened) version of the treatment (multiple values of A map onto a single value R = r), and Y the outcome.

assignment model, the difference in means between the treatment and control groups of

every covariate as moment conditions. We also examine the limit case of balancing co-

variates dispensing altogether with the treatment assignment model. This non-parametric

version of the CBPS methodology (NP-CBPS) can help us gain insight into what is to be

expected from achieving a better balance.

Keep in mind that, in this case, the median dichotomized SP coverage acts as a mis-

measured form of the original causal variable; that is, we have deliberately removed data

in order to use traditional propensity score methods. However, there have been extensions

to these methods in the last 15 years that allow us not to compromise data analysis in the

face of recipients exposed to the same treatment in different degrees.

Generalized Propensity Score

Even though Hirano and Imbens [21] coined the term Generalized Propensity Score

(GPS), several researchers proposed generalizations of the propensity score methodology

for non-binary treatments before [43, 27, 26].

As in the case with the binary treatment, in estimating the GPS researchers model

the distribution of the observed treatment assignment given pre-treatment covariates us-
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ing a parametric model. In the practical implementation of this methodology, researchers

often fit Gaussian distributions to continuous treatments like the SP coverage by means

of Ordinary Least Squares (OLS). In other words, the GPS is equal to the treatment as-

signment model density, not necessarily Gaussian, evaluated at the observed treatment (t)

exposure and covariates (x), fT |X(t, x).

There are several GPS methods to estimate the causal response of a continuous treat-

ment [21, 12, 41] (for a comparison of the empirical performance of these methods see

[52]). However, to allow for a better comparison with our dichotomous-treatment esti-

mates, here we follow the GPS version of the Inverse Probability of Treatment Weights

(IPTW) suggested by Robins, Hernán and Brumback [43]. Robins and colleagues pointed

out that using 1/fT |X(t, x) as weights can lead to very unstable estimates, and suggested

to use instead a more stable version of the weights: W (t, x) = fT (t)/fT |X(t, x), where

the numerator corresponds to an estimate of the empirical distribution of the treatment. In

particular, we use Robins’ stabilized weights in regressing the outcome variables against

SP coverage.

In estimating the stabilized weights, we have regressed SP coverage against our 7 co-

variates: doctors’ offices, staffed and non-staffed hospital beds, physicians and nurses with

and without day-to-day contact with patients, and all two-way interactions between these

7 variables, 35 variables in total, i.e.,

fT |X =
1

σ
√

2π
exp

{
− 1

2σ2
[T − (X′β)]

2
}

,

where β is the vector of regression coefficients, and fT (t) is estimated in the same fashion,

only this time using an empty model.

Besides these OLS-based stabilized weights, we have also used a robust estimation

procedure to estimate three different weights as proposed by Fong, Ratkovic, Hazalett

and Imai [13], which is an extension of the CBPS methodology to continuous treatments.

Like the CBPS for dichotomous treatments, this extension automatizes covariate balance

optimization, which in this case signifies minimizing the correlation between the covari-
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ates and the treatment. We estimate three different weights following this methodology

[14]: two parametric models, one that gives equal importance to both correctly predict

treatment-assignation and balancing covariates (CBPS-OVER), and a second one that

privileges covariate balance over the probabilistic model (CBPS-EXACT); and the non-

parametric approach that dispenses with models altogether only minimizing covariate bal-

ance (NP-CBPS) by means of Lagrange multipliers. It is important to note that none of the

three CBPS-continuous weights use interactions, unlike the OLS stabilized weights, since

our main concern is balancing only our 7 covariates.

Again, but this time using the original (continuous) SP coverage in 2009, we control for

the 7 covariates corresponding to the year 2001. If covariates are indeed balanced across

the different levels of SP coverage in the different CBPS pseudo-samples, we would expect

that regressing each covariate against SP coverage results in a non-significant coefficient.

Heterogeneous Treatment Effects

Under ideal conditions, the Average Treatment Effect (ATE) provide a complete de-

scription of the relationship between the treatment and the outcome distribution across

beneficiaries. However, it is well-known that averages may mask important subgroup dif-

ferences, making it necessary to look into the conditions under which the same exposure

to the treatment has a differential effect across segments of the population. This is of par-

ticular importance for social development programs attempting to reach those in greater

need.

Quantile Treatment Effects

In exploring heterogeneous treatment effects, Quantile Treatment Effects (QTEs) play

an essential role. QTEs give us the effect of the treatment, not on the mean, but on any

given quantile of the outcome distribution. Thus, looking at the effect that a treatment has

on different quantiles, researchers can go beyond the mean and assess the effect of the
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treatment on the shape of the entire outcome distribution. Knowing whether the treatment

has changed the skew in the outcome distribution or not, allows researchers to address

questions about who are making the most of social programs, uncovering best practices

and possible undesired effects on inequality.

A nice feature of the IPTW approach is that it can be easily modified for this end merely

by resorting to a Quantile Regression [33]. The idea is basically the same as before only

this time, instead of estimating the conditional mean by OLS, we have estimated several

conditional quantiles of the outcome variables.

Interaction Effects

Also in the IPTW framework, investigating the interaction between the treatment and

pre-treatment covariates can help in profiling recipients unable to benefit from the program

as intended. The idea is to test, in a regression framework, whether the effect of SP cover-

age varies with the density of health care resources observed before SP. Where a positive,

statistically significant coefficient estimate for the interaction between SP coverage and a

pre-SP covariate, would suggest a stronger effect of SP as SJs are better off in terms of the

covariate in question.

1.5 Results

Common Support

In order to compare only alike sanitary jurisdictions in everything but their SP cover-

age, following King and Zeng [29, 30] we use only the 194 SJs with the smallest mean

distance to the rest of the observations in the data. In other words, we have dropped from

the analysis the least comparable (farthest away in the covariate space) 17% of our SJs

according to Gower’s [16, 17] metric. This trimming results in a more compact (Fig. 1.6,

Appendix Table A.1), less model dependent data set that allows better comparisons across
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SJs.

Median Dichotomizing SP Coverage

Using the dichotomized version of the SP coverage in 2009, we match SJs on the 7

covariates corresponding to the year prior to the implementation of the SP program in its

pilot phase: doctors’ offices, staffed and non-staffed hospital beds, physicians with and

without day-to-day contact with patients as well as nurses, also with and without day-to-

day contact with patients.

From all three matching algorithms we can see we get a fairly balanced sample (Table

1.1) to estimate the effect of SP coverage. All differences in means are non-significant in

the matched samples, reduction in bias is also quite sizable as well as the corresponding

length of the equivalence regions. It is also worth noting that, after matching, none of

the seven variables reject the hypotheses of equality of distribution. There are differences,

however, in the variance of the variables across samples, where applying the GM algorithm

results in groups more alike, especially regarding doctors’ offices and nurses without day-

to-day contact with patients, apparently at the expense of bias. All in all, these matching

algorithms give us a range of balanced samples with different degrees of compromise

between bias and variance.
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Figure 1.6: Descriptive Statistics of the Sanitary Jurisdictions
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Source: Personal elaboration based on data from the Sistema Nacional de Información en Salud (National Health Information System).

The left and right side of each box are the first and third quartiles, and the band inside is the second quartile (the median). Whiskers represent the lowest datum still within 1.5

Inter Quartile Range of the lower quartile, and the highest datum still within 1.5 Inter Quartile Range of the upper quartile. Outliers as dots.

Other than SP coverage, variables are expressed per thousand population without traditional work-related health insurance (IMSS, ISSSTE, Pemex, the Ministry of Defense or

the Navy).

SP coverage refers to affiliates as proportion of the population without traditional health insurance.

The whole sample result from aggregating the municipality level data to the sanitary jurisdiction level.

The trimmed sample results from dropping the farthest away observations in the covariate space according to Gower’s metric [16, 17]. The Gower distance between two SJs,

is the average of the absolute differences between the covariates, as a proportion of the range of the corresponding covariate in the data.
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Table 1.1: Covariate-Balance for Dichotomous Treatment on Sanitary Jurisdictionsa

Variable Mean % red Diff. in meansd Eq. regione K-S test V(T)/

(2001)b Samplec Treated Control % bias bias t p > t diff std diff p-valuef V(C)g

DO

UM 0.50 0.40 52.20 3.63 0.00 0.16 80.48 0.00 1.18

GM 0.45 0.44 5.40 89.70 0.38 0.71 0.07 33.49 0.56 0.90

CBPS 0.46 0.43 15.30 70.60 0.99 0.33 0.09 45.92 0.11 0.67*

NPCBPS 0.45 0.45 0.10 99.80 0.01 0.99 0.07 33.23 0.23 0.53*

SHB

UM 0.40 0.45 -16.90 -1.18 0.24 0.14 45.26 0.75 0.57*

GM 0.42 0.44 -6.10 64.00 -0.46 0.65 0.10 32.39 0.39 0.85

CBPS 0.42 0.42 -1.90 88.80 -0.14 0.89 0.09 28.99 0.72 0.81

NPCBPS 0.43 0.42 0.20 98.60 0.02 0.99 0.08 26.88 0.51 0.91

NSHB

UM 0.81 0.54 78.00 5.43 0.00 0.36 106.33 0.00 1.19

GM 0.68 0.66 7.20 90.80 0.51 0.61 0.12 35.11 0.75 1.07

CBPS 0.71 0.66 14.60 81.30 0.94 0.35 0.15 45.25 0.51 0.79

NPCBPS 0.67 0.67 -0.10 99.80 -0.01 0.99 0.11 30.80 0.67 0.69

Table continues



20

Variable Mean % red Diff. in meansd Eq. regione K-S test V(T)/

(2001)b Samplec Treated Control % bias bias t p > t diff std diff p-valuef V(C)g

PWC

UM 0.87 0.75 34.60 2.41 0.02 0.22 62.93 0.01 1.00

GM 0.80 0.79 2.50 92.80 0.18 0.86 0.10 29.37 0.91 1.03

CBPS 0.83 0.78 13.00 62.30 0.93 0.35 0.14 40.75 0.32 0.90

NPCBPS 0.81 0.81 0.10 99.70 0.01 0.99 0.10 28.81 0.76 0.81

PWOC

UM 0.06 0.06 -13.70 -0.95 0.34 0.02 41.98 0.62 0.60*

GM 0.06 0.06 -5.10 62.70 -0.38 0.71 0.02 31.59 0.81 0.88

CBPS 0.06 0.06 -0.60 95.60 -0.04 0.97 0.01 28.76 0.16 0.68

NPCBPS 0.06 0.06 0.20 98.60 0.01 0.99 0.01 29.36 0.14 0.73

NWC

UM 1.07 0.97 20.40 1.42 0.16 0.24 48.69 0.02 0.77

GM 1.02 1.02 1.20 94.20 0.08 0.93 0.14 28.89 0.56 0.93

CBPS 1.05 0.99 12.30 39.80 0.85 0.39 0.20 40.58 0.45 0.85

NPCBPS 1.02 1.02 0.20 99.00 0.01 0.99 0.14 29.02 0.90 0.76

Table continues
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Variable Mean % red Diff. in meansd Eq. regione K-S test V(T)/

(2001)b Samplec Treated Control % bias bias t p > t diff std diff p-valuef V(C)g

NWOC

UM 0.06 0.08 -23.70 -1.65 0.10 0.04 52.00 0.21 0.50*

GM 0.06 0.07 -8.10 66.00 -0.63 0.53 0.02 33.14 0.50 0.79

CBPS 0.07 0.07 -8.20 65.30 -0.62 0.54 0.02 34.48 0.79 0.66*

NPCBPS 0.07 0.07 0.10 99.60 0.01 0.99 0.02 27.56 0.76 0.79

Source: Personal elaboration based on data from the Sistema Nacional de Información en Salud (National Health Information System) and Seguro Popular administrative

records

* if variance ratio outside [0.67; 1.50] for UM and [0.67; 1.50] for all matching algorithms
a Treatment variable results from dichotomizing Seguro Popular coverage in 2009 around its median.
b Per thousand population without traditional (work-related) health insurance (IMSS, ISSSTE, Pemex, the Ministry of Defense or the Navy), where DO stands for doctors’

offices, SHB for staffed hospital beds, NSHB for non-staffed hospital beds, PWC for physicians in day-to-day contact with patients, PWOC for physicians without day-to-day

contact with patients, NWC for nurses in day-to-day contact with patients and NWOC for nurses without day-to-day contact with patients.
c UM sample refers to the 194 sanitary jurisdictions with the smallest mean distance to the rest of the observations in the data, GM to the sample matched using Genetic

Matching, CBPS to the sample matched using Covariate Balance Propensity Score and NPCBPS to the sample matched using Non-parametric Covariate Balance Propensity

Score.
d As suggested by t-statistic, none of the tests in the table take into account the statistical error associated to the matching procedure.
e Equivalence region as the largest difference at which the null hypothesis of difference-in-means would be rejected with a confidence of 95%, both in units of the variable

tested and standardized by the average variance of treated and no-treated. Unlike the difference-in-means test (left columns), where the equivalence is the null and difference

the alternative, here we only reject the null if sufficient data exists to demonstrate otherwise. The region does not take into account the matching algorithm.
f Kolmogorov-Smirnov equality-of-distributions test, the corrected combined p-value is reported.
g Variance ratio of treated over non-treated. An asterisk is displayed for variables that have variance ratios that exceed the 2.5th and 97.5th percentiles of the F-distribution

with number of matched treated minus 1 degrees of freedom.
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Looking at the change in the density of doctors’ offices, physicians and nurses from

2001 to 2010 we can see (Fig. 1.7, Appendix Table A.2) our estimates suggest that SP has

had a clear positive impact on SSA’s resources.

However, several important points concerning the interpretation of these results merit

attention. First, we would be wrong in assuming these estimates correspond to the average

treatment effect of SP full coverage, for the information lost in dichotomizing the treatment

has led us to identify a different causal quantity difficult to pinpoint [19, 51], thus limiting

data analysis. Secondly, by definition, the causal effect of the median dichotomized cov-

erage is null (Note that in Fig. 1.5 there is no arrow from R to Y since, after all, we only

dichotomized the causal variable). What the results of this approach are quantifying is

the association between the dichotomized coverage and the outcome variables, mediated

through their common cause: the original continuous SP coverage. As noted in Section

1.4, these effect estimates can be interpreted as an estimate of what would have been ob-

served in the randomized trial in which, within strata of covariates X = x, an SP coverage

is randomly assigned to every SJ from the observed distribution of “levels of coverage”

in the population among those with coverage, in one arm superior to the median, and in

the other arm less than the median. But this interpretation is predicated on the assumption

that we have adequately controlled for confounding for the underlying continuous version

of the treatment variable; that is, the assumption of no unmeasured confounding for SP

coverage.

In this regard, it is important to note that balancing covariates with respect to the me-

dian dichotomized SP coverage does not necessarily achieve “balance” across different

values of the original continuous causal variable. We can see (Figs. 1.8 and 1.8, Ap-

pendix Table A.3) how this is not the case for doctors’ offices, non-staffed hospital beds,

physicians and nurses in day-to-day contact with patients, where, despite the fact that in

the pseudo-samples generated with every matching algorithm, the correlation between the

dichotomized SP coverage and these covariates is statistically indistinguishable from zero,

the correlation still remains when we look at the original (continuous) SP coverage. This
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Figure 1.7: Average Treatment Effects of Dichotomized SP coverage on Sanitary Jurisdictions by Matching

Algorithmab
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Source: Personal elaboration based on data from the Sistema Nacional de Información en Salud (National Health Information System) and Seguro Popular administrative

records

The left and right side of each box are the first and third quartiles, and the band inside is the second quartile (the median). Whiskers represent the lowest datum still within 1.5

Inter Quartile Range of the lower quartile, and the highest datum still within 1.5 Inter Quartile Range of the upper quartile. Outside values are not shown.

Estimates based on 1000 replications. Bootstrapping takes into account the matching algorithm.

SP coverage refers to the number of affiliates in 2009 as proportion of the population without traditional health insurance: IMSS, ISSSTE, Pemex, the Ministry of Defense or

the Navy.

* In day-to-day contact with patients
aEffects on the 2010-2001 increment in the density of resources, per thousand population without traditional health insurance: IMSS, ISSSTE, Pemex, the Ministry of Defense

or the Navy. Where the treatment variable results from dichotomizing Seguro Popular coverage in 2009 around its median.
bUM corresponds to the unmatched 194 sanitary jurisdictions with the smallest mean distance to the rest of the observations in the data, CBPS to the sample matched using

Covariate Balance Propensity Score, GM to the sample matched using Genetic Matching and NP-CBPS to the sample matched using Non-parametric Covariate Balance

Propensity Score, all with respect to dichotomized treatment.
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is so even in the NP-CBPS pseudo-sample, where the correlation with the dichotomized

treatment is driven to virtually zero.

In other words, the data suggests that it would be a mistake to assume that we can treat

SP coverage as randomly assigned within our treatment groups in the matched samples,

seriously undermining any causal interpretation of these estimates related to the original

SP coverage. This challenges arise because the causal effect of aggregated/compound

treatments (in our case dichotomized) depends on the distribution of the original treatment

in the population [19], which we have not taken into account (as if utterly random with

equal probability). We could still recover the causal interpretation of our estimates if

we were to resort to other statistical methods that allow us to consider the distribution

of “coverage levels” given the dichotomized coverage and covariates, that is, twice the

conditional probability density of the coverage on each side of the median; but this would

bring up the question of why not estimate the causal effect of the original SP coverage

itself instead.

This leaves us with a poorly defined intervention for the purposes of thinking about

causal effects (we do not know which causal effect is being estimated, if any), let alone

actionable policy recommendations. However, these estimates still render statements such

as “being in the upper half of the distribution of levels of coverage is on average better

than being on the lower half”, provided that these statements are understood with refer-

ence to the current, unknown (otherwise we would have taken them into account) policies

for assigning levels of coverage. On the other hand, if one does not know what exactly

these policies consist of, then one does not know what kind of intervention will have an

effect that bears much resemblance to the estimate just obtained, making it meaningless

for public policy.

If we are not to compromise possible insights discarding valuable data in aggregating

coverage levels, we need to resort to other propensity score methods, different from those

designed for binary casual variables.
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Figure 1.8: Covariate-Balance for SP coverage with Balanced Samples with respect to Dichotomized Treatment on

Sanitary Jurisdictions
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(Figure continues)
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(c) Physicians*
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Source: Personal elaboration based on data from the Sistema Nacional de Información en Salud (National Health Information System) and Seguro Popular administrative

records.

The left and right side of each box are the first and third quartiles, and the band inside is the second quartile (the median). Whiskers represent the lowest datum still within 1.5

Inter Quartile Range of the lower quartile, and the highest datum still within 1.5 Inter Quartile Range of the upper quartile. Outside values are not shown.

Coefficients result from linear regressions of each covariate in 2001 on the dichotomized and original SP coverage in 2009, weighted accordingly to the pseudo-sample in

question.

Estimates based on 1000 replications. Bootstrapping takes into account the matching algorithm.

* In day-to-day contact with patients

SP coverage refers to affiliates in 2009 as proportion of the population without traditional health insurance (IMSS, ISSSTE, Pemex, the Ministry of Defense or the Navy).

Dichotomous treatment variable results from dichotomizing Seguro Popular coverage in 2009 around its median.

UM corresponds to the unmatched 194 sanitary jurisdictions with the smallest mean distance to the rest of the observations in the data, CBPS to the sample matched using

Covariate Balance Propensity Score, GM to the sample matched using Genetic Matching and NP-CBPS to the sample matched using Non-parametric Covariate Balance

Propensity Score, all with respect to dichotomized treatment.



27

Continuous Treatments

Again limiting our estimates to the trimmed 194 SJs sample, using the original contin-

uous version of the SP coverage in 2009, we can see (Fig. 1.9, Appendix Table A.4)

that, unlike the pseudo-samples generated using the PS methodology for dichotomous

treatments, the pseudo-samples generated using the several weighting algorithms for con-

tinuous treatments (as described in Section 1.4), indeed break the association observed

between the covariates and the SP coverage, although the CBPS-OVER algorithm leaves

room for doubt at the 90% confidence level. 3

Looking again at the change in the density of doctors’ offices, physicians and nurses

from 2001 to 2010, this time using the pseudo-samples generated for the original SP cov-

erage, we see (Fig 3.3, Table A.5 in appendix) that these new estimates also suggest that

SP has had a positive impact on SSA’s resources (all estimates statistically different from

zero), and unlike the dichotomous estimates, we can interpret them as the Average Treat-

ment Effect of full SP coverage on the SJs. Attending to the smallest numbers, which also

correspond to the best balanced sample, our estimates suggest that on the average, for our

trimmed sample, full coverage of SP translates into roughly 2 doctors’ offices, 6.5 physi-

cians and 8 nurses, both in day-to-day contact with patients, per ten thousand population.

These numbers may seem small, but keep in mind that in 2001, in these same 194 SJs, the

average density of these same resources was 4.5, 8 and 10 respectively. Also of impor-

tance is to note that these figures differ substantially from the “naive” OLS estimates that

overestimate the impact of SP on doctors’ offices by 26%, and underestimate its impact on

physicians and nurses in day-to-day contact with patients by 23% and 34% respectively.

Let’s not lose sight of the fact that these estimates belong to the average, that is, not to

a SJ in particular, and that some SJs may be doing better than others in expanding these

resources for different reasons.
3We see this regressing each covariate against SP coverage before and after appropriately weighting the

trimmed sample.
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Figure 1.9: Pre-Treatment-Covariate-Balance for SP coverage on Sanitary Jurisdictions by

Weighting Algorithm
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(e) Physicians**
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Source: Personal elaboration based on data from the Sistema Nacional de Información en Salud (National Health Information System)

and Seguro Popular administrative records

The left and right side of each box are the first and third quartiles, and the band inside is the second quartile (the median). Whiskers

represent the lowest datum still within 1.5 Inter Quartile Range of the lower quartile, and the highest datum still within 1.5 Inter Quartile

Range of the upper quartile. Outside values are not shown.

Coefficients result from linear regressions of each covariate in 2001 on the original SP coverage in 2009, weighted accordingly to the

pseudo-sample in question.

Estimates based on 1000 replications. Bootstrapping takes into account the matching algorithm.

* In day-to-day contact with patients

** Without day-to-day contact with patients

SP coverage refers to Seguro Popular affiliates in 2009 as proportion of the population without traditional health insurance: IMSS,

ISSSTE, Pemex, the Ministry of Defense or the Navy

Where UM corresponds to the unmatched 194 sanitary jurisdictions with the smallest mean distance to the rest of the observations

in the data, OLS-SW to the sample weighted using Robins’ stabilized weights assuming Gaussian distribution fitted with all two-way

interactions; CBPS-OVER to the sample weighted using Over-identified Covariate Balance Propensity Score, which gives equal impor-

tance to both correctly predict treatment-assignation and balancing covariates; CBPS-EXACT to the sample weighted using Exactly-

identified Covariate Balance Propensity Score, which privileges covariate balance over the probabilistic model; and NPCBPS to the

sample weighted using Non-parametric Covariate Balance Propensity Score, which dispenses with models altogether only minimizing

covariate balance using Lagrange multipliers.
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Figure 1.10: Average Treatment Effects of SP coverage on Sanitary Jurisdictions by Bal-

ancing Algorithm

(a) Doctors’ offices
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Source: Personal elaboration based on data from the Sistema Nacional de Información en Salud (National Health Information System)

and Seguro Popular administrative records

The left and right side of each box are the first and third quartiles, and the band inside is the second quartile (the median). Whiskers

represent the lowest datum still within 1.5 Inter Quartile Range of the lower quartile, and the highest datum still within 1.5 Inter Quartile

Range of the upper quartile. Outside values are not shown.

Estimates result from linear regressions of each outcome variable on the original SP coverage in 2009, weighted accordingly to the

pseudo-sample in question.

Effects on the 2010-2001 increment in the density of resources, per thousand population without traditional health insurance (IMSS,

ISSSTE, Pemex, the Ministry of Defense or the Navy).

Estimates based on 1000 replications. Bootstrapping takes into account the matching algorithm.

* In day-to-day contact with patients

SP coverage refers to affiliates in 2009 as proportion of the population without traditional health insurance: IMSS, ISSSTE, Pemex, the

Ministry of Defense or the Navy.

Where UM corresponds to the unmatched 194 sanitary jurisdictions with the smallest mean distance to the rest of the observations

in the data, OLS-SW to the sample weighted using Robins’ stabilized weights assuming Gaussian distribution fitted with all two-way

interactions; CBPS-OVER to the sample weighted using Over-identified Covariate Balance Propensity Score, which gives equal impor-

tance to both correctly predict treatment-assignation and balancing covariates; CBPS-EXACT to the sample weighted using Exactly-

identified Covariate Balance Propensity Score, which privileges covariate balance over the probabilistic model; and NPCBPS to the

sample weighted using Non-parametric Covariate Balance Propensity Score, which dispenses with models altogether only minimizing

covariate balance using Lagrange multipliers.
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Heterogeneous Treatment Effects

As noted in Section 1.4, IPTW methods can be easily modified to go beyond the Av-

erage and into the Quantile and Interaction Treatment Effects to profile segments of the

population with heterogeneous responses to SP full coverage. Looking at the QTE, we can

see from our estimates (Fig. 1.11, Table A.6 in appendix) that the effect of full SP cover-

age is smaller in the lower part of the outcome distributions. This suggests that SP has had

more than a central location effect on the outcome distributions, as would correspond to

similar magnitudes across quantiles. On the contrary, treatment effects are quite heteroge-

neous along the distribution of the outcome variables, being clearly more concentrated as

we move towards the upper quantiles in the case of doctors’ offices and the third quartile

for physicians and nurses. That is to say that the QTEs show that SP program has widened

the spread of the outcome distributions, exacerbating the increment in the density of health

workforce and infrastructure as SJs were better off making progress on this front. This is

particularly so for doctors’ offices, where the effect of SP is statistically indistinguishable

from zero for the first decile, and grows steadily up to twice the mean for the last one. It

is important to note that physicians and nurses also exhibit the smallest coefficients in the

first two deciles of their respective distributions, being mostly non-significant for the first

decile, with a third quartile roughly 1.5 times the average.

It is important to remember, before jumping to conclusions, that the outcome variables

examined correspond to changes in the density of SSA’s resources, not the density of the

resources themselves. Whether SP has contributed or not to a more unequal distribution

of health care resources in Mexico depends on which are those SJs reaping the most ben-

efits from program. If the SJs benefiting the least from the program were precisely those

less advantaged in terms of health care resources, then the SP program would likely have

contributed to the inequality in the distribution of these resources. If, on the other hand,

the least advantaged jurisdictions were making the most of the program, it would have

contributed to alleviate this same inequality.

In this regard, our interaction estimates (Fig. 1.12, Table A.7 in appendix) between SP
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Figure 1.11: Quantile Treatment Effects of SP coverage on Sanitary Jurisdictions by Bal-

ancing Algorithm
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Source: Personal elaboration based on data from the Sistema Nacional de Información en Salud (National Health Information System)

and Seguro Popular administrative records

The bottom and top of each box are the first and third quartiles, and the band inside is the second quartile (the median). Whiskers

represent the lowest datum still within 1.5 Inter Quartile Range of the lower quartile, and the highest datum still within 1.5 Inter

Quartile Range of the upper quartile. Outside values are not shown.

Estimates result from linear quantile regressions of each outcome variable on the original SP coverage in 2009, weighted accordingly

to the pseudo-sample in question.

Effects on the 2010-2001 increment in the density of resources, per thousand population without traditional health insurance (IMSS,

ISSSTE, Pemex, the Ministry of Defense or the Navy).

Estimates based on 1000 replications. Bootstrapping takes into account the matching algorithm.

* In day-to-day contact with patients

SP coverage refers to affiliates in 2009 as proportion of the population without traditional (work related) health insurance.

Where OLS-SW corresponds to the sample weighted using Robins’ stabilized weights assuming Gaussian distribution fitted with all

two-way interactions; CBPS-OVER to the sample weighted using Over-identified Covariate Balance Propensity Score, which gives

equal importance to both correctly predict treatment-assignation and balancing covariates; CBPS-EXACT to the sample weighted

using Exactly-identified Covariate Balance Propensity Score, which privileges covariate balance over the probabilistic model; and

NPCBPS to the sample weighted using Non-parametric Covariate Balance Propensity Score, which dispenses with models altogether

only minimizing covariate balance using Lagrange multipliers.
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coverage and the baseline levels of the resources suggest that SP has had stronger effects

boosting the investment on physicians and nurses in day-to-day contact with patients as

the density of physicians without day-to-day contact with patients in 2001 grows larger in

the SJs. Bear in mind that, in 2001, more than half of the physicians without day-to-day

contact with patients were engaged in administrative tasks, with the rest dispersed among

educational activities, epidemiologists and anatomo-pathologist. That is to say that the

number of physicians without day-to-day contact with patients is closely related to institu-

tional development and higher-level health care services. In 2001, 64% of the physicians

without day-to-day contact with patients worked at Specialized (Inpatient) Hospitals.

Looking closely at the distribution (1000 repetitions) of our estimates for physicians

and nurses in Figure 1.12, we can see that SP seems to have a higher effect on SJs with

lesser densities of doctors’ offices, which would indicate that poorer SJs favor the invest-

ment in health workers providing clinical care.

Taken together, the heterogeneity in SP treatment effects would suggest that the SJs

making the most of SP are precisely those better off in terms of the material and human

resources examined. These results seem to evidence the apparent incapability of SP to

work against the inequality in the distribution of resources associated with to the provision

for healthcare services.

1.6 Conclusions and Discussion

First of all, our results point in the same general direction of those of Bosch and Cam-

pos [5]: on the average, the SP program has translated to increases in the resources allo-

cated to provide health care. However, a number of the precise technical details differ. In

this paper we’ve taken a step further in various directions: on the one hand, in assessing

the impact of SP on the infrastructure and human resources of the SSA, we have used the

basic regional administrative unit in charge of the operation of healthcare services and

programs as units of analysis: the sanitary jurisdiction. On the other hand, we have also
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used the coverage of Seguro Popular as a continuous causal variable, which has allowed

us to gain insight into the effects of SP otherwise impossible.

We have shown evidence that average results hide a great deal of information regarding

the effects of SP. Through a heterogeneity analysis we have shown that quite possibly SP

has had distributional effects on the resources involved in the provision for healthcare

services. Our results suggest that the sanitary jurisdictions that were better off in terms of

these resources before SP, are precisely those making the most of the program. The fact

that SP may be leaving behind the most vulnerable geographic areas in the country is of

major concern from a public policy perspective, for it points to the need for complementary

public health policies.

We have also shown strengths and weakness of different research designs according

to their causal and statistical assumptions, we believe it is for the benefit of applied re-

searchers to be reminded of how different versions of treatment may affect (bias) in-

ferences and their interpretation, a problem generally not possible to eliminate entirely

in making causal inference, against which we must remain always vigilant. We cannot

overemphasize the importance of this when informing public policy.

In this regard, it is useful to be explicit about the statistical and causal assumptions be-

hind all of our estimates. Most importantly, our treatment variable, SP coverage, makes no

distinction between different treatment histories. As long as two sanitary jurisdiction ex-

hibit the same program incidence in 2009, our approach treats them as if they had the same

amount of treatment exposure, which may not be true in a very direct sense. It may well

be that even though two municipalities show the same coverage in 2009, say 80 percent

of the population without traditional (work-related) health insurance, one of them has just

recently achieved this while the other has been showing this level of coverage for several

years. In this context it may seem somewhat inappropriate to consider that these two terri-

tories have been exposed to the same benefits of the program. Also, overlooking treatment

histories altogether has led us in turn to omit considering their possible interaction with

confounders at different points in time; that is, in all of our estimates we have ignored the
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possibility that SP coverage is time-varying.

Our analysis focused on contrasting different assumptions help us to consider, by anal-

ogy, the implications of overlooking time-dependence, as this can be seen as another way

of compounding (aggregating) treatments that may lead to inadequate control for con-

founding.

To see why this is so, consider that conditioning only on covariates from 2001, the

year prior to the implementation of the SP program in its pilot phase, we have implicitly

assumed SP coverage as a fixed, time-independent (non-dynamic) treatment, and that the

covariates from 2002 to 2008 do not provide relevant information for the causal analysis

at hand (Fig. 1.13).

However, let’s keep in mind that, even in 2009, the affiliation effort of SP had reached

over 31 million people, of which 28 million lived in our trimmed sample of 194 SJs.

Naturally, affiliating this many people took years, and it is quite likely that during those 7

years, the SP’s roll-out strategy reacted to the changing conditions SP itself helped bring

about.

If this had actually happened, suppose that in fact Xt lies in the causal path (is an effect

of) exposure At−1as depicted in Fig. 1.13, there would be some uncontrolled confounding

in our design running through the dashed lines. However, note that covariates from 2002

to 2008 are no longer strictly pre-SP covariates with respect to the coverage attained by

2009, only with respect to the coverage attained after the specific year we are looking at.

Indeed, covariates from 2006, for example, are pre-treatment with respect to the increment

in coverage observed after that year, but at the same time are post-treatment with respect

the coverage observed already by that same year. In that sense, all the covariates from

2002 to 2008 are, at the same time, pre-treatment and post-treatment with respect to some

part of the coverage observed in 2009. Thus, we would be mistaken in including them in

our estimation of the GPS, for we would be severing one possible channel through which

the treatment may be affecting the outcome (the dotted lines in Fig. 1.13), a clear example

of post-treatment bias [4]. On the other hand, by not including them, we are probably
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biasing our estimates of the impact of SP by leaving out relevant confounders from the

analysis.

However, behind our assumed homogeneity in SP coverage is the current state of

methodology on GPS methods, which have yet to reach the case of continuous time-

depending treatments.4 There are further generalizations of the GPS methodology that

exploits precisely the time-series cross sectional nature of data sets [4, 43, 14], but so

far they’ve focused only on time-varying dichotomous treatments. In a first impulse, re-

searchers may try to dichotomize SP coverage every year in order to apply these method-

ologies, but this strategy leads to missing the opportunity to use all the available informa-

tion just like in the fixed case. Consider the case where the particular level of coverage

at time t may be a strong confounder for the dichotomized coverage at subsequent times.

Plus, there is no clear way to dichotomize SP coverage following the same rule every year,

difficulting even more the interpretation of causal quantities.

Let this discussion serve as motivation to keep pushing forward Propensity Score meth-

ods, a task we take upon ourselves in the next chapters.

4Causal inference for time-varying continuous treatments requires estimating the conditional probability
density of continuous treatment histories.



37

Figure 1.12: Interaction Effects of SP coverage with Pre-Treatment Covariates on Sanitary

Jurisdictions by Balancing Algorithm
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(c) Nurses*
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Source: Personal elaboration based on data from the Sistema Nacional de Información en Salud (National Health Information System)

and Seguro Popular administrative records

The bottom and top of each box are the first and third quartiles, and the band inside is the second quartile (the median). Whiskers

represent the lowest datum still within 1.5 Inter Quartile Range of the lower quartile, and the highest datum still within 1.5 Inter

Quartile Range of the upper quartile. Outside values are not shown.

Estimates result from linear regressions of each outcome variable on the original SP coverage in 2009 and its interaction with all 7

per-treatment (2001) covariates, weighted accordingly to the pseudo-sample in question, where SP stands for SP coverage, SPxDO for

the interaction between SP coverage and doctors’ offices, SPxSHB for the interaction between SP coverage and staffed hospital beds,

SPxNSHB for the interaction between SP coverage and non-staffed hospital beds, SPxPWC for the interaction between SP coverage and

physicians in day-to-day contact with patients, SPxPWOC for the interaction between SP coverage and physicians without day-to-day

contact with patients, SPxNWC for the interaction between SP coverage and nurses in day-to-day contact with patients and SPxNWOC

for the interaction between SP coverage and nurses without day-to-day contact with patients.

Effects on the 2010-2001 increment in the density of resources, per thousand population without traditional health insurance (IMSS,

ISSSTE, Pemex, the Ministry of Defense or the Navy).

Estimates based on 1000 replications. Bootstrapping takes into account the matching algorithm.

* In day-to-day contact with patients

SP coverage refers to affiliates in 2009 as proportion of the population without traditional (work related) health insurance.

Where UM corresponds to the unmatched 194 sanitary jurisdictions with the smallest mean distance to the rest of the observations

in the data, OLS-SW to the sample weighted using Robins’ stabilized weights assuming Gaussian distribution fitted with all two-way

interactions; CBPS-OVER to the sample weighted using Over-identified Covariate Balance Propensity Score, which gives equal impor-

tance to both correctly predict treatment-assignation and balancing covariates; CBPS-EXACT to the sample weighted using Exactly-

identified Covariate Balance Propensity Score, which privileges covariate balance over the probabilistic model; and NPCBPS to the

sample weighted using Non-parametric Covariate Balance Propensity Score, which dispenses with models altogether only minimizing

covariate balance by means of Lagrange multipliers.
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Figure 1.13: Causal Diagram Illustrating Time-dependence
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Where X are time-varying confounders, A the exposure history to treatment and Y the outcome at every

point in time. Dashed lines represent the causal assumption of no causal effects implicit in using only pre-SP

covariates in estimating the causal effect of A.
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Chapter 2

Time-Varying Continuous

Interventions: Seguro Popular and the

Supply of Health Care Services

This Chapter presents a new semiparametric procedure to analyze time-

varying continuous interventions. This is accomplished by bringing to-

gether the literature on continuous and dynamic treatments. Our approach

allows the researcher to estimate Mean and Quantile Dose-Response Func-

tions by applying local regression methods to appropriately weighted sam-

ples that control for time-dependent confounding. As an empirical applica-

tion of the proposed method, we analyze the effects of the Mexican univer-

sal health insurance program, Seguro Popular, on key variables associated

with the provision of healthcare services by the Health Ministry (Secretaría

de Salud, SSA). We find compelling quantitative evidence that the program

has proven most helpful in less vulnerable territories, leaving behind those

in greater need.
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2.1 Introduction

In assessing whether or not a program has achieved its intended results, the impact

evaluation literature has heavily relied on causal inference methods focused on the effect

of a single homogeneous action at a single point in time. Observing units (households,

people, territories) at only one or two points in time, researches are typically left to assume

that the program under scrutiny –the action that in the analysis is to be interpreted as

cause– took place in a “single-shot” and without discernible variation among recipients.

Even though implicit most of the time, this is a crucial assumption. The farther away we

are from meeting this assumption and consider programs that unfold over time with varied

intensity, the more biased conventional analytic methods will be and ultimately result in

estimates that may fail to have a causal interpretation.

Naturally, implementing a program always takes time. When a program evolves over

time in a deterministic way, assuming it as a single-shot intervention does not represent a

problem in itself. If, on the other hand, the effectiveness of the intervention at earlier stages

of implementation were to affect its nature at subsequent stages1, assuming the program

as a single-shot intervention could lead to comparisons between incomparable units. The

problem arises because, in a non-deterministic time-varying intervention, the dynamic of

the intervention itself generates potential confounders, which are impossible to control for

before the program takes place. It is important to note that even though in a time-varying

intervention like the one described before, units may end up with different “exposures” to

the program –as different intervention histories are observed–, this is not the reason why

it is impossible to control for variables that could bias our causal estimates using only

baseline covariates. If the intensity or duration of an intervention is somehow determined

for every unit at the outset of the program, it may be possible to control for confounders

1There is nothing abnormal in this situation, nearly all treatments of epidemiological interest present
these characteristics –imagine a drug whose dose is readjusted according to the patient’s clinical response.
Recently these tools, indeed originally developed in biostatistics and epidemiology, have been applied in po-
litical science [4] to study the effectiveness of a candidate’s decision to “go negative” in political campaigns,
an inherently dynamic process.
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using only preprogram covariates, as the program would still conform to the assumption

of a single-shot intervention (see for example the methods discussed in [52]).

To properly assess the causal effect of a dynamic process in an observational study,

researchers need to collect repeated measurements of the same units at several points in

time. When the data collected in this fashion provides information of all covariates with

the potential to both affect the future exposure and be affected by previous exposure to the

program at a given point in time –time-varying confounders–, researchers are in position

to estimate the effect of such dynamic interventions.

To this end, Robins, Hernán and Brumback[43], RHB from now on, presented a set

of tools to estimate the causal effects of dynamic processes from Time-series Cross-

Sectional (TSCS) data. These tools explicitly model the dynamic selection inherent in

these time-varying processes, overcoming the biases derived from wrongly assuming a

single-shot kind of intervention. RHB’s methodology applies Inverse Probability of Treat-

ment Weights (IPTW) to a class of semiparametric models called Marginal Structural

Model (MSM). In these MSM, each unit is weighted by the inverse probability of its

observed intervention history, creating a pseudo sample where dynamic selection is elim-

inated. Then, using this pseudo sample, the MSM dictates the form of the relationship

between the histories and the outcome of interest.2

However, typically in the MSM literature, the intervention histories are coded as se-

quences of a binary variable; that is, histories of homogeneous (of uniform nature) inter-

ventions that either take place or not at every point in the time sequence [7], thus leaving

out the case of interventions that, at every stage, may occur with varied intensity –best

coded as a continuous variables.

Here we propose to fill this gap by being the first to take the applications of RHB’s

methodology from binary to continuous treatments, and then use the resulting IPTW to

estimate Mean and Quantile Dose-Response Functions (DRFs) in these dynamic contexts.

2Keep in mind that, with time-varying continuous interventions, estimating the causal effect of every
intervention history proves an impossible task in most cases as their number grows geometrically with the
number of stages.
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As an empirical application, we use this procedure to estimate the effect of the Mexi-

can universal health insurance program, Seguro Popular (SP), on key variables associated

with the provision of healthcare services by the Secretaría de Salud –Mexican Ministry of

Health– (SSA).

In line with previous research [5], we found that the program has had a positive ef-

fect on the infrastructure and human resources of the SSA. However, the methodology

implemented here allowed us to address a richer set of causal questions as we are now in

position to analyze in detail the response to the gradual rollout of the program. As a result

of this expanded scope we also found evidence that the program has had heterogeneous

effects across the regional administrative units of the SSA, exhibiting greater impacts on

those units with greater density of human and material resources, thus leaving behind those

units with scarcer resources.

The paper proceeds as follows. Section 2.2 describes how RHB’s methodology extends

the methods focused on the effect of a single homogeneous action at a single point in time.

Section 2.3 introduces the estimation procedures behind this methodology. Section 2.4

describes the weighting approach to estimating dynamic mean and quantile dose-response

functions, and section 2.5 applies the techniques for estimating the effect of the SP pro-

gram on the supply of healthcare services. Section 3.6 concludes with some public policy

implications of the analysis.

2.2 Causal Inference with Time-Varying Continuous In-

terventions

In assessing whether or not a program has achieved its intended result, a sobering well

known fact is that association is not causation. However, in randomized evaluations, as-

sociation measures can be interpreted as effect measures because randomization ensures

that the units are interchangeable whatever their exposure to the program. On the other
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hand, in nonrandomized evaluations, association measures cannot be interpreted as effect

measures because units with different exposures to the program are not generally inter-

changeable. In order to establish to what extent a particular program—and that program

alone—contributed to the change in an outcome, after the program has been implemented,

we must turn to methods that help us imitate a randomized evaluation in generating a valid

(interchangeable) group of comparison.

In overcoming this challenge, impact evaluation methods have heavily relied on assum-

ing the program under analysis as a single homogeneous intervention. This is a suitable

framework for many programs whose intervention is reasonably standardized and takes

place only once at fairly the same time for every recipient of the program. There are,

however, many programs that don’t conform to this assumption. Programs that evolve

over long periods of time with different intensity for different units at every stage of their

implementation, reacting to the changes in the environment that themselves cause to take

place. The existence of the later kind of interventions has motivated the literature on causal

effects of time-varying exposures.

To separate the causal effect of a dynamic program from mere association, we must,

as always, be confident that the observed correlation is not due to some other variable.

This risk usually referred to in the literature as confounding, is not different from single

homogeneous interventions. However, in dynamic settings confounders may also share

the time-varying nature of the intervention. A time-varying confounder can both affect

future exposure to the program and be affected by past exposure, and impact evaluation

methods that in this case wrongly assume single homogeneous interventions provide no

way of removing the bias due to this kind of confounders [4], no matter the kind of data

available.

By a generalization of IPTW estimators [22] for longitudinal studies, RHB presented a

framework to estimate the effects of dynamic interventions (dynamic causal inference) in

the presence of time-varying confounders from TSCS data. Like other impact evaluation

methods, RHB’s approach relies on the ability to identify and, most importantly, measure
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all possible confounders, in this case repeatedly over time; that is, on a dynamic version

of the well-known “selection on observables” or “ignorability” assumption. Indeed, un-

biased estimation of causal effects by IPTW is impossible in the presence of unmeasured

confounding factors at any stage of the implementation of the program. Even more, if

some of the confounders are unobserved, the causal effect of a program may not be identi-

fiable, in which case there is no procedure that can estimate it consistently. Needless to say

we can never be sure that we observe all potential confounders. As is usual in empirical

research, all we can do is turn to known theory and prior evidence to inform us of possible

confounders.

In the counterfactual framework of causal inference, this assumption, also referred

to as sequential ignorability [4] or conditional interchangeability [42], states that the ex-

posure level at stage t is statistically independent (ignorable) of the potential outcomes,

conditional on the covariate and exposure histories up to that point.

To express this assumption in its usual statistical form, let i index recipients of the

program, with i = 1, . . . , n and t the stage of the intervention, taking possible values

1, . . . , T , where T is the last stage of the program recorded in the data. At every stage t of

the program, recipients are observed receiving the exposure level ait to the benefits of the

program; that is, one possible realization of the exposure variable At. Collecting all of the

observed exposures to the program for a given recipient up to stage t of the intervention

gives us the history of exposure, ait = (ai1, . . . , ait), an instance of the collection of

variables At. Let X t and xit be similarly defined for a covariate history, where Xt is the

most recent set of variables that could possibly affect At –and are also possibly affected

by past exposure, At−1.

Each possible exposure history a has an associated potential outcome Y a. Naturally,

any recipient of the program exhibits only one of these potential outcomes, the one as-

sociated to its own particular exposure history, which we assume does not depend on the

exposure histories of other recipients –the stable unit treatment value assumption. That is,

when some recipient is observed to have an exposure history Ai = a, then Y
a

i = Yi, also
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expressed for all recipients and all realizations of A as Y A|A = Y |A. The other potential

outcomes, the ones that were not observed because they did not actually occur, are said to

be counterfactual.

With this notation, the assumption of sequential ignorability says that for any exposure

history a, Y a⊥At|Xt, At−1 = at−1. It is also important to note that in order to compare the

various exposure histories, IPTW estimators, as the name suggests, depend on assuming

first that one has a consistent model for the probability density function (pdf) of At given

At−1 and Xt (that is, the probability of At) and, second, at any stage t, is not the case

that there is a covariate history xt and past exposure at−1 such that all recipients with such

histories are certain to receive the identical exposure at. That is, if fAt−1,Xt
[at−1, xt] 6= 0,

then fAt|At−1,Xt
[at|at−1, xt] > 0 for all at –each exposure history must have some positive

probability of occurring. This last assumption is closely related to the assumption of com-

mon support.3 Further on we discuss this problem and how to restrict the analysis to the

common support.

Under this notation, the problem researchers face in estimating the causal effect of a

program is that typically the potential outcomes, Y a, don’t have the same distribution as

the observed outcomes, Y |A = a; that is, fY a 6= fY |A=a, or equivalently fY A 6= fY |A.

This is because, in dynamic contexts, with time-varying confounders, particular levels

of exposure followed recipients with particular responses to the program, which makes

recipients incomparable.

However, what RHB showed is that, under the above assumptions (sequential ignor-

ability, consistency and positivity), it’s possible to generate a reweighted version of the

observed outcomes that conditional on A have the same distribution as the potential out-

comes using a consistent model for the pdf of At given At−1 and Xt –informally, the

probability of observing the exposure history that recipient i actually took.

It is instructive to see how this works in a one stage program with a single covariate.

3The substance of the common support assumption is that we observe recipients with different degrees
of exposure to the treatment with (roughly) the same characteristics, in this way we can base our estimations
only on comparable recipients.
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First note that the observed joint pdf of Y , A and X is, by definition,

fY |A = fY A|A =
fY A,A

fA

=

´

fY A,A,Xdx

fA

=

´

fA|X,Y A ∗ fX|Y A ∗ fY Adx

fA

=

´

fA|X ∗ fX|Y A ∗ fY Adx

fA

, (2.1)

where the first equality follows from consistency, the second and fourth equalities follow

from the definition of conditional pdf, the third from the definition of marginal pdf and

the last equality follows from ignorability. Notice that if we were to use the “reweighting”

function SW (A, X) = fA

fA|X
on the distribution of the observed data(Y, A, X), we would

have that

fA

fA|X
∗
´

fA|X ∗ fX|Y A ∗ fY Adx

fA

=

ˆ

fX|Y A ∗ fY Adx = fY A . (2.2)

As we can see, the reweighting function, fA

fA|X
, allows us to simulate the distribution

of fY A and use the transformed data to estimate the causal effects of the program. Intu-

itively, as the weighting replaces fA|X with fA in the observed data, the process alters the

distribution of A breaking the links between the exposure and the factors that affect it.

The same principle follows with time-varying settings, as long as we assume that all

confounders are observable –the idea is always to decompose the joint distribution of the

observed data into an equivalent product of conditional probabilities representing different

causal mechanisms, and then find the weighting function that removes from the product

those factors that we find are in the way to simulate the potential outcome distribution. To

demonstrate, assume that we have two covariates, X1 and X2, two stages with exposures,

A1 and A2 and one outcome, Y . Assume further that the temporal order of these variables

is (X1, A1, X2, A2, Y ) and that every variable is affected by all its predecessors. In this

case, we would have that
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fY |A1,A2 = fY A |A1,A2
=

fY A,A1,A2

fA1,A2

=

˜

fY A,A1,A2,X1,X2
dx1dx2

fA1,A2

=

˜

fA2 |X1,A1,X2,Y A ∗ fX2 |X1,A1,Y A ∗ fA1|X1,Y A ∗ fX1 |Y A ∗ fY Adx1dx2

fA2 |A1 ∗ fA1

=

˜

fA2|X1,A1,X2 ∗ fX2 |X1,A1,Y A ∗ fA1|X1 ∗ fX1 |Y A ∗ fY Adx1dx2

fA2 |A1 ∗ fA1

. (2.3)

Where again we make extensive use of the definitions of conditional and marginal

pdf, and sequential ignorability in the last equality. At this point the needed reweighting

function suggests itself as

SW (A, X) =
fA2|A1 ∗ fA1

fA2|X1,A1,X2 ∗ fA1|X1

. (2.4)

Using these weights on the distribution of the observed data we would have that

fA2|A1 ∗ fA1

fA2|X1,A1,X2 ∗ fA1|X1

∗
˜

fA2|X1,A1,X2 ∗ fX2|X1,A1,Y A ∗ fA1|X1 ∗ fX1|Y A ∗ fY Adx1dx2

fA2|A1 ∗ fA1

=

¨

fX2|X1,A1,Y A ∗ fX1|Y A ∗ fY Adx1dx2 = fY A . (2.5)

This leads naturally to the stabilized weights proposed by RHB as

SW (A, X) =
T∏

t−1

fAt|At−1

fAt|At−1,Xt

. (2.6)

Notice that in the denominator of the weight corresponding to recipient i, SW i, we find

the probability density of the observed exposure history of that recipient conditional on the

past, expressed as the product of the respective probability density at every stage, hence

the name Inverse Probability of Treatment Weighting. As we have seen, the SW removes

any confounding by ensuring that the distribution of exposure histories A is unrelated to

the measured confounders X. In this way they cannot account for any remaining differ-

ences between exposure histories and, since there is no connection between the exposure
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histories and the confounders in the reweighted data, one can simply run whatever model

we would have used in the case of a randomized evaluation. Of course, in nonrandomized

evaluations, the weights SW (A, X) are unknown, and have to be estimated. The next

section presents a procedure to do this.

2.3 Estimating the Stabilized Weights

To estimate the SW we need to model the exposure in each stage, conditional on the

past. When exposure to the intervention comes as a single action that either occurs or not,

a common approach is to estimate the probability of being exposed, p(At = 1|At−1, Xt),

with a standard logistic regression model (logit model):

p(At = 1|At−1, Xt; α) = (1 + exp−h(At−1, Xt; α))−1, (2.7)

where h is a linear, additive function of the exposure and covariates histories, and the

parameters α. This has been known in the literature as the propensity score.

In the case of continuous interventions, RHB suggest the use of Ordinary Least Squares

(OLS) regression of At on At−1 and X t to model the distribution of the observed exposure

given the past, i.e., At|At−1, X t ∼ N(h(At−1, Xt; α), σ2). For instance, we might have

h(At−1, Xt; α) = α0+α1
∑t−1

k=1 Ak +α2Xt, which models the exposure as a function of the

cumulated exposure up to the last stage and the most recent set of covariates. An estimate

of the weights requires an estimate of the parameter vector (α, σ). We can obtain these

estimates,(α̂0, α̂1, α̂2, σ̂2), from a pooled OLS –although we could use different models

for different subsets of recipients–, treating each recipient-stage as a separate observation.

This would amount to use the normal distribution

f̂At|At−1,Xt
=

1

σ̂
√

2π
e

− 1
2

{
at−(α̂0+α̂1

∑t−1

k=1
Ak+α̂2Xt)

σ̂

}2

, (2.8)

as the basis for the estimation of the denominator of the weights. If we were to fit an-

other distribution to estimate (α, σ), we would use the corresponding pdf to calculate the
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weights.

For the numerator, all that is required is an additional model without conditioning on

the time-varying covariates, in analogy one might specify

f̂At|At−1
=

1

σ̂∗
√

2π
e

− 1
2

{
at−(α̂∗

0+α̂∗
1

∑t−1

k=1
Ak)

σ̂∗

}2

. (2.9)

It is important to note that there is no need to assume as Gaussian the exposure assign-

ment model. In principle, one can estimate fAt|At−1,Xt
as the exposure assignment model

pdf evaluated at the observed exposure and covariates histories, for the distribution and

function h that better suits the program under analysis. [21] coined the term Generalized

Propensity Score (GPS) for this quantity as it is analogous to the propensity score for bi-

nary coded exposures.

Once we have obtained f̂At|At−1,Xt
and f̂At|At−1

for every recipient-stage, all we need

to construct the weights is to take the product across stages and divide to obtain the esti-

mates ŜW (A, X).

In the single-shot framework a crucial diagnostic to validate the estimated propensity

score consists on checking for covariate balance. We have seen in the last section that

under the assumptions of sequential ignorability, consistency and positivity, the exposure

is unconfounded in the weighted data, conditional on past exposure. That is, once we

have broken the link between the exposure and the covariates, at any given stage of the

program, the exposure might differ on a time-varying confounder, but these differences

might have to do with past exposure. This implication led Blackwell [4] to suggest a

balance test in a time-varying context. If after reweighting the data and conditioning on

past exposure, At−1, At is still predictive of Xt, then there is likely residual confounding

of the relationship between the outcome and the exposure [4]. We can check for these

associations comparing an unweighted and weighted pooled regression of each covariate

X at stage t on the cumulated exposure before t, and the level of exposure at t. We would

expect that the coefficient associated to this later regressor, At, would be statistically non-

significant in the weighted data.
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Also of importance in the impact evaluation literature are “common support” or “over-

lap region” considerations. In the single-shot framework these technical terms refer to

restrict the estimation of causal effects to comparable recipients: those with similar distri-

bution of covariates across exposures. The idea is to avoid the bias that may arise when

the support of the distribution of X differs among groups with different degrees of expo-

sures. In the case of fixed continuous interventions a natural way to check for common

support is to split the range of the exposure in blocks and compare the distribution of the

covariates among all of them –strategy proposed by Flores, Flores-Lagunes, Gonzalez and

Neumann[12], FFGN from now on. It is important to keep in mind that these approaches

depend crucially on the blocking on the exposure.

Note that, with fixed continuous interventions, as the number of blocks grows and

ultimately reaches the number of observations in the data, comparisons end up being on

individual recipients and how “far away” every one of them is from the rest in terms of

the covariates. The farther away recipient i is from the rest, the less comparable it is since

its particular value of Xi sets it apart from the rest of the recipients with values that no

other possesses. Intuitively, it would have no comparables in the data and so is not readily

useful for estimating causal effects.

Of course, there are many ways to assess the distance between one point and the rest

of the data. On this matter, King and Zeng [29, 30] have proposed the use of Gower’s

[16, 17] metric as the basis of this assessment since this measure is design to apply to both

continuous and discrete variables. The Gower distance between two points xi and xj , or

rows in the data, is defined as the average absolute distance between the elements of the

two points, divided by the range of the data:

G
2

ij =
1

K

K∑

k=1

|xik − xjk|
rk

, (2.10)

where the range is rk = max(Xk) − min(Xk) and the min and max functions return

the smallest and largest elements, respectively, in the set including the kth element of the

covariates X . Informally, we can see G2 as the distance between two points expressed as
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a proportion of the distance across the data –although technically speaking the distance

measure is G, the square root of this quantity.

Using Gower’s measure, King and Zeng [29, 30] have suggested to summarize the

distances between a given point and the rest of the data as the fraction of observations in

the data not farther away from the point in question than the average distance –defined

as nearby observations– among all pairs of observations in the data. A similar, perhaps

more natural possibility, is to use the mean distance between the recipient under scrutiny

and the rest of the observations. In this fashion a mean value of G
2

ij over all js equal to

0.5 means that the average distance between recipient i and all other recipients requires

to travel the equivalent distance as 50% of the way across the data set. Of course, every

analysis made requires a cut-off value to distinguish those recipients too far away to be

considered comparable to the rest, usually based on data-conserving criteria.

Even after we have determined a cut-off value, in a time varying context –with recipient-

stage observations–, it is unclear which observations to compare. Given the progressive

way the weights ˆSW (A, X) are estimated, restrictions on the data should be imposed se-

quentially stage by stage, having eliminated recipients that are found to be too far away

from the rest in terms of Xt before analyzing Xt+1, keeping in the end only those recipients

whose covariates Xt are deemed “nearby” at every stage t.

It’s important to note that dropping recipients outside common support changes the

population of inference, restricting it, in principle, to those recipients for which we can

produce good answers to our causal questions.

Once the common support has been determined, the exposure assignment model esti-

mated and the stabilized weights validated by checking for covariate balance, we can use

them to estimate the causal quantities of interest.
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2.4 Mean and Quantile Dose-Response Functions for Time-

varying Continuous Interventions

With time-varying interventions, estimate the causal effect of every exposure history as

we would in a single-shot framework, proves a technically impossible task in general, for

even with interventions that only take a handful of different degrees of intensity at every

stage, the number of possible exposure histories grows geometrically with the number

of stages. With a continuum of different degrees of exposures, it’s nearly impossible to

observe two recipients with the exact same exposure histories, let alone enough to make

statistical inferences.

To estimate the effect of a time-varying intervention we need further assumptions about

which exposure histories should have similar potential outcomes: a response model. These

would allow for the entire history of exposure to affect the outcome in a structured, low-

dimensional way. We may assume, for instance, that recipients with the same accumulated

exposure should have similar potential outcomes. Whether this is a reasonable assumption

or not will depend on the program under evaluation.

The substance of the evaluation, and more often than not the amount of data on hand,

will determine what response model makes sense for the potential outcome. Imposing

structure always comes with risks of possible model misspecification. However, if sum-

marizing the recipients’ exposure histories with a scalar function, such as the cumulative

exposure cum(Ai) =
∑T

t=1 ait , happens to be reasonable, we could avoid making addi-

tional assumptions about the functional form of the response model using nonparametric

regression methods, a strategy first suggested by FFGN in the context of fixed continuous

interventions.4 In this way, within a local linear regression framework, we could estimate

a mean-response curve that maps the mean effects of program in relation to the cumulated

exposure to it: a mean DRF for the cumulative exposure.

4FFGN proposed to estimate the mean DRF of a fixed continuous intervention using a kernel-weighted
local linear regression of the outcome, Y, on the exposure, A, where each recipient’s kernel weight is divided
by its exposure assignment model pdf properly evaluated.
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Since this pseudo-sample generated by ŜW (A, X) simulates the entire distribution of

the potential outcome, it’s also possible to use the same kernel smoothing methods, this

time with quantile regression, to examine not just the mean, but any quantile effects of the

cumulated exposure to the program and address its potential distributional effects on the

outcome. In other words, we can also use the same nonparametric regression methods to

estimate any quantile DRFs for the cumulative exposure.

2.5 Estimating the Effect of Seguro Popular on the Sup-

ply of Healthcare Services

Our goal in this section is to apply the procedures so far discussed to estimate the

effects of the Mexican universal health insurance program, SP, on the actual capacity of

the SSA to meet the new demand of healthcare services. In particular, we focused on the

observed increment in the relative number (per thousand population outside the social se-

curity network) of SSA’s doctors’ offices, physicians and nurses in day-to-day contact with

patients (providing clinical care); perhaps the most basic human and material resources in-

volved in the provision of healthcare services. We used administrative records of the SP

program containing the number of families and individuals affiliated from 2002-2013, and

the federal records on infrastructure and human resources employed by the SSA over the

same time period.5

The SP program is a clear example of a time-varying intervention. Its implementation,

set out in 2002, was a process that unfolded over time and at a different pace from place to

place. In fact, it took over 10 years to affiliate more than 50 million people to the program

across the country, and financial resources flowed at the same pace to each state as the new

5The data is available at a yearly frequency disaggregated at the municipality level and can be
retrieved from the Sistema Nacional de Información en Salud (National Health Information System,
Sistema Nacional de Información en Salud –National Health Information System– (SINAIS)) web site:
http://www.sinais.salud.gob.mx/.
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health insurance covered more people.

If at every stage, the rollout of the program was affected by the density of SSA’s per-

sonnel and infrastructure in its regional administrative units and, at the same time, during

the years of program’s expansion, the program helped build up these human and material

resources, it becomes necessary to account for this dynamic selection if one is to assess

the effectiveness of the program.

In our analysis we focused on the 233 Sanitary Jurisdictions (SJs) as recipients of SP

coverage, defined as the number of individuals affiliated to the program relative to the size

of the target population in the SJ.6 In Mexico, SJs are the most basic administrative units

of SSA in charge of the operation of healthcare services and its programs, and thus our

natural unit of analysis. Note that the SP coverage attained by SJs at any given year is

the result of a gradual nonstop affiliation effort that started in 2002; that is, a history of

increments in the exposure to the program registered yearly in our data from 2002 to 2013.

If we were to estimate the effect of SP coverage as we would in a randomized evalua-

tion, as if we knew that Y a ⊥ A, we may well induce bias in the causal estimates. For it is

all too likely that there are characteristics of the SJs that may have influenced the exposure

history to the program that are also related to the SJs’ capacity to further invest in human

and material resources. It is natural to assume that SJs that exhibit a lower density of hu-

man and material resources, for one reason or another, experience difficulties to translate

the federal states’ financial resources into further investment in personnel and infrastruc-

ture. Had this lower density of resources been a criterion for intensifying the coverage

efforts of SP, or even if in a more mechanical way the pace of the affiliation effort were

determined by the SSA’s personnel already on the ground, either way, particular exposure

histories would have followed SJs according to their capacity to respond to the program,

thus biasing our estimates.

To address these concerns, we included in our estimates of SP’s effect the density of

6Since the SJs are comprised of several municipalities, we use the census data to approach the size of the
target population as the number of individuals who lack the health insurance provided by law through the
social security system to all formal workers; in other words, those outside the social security network.
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resources employed by the SSA in the provision of healthcare services as time-varying

covariates: doctors’ offices, staffed and non-staffed hospital beds, physicians with and

without day-to-day contact with patients and nurses with and without day-to-day contact

with patients. It is from these 7 variables that we have determined the common support

using Gower’s measure as described earlier, keeping only those SJs whose average dis-

tance to the rest was less than 0.5 at every stage. Following this rule, we have kept 194

SJs, a balanced panel of 2328 SJ-year observations, discarding 17% of the data. However

arbitrary this 0.5 rule may be, a notable consequence of dropping the least comparable SJs

is that it makes our estimates less model dependent [30].

Tables 2.1 and 2.2 report means and standard deviations for our data before and after

discarding the farthest observations.
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Table 2.1: Descriptive Statistics of the Whole Sample

Variable Mean Std. Dev. Min Max Observations

Exposure

Overall 0.08 0.10 -0.39 0.77 N = 2796

Between 0.01 0.03 0.12 n = 233

Within 0.10 -0.40 0.76 T = 12

Cumulative exposure

Overall 0.39 0.34 0.00 1.27 N = 2796

Between 0.14 0.08 0.89 n = 233

Within 0.31 -0.50 1.13 T = 12

Doctors’ offices

Overall 0.59 0.37 0.15 3.25 N = 2796

Between 0.36 0.16 3.02 n = 233

Within 0.09 -0.07 1.98 T = 12

Staffed hospital beds

Overall 0.65 0.86 0.00 9.70 N = 2796

Between 0.85 0.00 6.57 n = 233

Within 0.18 -1.72 4.31 T = 12

Table continues
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Variable Mean Std. Dev. Min Max Observations

Non-staffed hospital beds

Overall 0.60 0.47 0.00 5.18 N = 2796

Between 0.38 0.06 3.55 n = 233

Within 0.27 -0.63 3.04 T = 12

Physicians in day-to-day

contact with patients

Overall 1.28 1.13 0.22 11.38 N = 2796

Between 1.10 0.30 10.51 n = 233

Within 0.25 -1.06 3.75 T = 12

Physicians without

day-to-day contact with

patients

Overall 0.10 0.17 0.00 2.22 N = 2796

Between 0.16 0.01 1.52 n = 233

Within 0.05 -0.49 1.18 T = 12

Nurses in day-to-day contact

with patients

Overall 1.65 1.60 0.11 17.03 N = 2796

Between 1.57 0.28 14.29 n = 233

Within 0.32 -1.20 4.38 T = 12

Table continues
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Variable Mean Std. Dev. Min Max Observations

Nurses without day-to-day

contact with patients

Overall 0.10 0.14 0.00 1.35 N = 2796

Between 0.12 0.00 1.14 n = 233

Within 0.06 -0.35 1.00 T = 12

Source: Personal elaboration based on data from the National Health Information System (SINAIS) and the administrative records of Seguro Popular.

The table shows the standard deviation decomposed into between (xi) and within
(

xit − xi + x
)

components.
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Table 2.2: Descriptive Statistics of the Trimmed Sample

Variable Mean Std. Dev. Min Max Observations

Exposure

Overall 0.08 0.09 -0.20 0.67 N = 2328

Between 0.01 0.05 0.12 n = 194

Within 0.09 -0.21 0.67 T = 12

Cumulative exposure

Overall 0.38 0.33 0.00 1.21 N = 2328

Between 0.12 0.15 0.77 n = 194

Within 0.31 -0.39 1.12 T = 12

Doctors’ offices

Overall 0.50 0.22 0.15 1.81 N = 2328

Between 0.20 0.16 1.56 n = 194

Within 0.09 -0.17 1.89 T = 12

Staffed hospital beds

Overall 0.43 0.26 0.00 2.16 N = 2328

Between 0.24 0.00 1.39 n = 194

Within 0.09 -0.09 1.19 T = 12

Table continues
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Variable Mean Std. Dev. Min Max Observations

Non-staffed hospital beds

Overall 0.52 0.34 0.00 2.44 N = 2328

Between 0.26 0.06 1.43 n = 194

Within 0.23 -0.54 1.60 T = 12

Physicians in day-to-day

contact with patients

Overall 1.00 0.41 0.22 2.71 N = 2328

Between 0.37 0.30 2.15 n = 194

Within 0.19 0.14 2.04 T = 12

Physicians without

day-to-day contact with

patients

Overall 0.07 0.05 0.00 0.30 N = 2328

Between 0.04 0.01 0.22 n = 194

Within 0.03 -0.02 0.27 T = 12

Nurses in day-to-day contact

with patients

Overall 1.24 0.55 0.11 3.49 N = 2328

Between 0.48 0.28 2.80 n = 194

Within 0.26 0.29 2.36 T = 12

Table continues
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Variable Mean Std. Dev. Min Max Observations

Nurses without day-to-day

contact with patients

Overall 0.07 0.06 0.00 0.54 N = 2328

Between 0.05 0.00 0.23 n = 194

Within 0.03 -0.11 0.38 T = 12

Source: Personal elaboration based on data from the National Health Information System (SINAIS) and the administrative records of Seguro Popular.

The table shows the standard deviation decomposed into between (xi) and within
(

xit − xi + x
)

components.
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We can see from these tables that, after trimming the sample, data is more compact in

every dimension, making statistical fitting more precise and, therefore, our estimates more

reliable. It is worth noting that, according to the density of resources, the SJs dropped

from the sample belong mostly to the upper (more resourceful) part of the distribution.

Also, the within decomposition shows that the trimmed part of the sample exhibits the

greater variability both upwards and downwards, but mostly upwards. Taken together, the

between and within decomposition show that the SJs left out of our estimations are those

better off and with higher growth rates in terms of their human and material resources.

Something to keep in mind when reading the results.

Regarding our exposure assignment model to estimate RHB’s stabilized weights, SW ,

since the observed change in the coverage of SP, At, is a continuous variable, we have

estimated f̂At|At−1,Xt
from a pooled OLS, on all 2328 SJ-year observations, using the time-

varying covariates described above including all two-way interactions and past SP cover-

age, i.e. cum(At−1), as regressors. Likewise, for f̂At|At−1
, we have used the same model

using only cum(At−1) as regressor.

After constructing ŜW (A, X), we have followed Blackwell [4] looking for residual

confounding comparing an unweighted and weighted pooled regression of each of the 7

covariates on the past SP coverage, cum(At−1) , and the increment in the coverage at t, At

. Table 2.3 shows the results of this balance test. There we can see how coefficient asso-

ciated to the change in SP coverage, At, turns statistically non-significant in the weighted

data –the pseudo-sample generated by ŜW (A, X).
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Table 2.3: The Change in History-Adjusted Balance between the Weighted and Unweighted Data

t − statistic

Variable At p > |t|

Doctors’ offices
Unweighted 2.59 0.010

Weighted 0.76 0.447

Staffed hospital beds
Unweighted 0.03 0.975

Weighted 0.41 0.679

Non-staffed hospital beds
Unweighted 2.60 0.009

Weighted 0.07 0.944

Physicians in day-to-day contact

with patients

Unweighted 3.46 0.001

Weighted 1.20 0.228

Physicians without day-to-day

contact with patients

Unweighted -0.69 0.491

Weighted 0.01 0.990

Table continues
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t − statistic

Variable At p > |t|
Nurses in day-to-day contact

with patients

Unweighted 3.01 0.003

Weighted 0.92 0.358

Nurses without day-to-day

contact with patients

Unweighted -1.71 0.087

Weighted -0.23 0.820

Source: Personal elaboration based on data from the National Health Information System (SINAIS) and the administrative records of Seguro Popular.

These estimates come from an unweighted and weighted pooled regression of the time-varying covariate at year t on (a) SP coverage before year t, and (b) the change in SP

coverage observed in year t.
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Figure 2.1: Stabilized Weights Over the Years
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The boxes are the yearly inter-quartile ranges and the horizontal line inside of each box corresponds to the median. The whiskers

represent the maximum and minimum values excluding outliers which appear as dots.

Regarding the distribution of the weights, Cole and Hernán [7] noted that the lack of

common support tends to push weights away from 1. Intuitively, it would correspond to

cases where the probability of certain exposure histories is close to 0 or 1 in some parts of

the covariate space, which can be interpreted as violation of positivity. In Figure 2.1 we

show the final distributions of the stabilized weights by year t,

ŜW t(At, Xt) =
t∏

k=1

f̂Ak|Ak−1

f̂Ak|Ak−1,Xk

, (2.11)

where we truncate the product up until the corresponding year. There we see that the

means at each year are close to 1, and that the minimum and maximum values are also

reasonably close, indicating well behaved weights.

We were interested in estimating a response model for SP coverage, in other words,

the cumulative exposure history cum(Ak) =
∑t

k=1 ak . Here we were assuming that,
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in time, the same degree of coverage attained by the SJs should have the same potential

outcome, irrespective of the specific history of exposure. This seemed to be a reasonable

assumption in view that the resources transferred to the states by the federal government

to meet the demands of the new entitlement were directly proportional to the number

of individuals affiliated to the program. In this context, attaining a particular degree of

coverage early in the exposure history of a SJ would represent roughly the same financial

resources as attaining it at any other point in the future. It’s important to note though

that it was not necessarily the case that every SJ got their corresponding share of financial

resources. Regímenes Estatales para la Protección Social en Salud –State Regimes for

Social Protection in Health– (REPSS) determined how and where to invest the program’s

financial resources. We will discuss more of this in light of our results in the conclusions.

Also, in order to draw on a larger pool of information, we assumed that the DRFs were

the same for all time periods. This assumption allowed us some amount of pooling across

years including all 2328 SJ-year observations in our estimates. Regarding standard errors

and confidence intervals, the most straightforward way to estimate them was to bootstrap

the entire estimation procedure, including the weights. Here we resampled the set of SJs

and their histories, not the single SJ-year observations.

As mentioned earlier, we have followed FFGN in estimating the DRFs using a kernel-

weighted local linear regression of the outcome, Y , on the cumulative exposure, cum(Ak),

using the pseudo sample generated by ŜW t(At, Xt). This is equivalent to multiply each

SJ-year observation’s kernel weight in the local linear regression by its corresponding

ŜW t(At, Xt). Figures 2.2 to 2.4 show the resulting mean DRFs for the observed incre-

ment in the relative number of SSA’s doctors’ offices, physicians and nurses in day-to-day

contact with patients, with respect to 2001, the year prior the introduction of the program

in its pilot phase.

The first thing to note in these graphs is that all three response curves exhibit a positive

slope, meaning that the SP program has had, on average, a positive impact on the relative

numbers of these human and material resources –without a doubt a necessary condition
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Figure 2.2: Increment in the Relative Number of Doctors’ Offices (per thousand population

outside the social security network)
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Figure 2.3: Increment in the Relative Number of Physicians in day-to-day Contact with

Patients (per thousand population outside the social security network)
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Figure 2.4: Increment in the Relative Number of Nurses in day-to-day Contact with Pa-

tients (per thousand population outside the social security network)
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for the expansion in the provision of healthcare services. This result is in line with that

of Bosch and Campos [5]. Also of importance is the difference between the end points of

these mean response curves, MeanDRF (1)−MeanDRF (0). Our estimates suggest that,

on average, the full coverage of the SP program would represent, for the SJs in our sample,

an increase in the relative number (per 1,000 people outside the social security network) of

doctors’ offices, physicians and nurses providing clinical care of .18, .47 and .64 respec-

tively. Given that in 2001 the densities of these resources were .45, .81 and 1 respectively

–the World Health Organization considers less than 2.3 health workers providing clinical

care as a critical shortage–, we can see that the program has had an important impact on

the human and material resources of the SSA.

The almost linear relationship depicted in all three graphs also suggests the absence of

any economies of scale in the use of the financial resources being provided by the program.

This is most striking in the case of doctors’ offices where one would expect new infras-

tructure to be costlier. According to our estimates, the increment in the relative number

of resources is, on average, directly proportional to the amount of money destined by the

program per affiliate. If everything else in the program’s operation had stayed the same,

of course. A number to keep in mind is that in 2014 the government contribution reached

2,843.40 pesos (some 185 usd of the time) per affiliate on average, which constitutes 99%

of the finances of the program [48, p.88]. It’s not hard to go from here to an estimate

of how much it would cost to bring the relative number of resources to a desired level if

things keep running the way they have been for the last decade.

For example, in our sample of 194 SJs, in 2013 the mean relative number (per 1,000

people outside the social security network) of SSA’s physicians and nurses in day-to-day

contact with patients –providing clinical care– was 1.2 and 1.6 respectively. Had the gov-

ernment’s contribution been 50% higher this year, according to our estimates, we would

have seen in these SJs an average density of physicians and nurses providing clinical care

of 1.4 and 1.9, respectively –“average” being the key term.

However informative these mean response curves are, they hardly provide us with a
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Figure 2.5: Relative Number of Human and Material Resources 2001 (per thousand pop-

ulation outside the social security network)
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The numbers correspond to the 194 Sanitary Jurisdictions in common support.

complete description of the program’s impact on other parts of the distribution of our out-

come variables. This is most important for it can help us investigate the conditions under

which the same coverage of the program has a differential response, possibly ascertaining

subpopulations for which the program is most effective. In general, profiling the recipi-

ents that are making the most of a program is something of great importance, for it can

help improve its design and steer it in the desired direction. We can see the relevance of

this exercise for the SP program looking at the dispersion of our data the year prior the

introduction of the program in Figure 2.5.

Figure 2.5 shows the great differences one could find in 2001 looking at the density

of resources in the SJs. Heterogeneous responses to the program among this variability

is to be expected, even more so if what we observe in 2001 is the result of historical
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Figure 2.6: Expected Increment in the Relative Number of Doctors’ Offices due to Full

Coverage of SP (per thousand population outside the social security network)
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obstacles that the SJs face to translate the state’s financial resources into further investment

in personnel and infrastructure.

As previously stated, we can also estimate quantile versions of the same response

curves using the same kernel-weighted regression framework, only this time with lin-

ear quantile regressions of the outcome on the cumulative exposure. This will give us

a clear understanding of how the program is affecting the whole distribution of our out-

come variables, taking us one step further into characterizing the determinants of possible

heterogeneous responses to the program.

Figures 2.6 to 2.8 show the estimated response of full coverage of SP on every centile

of the distributions of the outcome variables; that is, the vertical difference between the

end points of every centile i response curve, CentileiDRF (1) − CentileiDRF (0).

All three figures show a positive tendency for the expected response to full coverage
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Figure 2.7: Expected Increment in the Relative Number of Physicians in day-to-day Con-

tact with Patients due to Full Coverage of SP (per thousand population outside the social

security network)
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Figure 2.8: Expected Increment in the Relative Number of Nurses in day-to-day Con-

tact with Patients due to Full Coverage of SP (per thousand population outside the social

security network)
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of the program. The fact that these figures do not exhibit horizontal lines suggests that

going from zero to full coverage of SP has different responses along the distribution of the

outcome variables, in this case, showing greater effects on the upper part of the distribu-

tions. In other words, the better the SJ is doing increasing the relative number of its human

and material resources, the greater its response to the program. Note how this is not a

tautology, it might as well could have been just the opposite. What this means is that the

program gives greater boosts to those SJs increasing the relative number of its resources

the most –again almost in a direct proportion.

There are at least two reasons why this might be happening. The first is that this

could be a simple reflection of the SJs’ investment priorities. It may well be that those

SJs exhibiting greater increases in the relative number of their resources find within their

investment priorities such expansion, and the program’s financial resources help them to

do exactly just that. If this were the case, it is only natural to observe that those SJs whose

investment priorities lie elsewhere different from expanding the density of their human

and material resources do not use the program’s money in this fashion.

A second reason for the positive slope in figures 2.6 to 2.8 is that it might be reflect-

ing historical obstacles the SJs face to transform financial means into human and material

resources, obstacles that the program by itself cannot overcome. In this second scenario,

we would be looking not so much at the result of different investment priorities in them-

selves, but to technical difficulties in transforming the programs budget into medical staff

and infrastructure. It is well known, for example, that it is costlier to invest in some areas

due to limited geographical access. This alone would naturally lead to lesser responses to

the program in SJs where the need for resources is dearer. We may even be looking at the

result of a compromise between equality and efficiency, which always implies an ethical

dilemma. We’ll discuss more of this in the final section when we highlight the public

policy implications.

In light of Figures 2.6 to 2.8, given that SP seems to be having distributional effects on

the outcome variables, it becomes relevant to determine where SJs fall in the distribution
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of our outcome variables, since this determines which SJs are making the most of the

program in terms of the availability of resources needed in the provision of healthcare

services. Finding out whether the main effects of a social program are felt among the least

or most vulnerable part of the population leads to very different appreciations of its impact.

Of course, these are not the only two possible scenarios but the extremes of a continuum

of possibilities.

A thorough investigation of what is actually happening will require the development

of new procedures to estimate counterfactual distributions under different possible sce-

narios, a pending assignment for time-varying continuous interventions. However, as an

exploratory analysis we can take a look at how the 2001-2013 increments in human and

material resources were distributed across SJs according to their initial level. In particular,

Figures 2.9 to 2.11 show to what extent it can be said that the increment in these resources

has been pro-poor in terms of resource in question.7

As can be seen from this last set of figures, all of our estimates suggest that the greatest

increments observed in the relative number of human and material resources from 2001 to

2013 corresponded to those who were better off in 2001. We have also plotted the mean

SP coverage corresponding to every centile to show that this pattern is hardly explained

by differences in the rollout of the program. Absolute indices of inequality capture the

evolution of this result over the 12-year period. Figure 2.12 shows the change in the

absolute GINI indices8 for the material and human resources of the SSA. Given that the

absolute GINI index is not unit invariant we have normalized all indices so that 2002=100.

Together, the increment incidence curves and inequality indices suggest that the SJs

making the least of the SP program are precisely those in greater need, for these are also

7All estimates were weighted by the population outside the social security network.
8In the absolute version of the GINI index inequality is unaffected by an equal addition to all incomes

(translation invariant). In the standard (relative) version of the GINI index inequality is unchanged when
all incomes are increased in the same proportion (scale invariant). The absolute criterion was advocated
by Kolm [34, 35]. Several Kolm indices were also estimated showing the same tendency. The difference
between these the relative and absolute measures is that the absolute criterion always considers improvement
in terms of absolute difference.
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Figure 2.9: Increment Incidence Curve for the Relative Number of Doctor’s Offices, 2001-

2013 (per thousand population outside the social security network)
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Figure 2.10: Increment Incidence Curve for the Relative Number of Physicians in day-to-

day Contact with Patients, 2001-2013 (per thousand population outside the social security

network)
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Figure 2.11: Increment Incidence Curve for the Relative Number of Nurses in day-to-

day Contact with Patients, 2001-2013 (per thousand population outside the social security

network)
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Figure 2.12: Inequality in SSA Human and Material Resources, 2001-2013: Absolute

GINI (Indices: 2002=100)
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the ones showing the least increment in basic human and material resources at roughly the

same coverage of the program. This should be a matter of major concern for any program

directed at vulnerable population groups.

2.6 Conclusions

Impact evaluation, like any other scientific inquiry, requires some background assump-

tions. However, assumptions must be made carefully, for it is well known that assumptions

way too off the mark can generate wildly inaccurate conclusions. We argue that this is ex-

actly what would happen if one were to apply single-shot causal inference methods to

estimate the impact of social programs (treatments) whose interventions do not take place

all at once as single homogeneous action, but instead unfold over time with different in-

tensity across recipients according to the milieu themselves help create as they unfold.9

To control for the time-depending confounding inherent to the dynamic nature of these

kinds of programs, in this article we have brought together two strands of the literature

on causal inference in observational studies: one focusing on fixed non-binary treatments

and the other on binary dynamic treatments. The procedure we present here elaborates on

[43] showing how to estimate mean and quantile dose-response functions of continuous

dynamic treatments much in the same fashion as Flores et al. [12] did for continuous fixed

treatments; that is, applying local regression methods to appropriately weighted samples.

We have shown the potential of this approach analyzing the effects of the Seguro Popu-

lar program in Mexico on key variables associated with the provision of healthcare services

by the SSA. Unlike previous evaluations, we have found compelling quantitative evidence

that the program has proven most helpful in less vulnerable territories, leaving behind

those in greater need.

Regarding the palpable differences in the results the SP has shown across the country,

9If, for example, we had ignored the dynamic nature of our empirical application, using only pre-program
covariates in an attempt to control for confounders, we would have overestimated the mean impact of the
program by approximately 45%.
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the authorities behind the program have blamed the lack of accountability in the financially

decentralized system within which it operates, as well as the autonomy with which every

federal state determines how to best invest their corresponding financial resources [9].

Beyond the problems inherent to the lack of accountability, it is a well-known fact that

rural and urban areas present quite different challenges for the provision of health services.

In this sense, our findings might be due in part to efficiency concerns in the investment

decisions at the federal entity level, for it’s all too likely that we don’t see in rural areas the

economies of scale obtained in urban areas [39]. However, concerns with equity are also

an important element of programs aimed at improving social conditions, and the pursuit

of efficiency must never eclipse equity considerations in this context. Without a doubt,

whatever trade-off between equity and efficiency there might be in the allocation of health

care resources, given its importance, deserves an open discussion.

Lastly, it remains a pending task to explore the possibility to simulate counterfactual

distributions that could shed more light on the distributional effects of dynamic continuous

interventions. This would give us a better sense of what distributional effects we are to

expect from social programs such as Seguro Popular.
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Chapter 3

Robust Estimation of Inverse

Probability Weights for Time-Varying

Continuous Interventions

In this Chapter we present a continuous extension for longitudinal analy-

sis settings of the recently proposed Covariate Balancing Propensity Score

(CBPS) methodology. While extensions of the CBPS methodology to both

marginal structural models and general treatment regimens have been pro-

posed, these extensions have been kept separately. We propose to bring to-

gether this previous work using the generalized method of moments to es-

timate inverse probability weights such that after weighting the association

between time-varying covariates and the treatment is minimized.
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3.1 Introduction

Propensity Score (PS) methods are considered by many to be the least preferred quasi-

experimental impact evaluation method (say, vis-a-vis regression discontinuity) because

their strong identifying assumptions –more importantly that treatment assignment is ignor-

able conditional on observed confounders–, particularly in settings where those eligible to

participate may chose otherwise. However, propensity score methods can be applied to a

wide range of different research settings, and it is this versatility that has resulted in the

popularity of PS estimates as a tool for making causal inference.

As shown by Robins [41], PS methods might even be used to evaluate programs that

evolve over long periods of time, reacting to changes in the environment that themselves

help to bring about. That class of statistical models came to be known as Marginal Struc-

tural Models (MSMs) [43, 42, 4]. Despite its theoretical appeal, MSMs as a tool for making

causal inference from longitudinal data have yet to extend to general treatment regimens.

Surprisingly, while several extensions of propensity score methods to general treatment

regimens have been proposed [27, 43, 26, 21, 12] and keep gaining popularity among

applied researchers [52], these methodologies haven’t been coupled with the MSM frame-

work.

Perhaps behind this gap between methodological and applied research is the practical

difficulty of estimating the inverse probability weights –required for MSMs to generate a

pseudo sample from which to estimate the casual quantities of interest–, whose correct

model is generally unknown and its misspecification can actually increase bias, even if

the selection on observables assumption holds. In contrast with cross-sectional PS meth-

ods, in MSMs the effect of model misspecification is exacerbated, for it propagates across

time since the algorithm provided by Robins, Hernán and Brumback [43] to estimate the

weights in these models involves the product of propensity scores estimated for each time

period.

Since, in theory at least, inverse probability weighting renders the intervention inde-
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pendent of time-varying covariates, usual practice involves iteratively checking if weight-

ing on the estimated probability meets this expected property –revising the model until

said correlation is minimized. The downside of this algorithm is that it can lead to ad hoc

specifications of the probability models which may not agree with the preferred theoretical

specification.

As a way to get around this practical difficulty surrounding MSMs, Imai and Ratkovic

[25] came up with the idea of formally dovetailing this correlation minimizing property

of the weights into the model estimation method itself, eliminating the need to manu-

ally and iteratively check the treatment assignment model. They accomplished this by

making use of the Generalized Method of Moments (GMM), adding to the model’s score

vector –that is, the gradient of the log-likelihood– the correlation minimizing property as

an extra moment condition. They have called this new approach the Covariate Balancing

Propensity Score (CBPS) [24] and it can easily be implemented through publicly avail-

able open-source software [14]. Simulation and empirical studies suggest that the CBPS

improves the empirical performance of MSMs by making the treatment assignment model

more robust to misspecification. However, so far the CBPS extension to MSMs has been

confined to binary time-dependent treatments.

Researchers facing continuous time-dependent treatments may be tempted to dichotomize

the exposure at every time period in order to make use of the existing CBPS estimator for

MSMs and its advantages, if at the cost of compromising data analysis through the loss of

valuable information. Here we dispense with this temptation proposing a further extension

to the CBPS methodology. Our proposal builds on the recent generalization of the CBPS

methodology to general treatment regimens [13] taking it to the longitudinal setting, thus

bridging the gap between two extensions of the original CBPS estimator.

In Section 3.2 we briefly review MSMs and their assumptions. Section 3.3 we describe

the proposed extension to the CBPS methodology. In Section 3.4 we present our simu-

lation study. In addition, we present an empirical application in Section 3.5 to show the

performance of the proposed methodology with real data. Finally, we offer concluding
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comments in Section 3.6.

3.2 Marginal Structural Models

After introducing some notation, in this Section we briefly review the MSM framework

[43, 42, 4].

Assume a program that evolves over long periods of time intervening with different

intensity across recipients at every stage of their implementation, reacting to changes in

the environment which the program itself contributed to bring about; that is to say, reacting

to its own previous results in a feedback loop. In this context, variables that can both affect

future exposure to the program and be affected by past exposure may confound the impact

of the program in a way that no cross-sectional impact evaluation method can sort out [4].

Notation

Denote recipient i’s observed k-dimensional vector of time-varying covariates at stage

t of the program X it, with i = 1, . . . , N and t = 1, . . . , T . At every stage t of the program,

recipients are observed receiving the exposure level ait to the benefits of the program; that

is, one possible realization of the exposure variable Ait, with ai0 = 0. Collecting all the

observed exposures to the program for a given recipient, from its launch up to stage t,

gives us the history of exposure ait = (ai1, . . . , ait). Independent, identically distributed

realizations of (Yit, Ait, X it) are observed for each recipient at every stage of the program,

where Yit is some outcome variable of interest. Let X it and xit be similarly defined for a

covariate history, where X it is the most recent set of variables that could affect Ait –and

are also affected by past exposure history, Ait−1.

Following Robins’ adaptation of the potential outcome framework [49, 46] to longitu-

dinal settings [40], we use Y
at

it to represent the potential outcome for recipient i measured

at time t associated to the exposure history a up to t, which we assume does not depend on
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the exposure histories of other recipients. This is often referred to in the literature as the

stable unit treatment value assumption. Naturally, any recipient of the program exhibits

only one of these potential outcomes at any given stage t; that is, the one associated to

its own particular exposure history up to that point in time Yit = Y
ait

it , the consistency

assumption. All other, unobserved, potential outcomes are said to be counterfactual.

As with other PS methods, MSMs are based on the assumption of no unmeasured con-

founding, in this case at each time period. This assumption, also referred to as sequential

ignorability [4] or conditional interchangeability [42], states that the exposure level at stage

t is statistically independent (ignorable) of the potential outcomes, conditional on the co-

variate and exposure histories up to that point. Using previous notation, sequential ignor-

ability says that for any exposure history up to t, at, Y
at

it ⊥ Ait | Ait−1 = at−1, X it = xt.

Additionally, also typical in PS methods, MSMs also assume that at any stage t, there is

no covariate history xt and past exposure at−1 such that all recipients with such histories

are certain to receive the identical exposure at. That is, each exposure history must have

some positive probability of occurring. This last assumption can be formally written as, if

f (Ait−1, Xit) 6= 0 then f (Ait | Ait−1, Xit) > 0, where f stands for the probability density

function (pdf).

Under the above assumptions (sequential ignorability, consistency and positivity), Robins

[41] showed that the conditional probability density of exposure history can be used to

consistently estimate the impact of such dynamic interventions. In this generalization of

Inverse Probability of Treatment Weights (IPTW), the probability of observing a partic-

ular exposure history is expressed as the product of the respective probability density at

every stage,
∏T

t−1 f (At | At−1, Xt). However, using this probability directly as weights

when fitting the outcome model leads to highly variable estimates and researchers usually

follow the suggestion given in the literature [7] and use the stabilized weights of the form

SWt (At, X t) =
t∏

t′=0

f (At′)

f (At′ | At′−1, X t′)
(3.1)

where, for convenience, we define SW0 = 1. In nonrandomized evaluations, irrespective
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of the nature of the intervention whose impact one might be trying to estimate –whether

it’s best coded as binary, multivalued or continuous–, these weights are unknown, and

have to be estimated. Usually, a parametric model is used to estimate the probability

density of exposure given the past at each time period. When the intervention comes

as a single action that either occurs or not at every stage of the program (i.e. coded

as a binary variable), a common approach is to estimate this probability density at ev-

ery stage with a standard logistic regression model (logit model). In the case of con-

tinuous interventions, Gaussian models (with constant variance) are often assumed, i.e.,

At|At−1, X t ∼ N (h (At−1, X t; γ) , σ2), which can be estimated by the GMM. If there is

reason to believe that h is a linear, additive function of exposure and covariates histories,

and parameters θ = (α, β, σ2), researchers may even regress the current level of exposure

on all past exposure and covariates,1 e.g.,

fθ (At | At−1, X t) =
1

σ
√

2π
exp

{
− 1

2σ2

[
At −

(
A⊤

t−1α + X⊤
t β

)]2
}

. (3.2)

The numerator of the stabilized weights is typically estimated using the empirical

distribution of the exposure. If these later assumptions hold, and further assuming the

marginal distribution of At to be Gaussian with mean zero (possibly after the pertinent

transformation), the stabilizing weight is given by2

SWit (At, X t)

=
t∏

t′=0

exp
[

1

2σ2

{
−2Ait′

(
A⊤

it′−1α + X⊤
it′β

)
+

(
A⊤

it′−1α + X⊤
it′β

)2
}]

. (3.3)

Once these stabilized weights are estimated, all the researchers have to do to is use

them in running whatever model of the outcome, as function of treatment history alone,

they would have used in the case of a randomized evaluation.3

1The Least square estimator can also be viewed as a special case of GMM estimator.
2Equations are derived in detail in the appendix.
3For t = 1, these weights are exactly the same as those proposed by [13] for continuous treatments in

cross sectional settings.
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3.3 Correlation Breaking IPTW

In this Section we describe our proposal for a procedure to estimate IPTW for MSMs

with continuous treatments robust to misspecification.

As with other PS methods, Robins’ stabilized weights break the link between the ex-

posure history and the time-varying covariates, guaranteeing the exposure history is un-

confounded. That is, at any given stage of the program, we expect the histories of both

exposure and the time-varying covariates to be uncorrelated in the weighted data [4, 23].

Formally, under our time-varying setting, we can see this correlation-breaking property

for all t as

E [SWit (Ait, X it) AitX it] = E (Ait) E (X it). (3.4)

Note that if we center both the exposure variable and the covariates, equation 3.4 equals

zero. We propose to use this weighted cross moment as an extra moment condition in a

GMM framework, which for t=1 is the same Fong, Hazalett and Imai[13] used in the cross-

sectional setting.

Including equation 3.4 among the score conditions –the gradient of the log-likelihood

with respect to θ– as moments, allows to account for both properties we would expect

the stabilized weights meet in a single estimator: predict the exposure among recipients

and break the link between the exposure and the time-varying covariates. There are many

ways to specify the moment conditions for the GMM estimator depending on the assump-

tions one is willing to make in estimating the probability models and how to include the

correlation-breaking condition, each with different computational burden.

Following a common practice of assuming At | At−1, X t independent and identically

distributed across time periods, and making use of the fact that it also follows from the

correlation-breaking property that current exposure is uncorrelated with the past, we have

the following moment conditions,
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gθ (At, X t) =




1
σ2

(
Ait −

(
A⊤

it−1α + X⊤
itβ

))
(Ait−1, X it)

− 1
2σ2

{
1 − 1

σ2

[
Ait −

(
A⊤

it−1α + X⊤
itβ

)]2
}

∏t
t′=0 exp

[
1

2σ2

{
−2Ait′

(
A⊤

it′−1α + X⊤
it′β

)
+

(
A⊤

it′−1α + X⊤
it′β

)2
}]

Ait (Ait−1, X it)




.
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Note that the score conditions correspond to the first order conditions of the log-

likelihood

l (α, β | At, X t) =

1

2

N∑

i=1

{
log

(
2πσ2

)
+

1

σ2

[
Ait −

(
A⊤

it′−1α + X⊤
it′β

)]2
}

. (3.5)

We have conveniently rearranged the histories of exposure and covariates in the correlation-

breaking condition for symmetry’s sake, the proof of which follows the same general out-

line as before.

The GMM estimator of θ is obtained minimizing

θ̂CBSW = argminθgθ (At, X t)
⊤ ∑

θ (At, X t)
−1 gθ (At, X t) , (3.6)

where gθ is the mean over i of gθ , and
∑

θ (At, X t) is the mean over i of the 3 " 3

covariance matrix of entries
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∑
θ [1, 1] =

1

σ2
(Ait−1, X it) (Ait−1, X it)

⊤ (3.7)
∑

θ [1, 2] =
∑

θ [1, 2] = 0 (3.8)

∑
θ [1, 3] =

∑
θ [3, 1] =

t−1∏

t′=0

f (Ait′)

f (Ait′ | Ait′−1, X it′)
(Ait−1, X it) (Ait−1, X it)

⊤ (3.9)

∑
θ [2, 2] =

1

2σ4
(3.10)

∑
θ [2, 3] =

∑
θ [3, 2] =

t−1∏

t′=0

f (Ait′)

f (Ait′ | Ait′−1, X it′)





−
(
A⊤

it−1α + X⊤
itβ

)

σ2



 (Ait−1, X it) (3.11)

∑
θ [3, 3] =

t−1∏

t′=0

f (Ait′)2

f (Ait′ | Ait′−1, X it′)
2

{
σ2 +

(
A⊤

it−1α + X⊤
itβ

)2
}

exp





(
A⊤

it−1α + X⊤
itβ

)2

σ2





(Ait−1, X it) (Ait−1, X it)
⊤ . (3.12)

The upper left 2 × 2 submatrix of
∑

θ (At, X t) is well-known since corresponds to the covariance of the score

conditions of the normal distribution. The rest of the elements are derived in detail in the appendix.
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3.4 Simulation Studies

In this section we show the results of simulation studies in order to assess the empirical

performance of these correlation-breaking stabilized weights.

We consider the case of three time periods, i.e., t = 1, 2, 3, and use three different sam-

ple sizes n = 300, 900 and 1,500, corresponding to 100, 300 and 500 exposure-recipients

across our time frame. In our setup, summarized in Figure 3.1, the treatment-generating

process is a function of a vector of exogenous time-varying covariates, X it, and the pre-

vious history of exposure, Ait−1. The outcome variable, Y , is a function of both entire

histories of covariates and exposure.

Figure 3.1: Data Generating Process in Simulation Study

X
i1

A
i1

X
i2

A
i2

X
i3

A
i3 Y

We use this Data-Generating Process (DGP) to examine the performance of the pro-

posed methodology, vis-à-vis the usual Ordinary Least Squares (OLS) approach, when

faced with both misspecification of the treatment-assignment model –incorrectly specify-

ing the lag structure– and measurement error.

We use a similar simulation setup as Imai and Ratkovic [25]. The simulation consists

of four covariates; for time t, we use the covariates

X it = (Zit1�Uit, Zit2�Uit, |Zit3�Uit|, |Zit4�Uit|) (3.13)
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where each Zitk is an i.i.d. draw from the standard normal distribution, and Uit is con-

structed as

Uit =
t∏

t
′
=1

(1 + .4Ait′−1) (3.14)

for t = 2, 3 and Uit = 1 for t = 1. The continuous treatment Ait is generated by

Ait =
t∑

t′=1

{(
1

2

)t′−1

(αX it′ + Ait′−1)

}
+ vi (3.15)

where α = (.8, −.2, .4, −.6)⊤ and vi is a standard normal disturbance. All parameters

were selected in an almost random manner looking only to guarantee a minimum dis-

persion. The continuous outcome Y is generated by a linear combination of the whole

exposure and confounders histories such that

Yit = 275 + 10
t∑

t′=1

Ait′ + δ
t∑

t′=1

X it′ + ui (3.16)

where δ = (−23.5, 12.5, 7.3, −17.4)⊤ and ui is another normal disturbance with mean

zero and standard deviation five. Note that we have generated the outcome variable for

every t, making it a function of both entire histories of covariates and exposure. We haven’t

included these elements in the DGP depicted in Figure 3.1 in order not to over-complicate

the diagram.

In the misspecified scenario, we use the following non-linear transformation of the

covariates

Xit =
(

X3
it1, exp (Xit2) , log (Xit3) ,

1

Xit4

)
(3.17)

as measurement error, as well as incorrectly specify the lag structure of the treatment-

assignment model using only the data from the immediately previous period such that

Ait = αX it + Ait−1 + vi, (3.18)

but maintain the correct outcome model.

We report results of one thousand simulated datasets for each scenario. First, with ev-

ery dataset, we fit a Pooled OLS model (GLM) as the treatment assignment model, using
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correct and incorrect model specifications as discussed above. Then we fit the same mod-

els using the proposed correlation-breaking IPW methodology (CBIPW) in two ways:

first using both score and correlation-breaking conditions (Over-identified CBIPTW) as

described in section 3.2, and with the correlation-breaking condition alone (Just-identified

CBIPW), ignoring the score conditions. This gives us three different estimates according

to the importance placed on both expected properties of the weights. The Generalized

Linear Model (GLM) estimates obviate the correlation-breaking property, ignoring the

subvector g3, while the just-identified CBIPW pays no attention to predict exposure as-

signment, ignoring the subvector (g1, g2)
⊤. Over-identified CBIPW stands in the middle

attending to both criteria. Finally, we regress in a pooled model the outcome variable on

the cumulated exposure,
∑t

t′=1Ait′ using the stabilized MSM weights. The coefficient that

results from this last regression is compared with the numerical estimate obtained from a

thousand simulations using large datasets (n = 30,000) and the true exposure assignment

probabilities.

Table 3.1 presents the results for our three sample sizes. The columns show the bias

and Root Mean Squared Error (RMSE) from the pooled weighted linear regression of the

outcome on the cumulated exposure using the stabilized weights.

The results are in line with those of previous Covariate Balance Propensity Scores

for MSMs [25]. When the exposure assignment model is correct specified, all methods

have small bias and small RMSE. In contrast, when the model is misspecified, the bias

and RMSE are large and even grow in sample size. However, the RMSE of the CBIPW

estimates grow at a much smaller rate, thereby outperforming OLS.

In short, Table 3.1 tells a simple story for time-varying continuous interventions: if

researchers are lucky enough to know the true DGP, they are probably better off with OLS.

If, on the other hand, researchers have reasonable doubts with respect to the origin of their

data, they are probably better off with CBIPW.
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Table 3.1: Performance of Probability Weights Estimation Methods

n = 300 n = 900 n = 1500

Estimator Bias RMSE Bias RMSE Bias RMSE

Correct Specification

True 1.19 3.79 0.70 3.38 0.47 3.09

GLM 1.19 3.61 0.70 3.23 0.46 2.96

CBIPW Over-identified 1.44 3.94 1.11 3.01 0.99 2.90

CBIPW Just-identified 1.47 3.93 1.07 3.06 0.98 2.85

Misspecification (measurement and lag structure)

GLM 4.87 8.66 3.38 15.04 3.58 24.41

CBIPW Over-identified 3.89 6.42 3.65 7.27 3.77 8.66

CBIPW Just-identified 4.16 6.04 3.84 6.72 3.99 7.63

3.5 Empirical Application

As an empirical application of the proposed method, we estimate the impact of the

Mexican universal health insurance program, Seguro Popular (SP), on key variables asso-

ciated with the provision of healthcare services by the Secretaría de Salud –Mexican Min-

istry of Health– (SSA). Here we analyze the same data of Chapter 2; that is, the federal

records on infrastructure and human resources employed by the SSA,4 and the coverage

records of the program at a yearly frequency from 2001, the year prior the introduction of

the program, to 2013.

Specifically, data is aggregated to the Sanitary Jurisdiction (SJ) level, the most basic ad-

ministrative units of SSA in charge of the operation of healthcare services and its programs,

and time-varying covariates include doctors’ offices, staffed and non-staffed hospital beds,

physicians and nurses, both with and without day-to-day contact with patients. Following

the original analysis, 39 out of 233 SJs are dropped so as to make the common support

4Available from the National Health Information System’s web site: http://www.sinais.salud.gob.mx/.
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assumption more credible, and the estimates less model dependent.

The original estimations fit a single probability model, regressing the yearly increment

of SP coverage on the most recent set of covariates (per thousand population outside the

social security network) along with all their two-way interactions, and past (cumulated)

SP coverage. In contrast, here we drop all the interactions from the model.

Looking at the degree of covariate balance achieved by the CBIPW (Fig. 3.2, Appendix

Table A.4), we see that it is improved in all cases, as medians are closer to zero, and

that is best achieved using the just-identified approach, both on location and dispersion as

expected. It is worth noting that, in this case, fitting only the probability model (GLM) does

not seems to break the correlation between the exposure to treatment and three covariates:

doctors’ offices, physicians and nurses in day-to-day contact with patients.5

Using weighted linear regressions to estimate the impact of (cumulated) SP coverage

on the change in the (relative) numbers of doctors’ offices, physicians and nurses (pro-

viding clinical care), we can see (Fig. 3.3 , Appendix Table A.9) that in all probability

the effect of SP is positive in all three outcome variables, and grows bigger the less corre-

lated are the covariates with the treatment in the pseudo sample. While these results are

somewhat similar to those presented in Chapter 2, every point estimate here is marginally

bigger (by 10% for doctors’ offices, and roughly 3% for physicians and nurses).

3.6 Conclusions

We have shown that the idea behind the Covariate Balancing Propensity Score (CBPS)

[24] is flexible enough to cover also longitudinal settings with general treatment regimens.

Here we provide a robust estimation method for MSMs with continuous treatments whose

main advantage is that it directly includes the correlation-breaking property of Robins’

[41] stabilized weights in the estimation procedure. This new tool avoids the manual

5Even though in the original analysis an OLS model is fitted, we do not observe this imbalance in the
covariates because a different model was fitted with an extra 21 variables.
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Figure 3.2: Covariate-Balance for Time-varying SP coverage on Sanitary Jurisdictions

(a) Doctors’ offices
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(e) Physicians**
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Source: Personal elaboration based on data from the Sistema Nacional de Información en Salud (National Health Information System)

and Seguro Popular administrative records.

The bottom and top of each box are the first and third quartiles, and the band inside is the second quartile (the median). Whiskers

represent the lowest datum still within 1.5 Inter Quartile Range of the lower quartile, and the highest datum still within 1.5 Inter

Quartile Range of the upper quartile. Outside values are not shown.

Coefficients result from pooled linear regressions of each covariate on the yearly increment of SP coverage, weighted accordingly to

the pseudo-sample in question.

Estimates based on 1000 replications. Bootstrapping takes into account the matching algorithm.

* In day-to-day contact with patients

SP coverage refers to affiliates as proportion of the population without traditional health insurance (IMSS, ISSSTE, Pemex, the Ministry

of Defense or the Navy).

UW corresponds to the unweighted 194 sanitary jurisdictions with the smallest mean distance to the rest of the observations in the data;

GLM to the sample weighted using OLS and an empty model as stabilizer; CBIPW-OVER to the sample weighted using over-identified

correlation-breaking inverse-probability weights, which gives equal importance to both correctly predict treatment-assignation and

balancing covariates and CBPS-EXACT to the sample weighted using Just-identified CBIPW, which privileges covariate balance over

the probabilistic model.
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Figure 3.3: Average Treatment Effects of SP coverage on Sanitary Jurisdictions
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Source: Personal elaboration based on data from the Sistema Nacional de Información en Salud (National Health Information System)

and Seguro Popular administrative records.

The bottom and top of each box are the first and third quartiles, and the band inside is the second quartile (the median). Whiskers

represent the lowest datum still within 1.5 Inter Quartile Range of the lower quartile, and the highest datum still within 1.5 Inter

Quartile Range of the upper quartile. Outside values are not shown.

Coefficients result from pooled linear regressions (2328 obs.) of each outcome variable on SP coverage, weighted accordingly to the

pseudo-sample in question.

Estimates based on 1000 replications. Bootstrapping takes into account the matching algorithm.

* In day-to-day contact with patients

SP coverage refers to affiliates as proportion of the population without traditional health insurance (IMSS, ISSSTE, Pemex, the Ministry

of Defense or the Navy).

UW corresponds to the unweighted 194 sanitary jurisdictions with the smallest mean distance to the rest of the observations in the data;

GLM to the sample weighted using OLS and an empty model as stabilizer; CBIPW-OVER to the sample weighted using over-identified

correlation-breaking inverse-probability weights, which gives equal importance to both correctly predict treatment-assignation and

balancing covariates and CBPS-EXACT to the sample weighted using Just-identified CBIPW, which privileges covariate balance over

the probabilistic model.
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process of checking the correlation amongst the current exposure to treatment and the

covariate histories in the weighted data and then respecifying. We are confident that this

new extension to the CBPS helps clear the way for those interested in causal analysis in

these complex settings.6

It can be argued that minimizing the correlation between covariates can be done effi-

ciently with already available methods, such as the non-parametric extension of the CBPS

to general treatment regimens [14] or Genetic Matching [10]. However, unlike these other

methods, the methodology we propose here provides the researcher also with a robust

probability model from which it is possible to start building bridges between MSMs and

decomposition methods literatures, something that remains a pending task for future re-

search.

6Stata code is available upon request from the authors.
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Final Comments

The research here presented is both methodological as is empirical: analyzing the effects

of Seguro Popular (SP) on the medical infrastructure and human resources in Mexico, we

have pushed forwardPropensity Score (PS) methods. Regarding our findings, everything

suggests that the Mexican universal health insurance program is leaving behind the most

vulnerable geographic areas in the country. Not because the population there lack insur-

ance, but because the effect of SP has not made itself felt in all regions. For a program

specifically intended for the poor, this is of concern and calls for better designs or com-

plementary efforts. The procedures and estimators here advanced helped reaching this

conclusions, and hopefully will continue helping others in their own causal investigations

for better, more effective, public policies in benefit of those in greater need.
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Resumen (Spanish)

Nadie que requiera servicios de salud debería quedarse sin recibirlos por falta de recursos.

Este imperativo ético ha sido recogido como derecho constitucional en casi todos los países

de América Latina incluyendo a México. El Sistema de Protección Social en Salud –

System of Social Protection in Health– (SPSS), mejor conocido como el Seguro Popular

(SP), es el esfuerzo más significativo que México ha hecho por garantizar el derecho a la

protección de la salud de aquellos que no cuentan con la seguridad social que acompaña al

empleo formal, prácticamente la mitad del país. A finales de 2015, el SP registraba más de

57 millones de personas afiliadas, y un presupuesto programado para 2016 que rebasa los

75 mil millones de pesos, equivalente al 92 % del presupuesto del Programa de Inclusión

Social/Oportunidades (Fig. E.1).

Simultáneamente, la Secretaría de Salud –Mexican Ministry of Health– (SSA) ha am-

pliado los recursos físicos y humanos involucrados en la prestación de los servicios ampa-

rados por el SP. De 2001 a 2015, el número de Establecimientos de Salud ha aumentado

31 %, la mayoría (1 de cada 3) Centros de Salud Rurales de 1 núcleo básico de servicio

(típicamente conformado por un médico y una o dos enfermeras), Casas de Salud (se-

de de brigadas móviles que visitan las comunidades), Unidades de Especialidades Médi-

cas (UNEMES) y Unidades Móviles (Fig. E.2).

En ese mismo periodo, los consultorios médicos han aumentado 61 %. Una cifra que,

si bien es correlato del incremento de Centros de Salud Rurales y UNEMES, ha sido im-
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Figura E.1: Gasto ejercido por el Seguro Popular
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Fuente: elaboración propia con datos de la Secretaría de Hacienda y Crédito Público

http://finanzaspublicas.hacienda.gob.mx/es/Finanzas_Publicas/Cuenta_Publica

pulsada de manera importante por los Hospitales (1 de cada 3 de los nuevos consultorios

lo registran Hospitales Generales, Especializados e Integrales; véase Fig. E.3).

La alta prioridad política de los hospitales también se expresa en su participación del

incremento de médicos y enfermeras en labores clínicas (Fig. E.3). En 2015 el número de

médicos en contacto con pacientes creció 48 % con respecto a 2001, más de 33 mil nuevos

médicos, de los cuales 7 de cada 10 están adscritos a hospitales. Lo mismo ocurre con las

enfermeras, si bien estas se han más que duplicado desde 2001.

Basta una mirada a la evolución de los egresos hospitalarios de estas instituciones para

hacerse una idea de la nueva demanda que enfrenta la SSA (Fig. E.4). Este número se ha

más que duplicado desde 2001, y en 2015, 7 de cada 10 de estos egresos corresponde a

personas afiliadas al SP.

Sin embargo, no todo el país se ha beneficiado igual de la expansión de los recursos

de la SSA. El incremento en la densidad –por cada mil habitantes sin seguridad social
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Figura E.2: Establecimientos de la Secretaría de Salud por tipología
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Fuente: elaboración propia con datos de la Dirección General de Información en Salud

Las tipologías se ordenan, en el panel a de acuerdo a su participación en el incremento total de establecimientos de 2001 a 2015, y en el panel b de acuerdo a su participación

en el total de 2015, con las de mayor participación en la base.

Donde R1 hace referencia a los Centros de Salud Rurales de 1 núcleo básico de servicio, CS a Casas de Salud, UNEMES a Unidades de Especialidades Médicas, UM

a Unidades Móviles, U1 y U2 a Centros de Salud Urbanos de 1 y 2 núcleos básicos de servicio respectivamente y en Otros se agregan el resto de tipologías incluyendo

Almacenes, Antirrábicos, Brigadas Móviles, Centros de Salud con Hospitalización, Centros Avanzados de Atención Primaria a la Salud, Centros de Salud con Servicios

Ampliados, Clínicas de Especialidades, Consultorios Delegacionales, Hospitales Especializados, Hospitales Generales, Hospitales Integrales, Hospitales Psiquiátricos, Oficinas

Administrativas, Establecimientos de Apoyo, Centros de Salud Rurales de 2 y 3 o más Núcleos Básicos, Unidades del Ministerio Público y Centros de Salud Urbanos de 3, 4,

5, 6, 7, 8, 9, 10, 11, y 12 o más Núcleos Básicos.
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Figura E.3: Recursos de la Secretaría de Salud por tipología de establecimiento
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Fuente: elaboración propia con datos de la Dirección General de Información en Salud

Las tipologías se ordenan en las gráficas, a la izquierda, de acuerdo a su participación en el incremento total de 2001 a 2015 y, a la derecha, de acuerdo a su participación en el

total de 2015, con las de mayor participación en la base.

R1, R2 y R3+ hace referencia a Centros de Salud Rurales de 1, 2 y 3 o más núcleos básicos de servicio respectivamente, HG a Hospitales Generales, HE y HI a Hospitales

Especializados e Integrales respectivamente, UNEMES a Unidades de Especialidades Médicas, CS a Casas de Salud, U2 a Centros de Salud Urbanos de 2 núcleos básicos de

servicio, UM a Unidades Móviles, CESSA a Centros de Salud con Servicios Ampliados, CAAPS a Centros Avanzados de Atención Primaria a la Salud, U12+ a Centros de Salud

Urbanos de 12 o más núcleos básicos, y Otros agrupa al resto de tipologías que incluye Almacenes, Antirrábicos, Brigadas Móviles, Centros de Salud con Hospitalización,

Clínicas de Especialidades, Consultorios Delegacionales, Hospitales Psiquiátricos, Oficinas Administrativas, Establecimientos de Apoyo, Unidades del Ministerio Público,

Centros de Salud Urbanos de 1, 3, 4, 5, 6, 7, 8, 9, 10 y 11 núcleos básicos.
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Figura E.4: Egresos hospitalarios de la Secretaría de Salud según derechohabiencia al

Seguro Popular
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Fuente: elaboración propia con datos de la Dirección General de Información en Salud

Se cuentan únicamente aquellos egresos registrados en establecimientos de salud a cargo de la Secretaría de Salud
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tradicional (asociada al trabajo): Intituto Mexicano del Seguro Social (IMSS), Instituto de

Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Petróleos Mex-

icanos (PEMEX), Defensa o Marina– de consultorios, médicos y enfermeras en labores

clínicas varía notablemente entre las jurisdicciones sanitarias del país (Fig. E.5).

Si bien la evolución de la densidad de recursos físicos y humanos en cada jurisdic-

ción sanitaria cuenta su propia historia, es posible distinguir estadísticamente tres tipos

de trayectorias de crecimiento para cada uno de estos recursos; donde, en cada caso, los

mayores incrementos se observan en las jurisdicciones sanitarias con mayor densidad de

recursos. Esto es que, las zonas del país con menos médicos, enfermeras y consultorios

por habitante son las que menos incrementos han visto desde la puesta en marcha del SP.

Desde su concepción, el SP se ha presentado como una política de combate a la pobre-

za, focalizada en la población vulnerable, lo que obliga a preguntarnos por el impacto que

el programa ha tenido sobre la falta y desigual distribución de los recursos destinados a la

protección de la salud.

Dado el tipo de intervención que opera el SP, dar respuesta a la pregunta por el efecto

del SP sobre la distribución de los recursos físicos y humanos de la SSA ha requerido

unir dos ramas de investigación sobre evaluación de impacto: la inferencia con variables

causales continuas por un lado y con tratamientos dinámicos por el otro.

El periodo de tiempo tan largo que ha tomado el despliegue completo del programa,

y su probable retroalimentación, ha demandado el desarrollo de un procedimiento semi-

paramétrico para analizar intervenciones continuas variables en el tiempo, así como de

un estimador que facilite la evaluación de este tipo de intervenciones. Esto último a tra-

vés de un programa estadístico, disponible gratuitamente para la comunidad académica,

escrito en el lenguaje de la paquetería estadística Statar (véase Apéndice B). La metodo-

logía estadística desarrollada permite perfilar grupos de beneficiarios según su respuesta a

intervenciones complejas como la del SP, un adelanto cuya potencia desborda el análisis

llevado a cabo aquí y que habrá de probarse útil en contextos similares.

La flexibilidad de la metodología adoptada sugiere explorar varias vetas de investi-
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Figura E.5: Densidad de recursos de la Secretaría de Salud por jurisdicción sanitaria
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(c) Clases de trayectorias
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(e) Clases de trayectorias
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Fuente: elaboración propia con datos de la Dirección General de Información en Salud.

La densidad se expresa por cada mil habitantes sin seguridad social asociada al trabajo: IMSS, ISSSTE, PEMEX, Defensa o Marina.

Los números en los descriptores de las gráficas a la izquierda hacen referencia al número de jurisdicciones sanitarias (JSs) pertenecientes a cada clase estimada.

Los números en la región interna de la gráficas a la izquierda se refieren a las pendientes estimadas para cada clase.
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gación en el futuro inmediato. En particular, es posible acoplarle, por ejemplo, a otras

técnicas de exploración por ponderación como la regresión ponderada geográficamente o

de inferencia contrafactual como el análisis por descomposición. Ello permitiría incorpo-

rar la dimensión espacial al análisis observando dónde en un mapa son sistemáticamente

diferentes las cantidades causales, o estimar la distribución contrafactual completa de una

variable de interés.

Como principales resultados de nuestra investigación, ofrecemos pruebas estadísticas

de que el SP ha tenido mayores efectos en las zonas geográficas del país menos vulnerables.

Es usual que programas de desarrollo social tengan resultados no esperados e incluso

indeseables. Este puede ser el caso del SP, que muy probablemente ha incrementado la

desigualdad en la distribución de los recursos en salud en el país, dejando atrás a los

segmentos de la población más vulnerables de acuerdo con el Índice de Marginación del

Consejo Nacional de Población (CONAPO) (Fig. E.6).

Destacan así jurisdicciones sanitarias como la de Creel en el estado de Chihuahua y

Motozintla en Chiapas, donde el SP exhibe sus menores efectos, en las que alrededor de

70 % de la población, vive en localidades que en 2010 eran consideradas de alta y muy alta

marginación por el CONAPO; en contraste con jurisdicciones como Centro en el estado de

Tabasco y Zacatecas del estado del mismo nombre, donde se estiman los mayores impactos

del programa, en las que sólo alrededor del 4 % de su población vive en localidades de alta

y muy alta marginación.

Nuestros resultados se encuentran en línea con lo observado recientemente por Cortés

y Vargas [8] al analizar las trayectorias de marginación de los municipios mexicanos en el

marco de la política nacional de desarrollo: el terreno ganado a la marginación ha venido

acompañado de un aumento en la heterogeneidad.

Desde luego, no hay nada necesario en este patrón. Reducir las carencias no impli-

ca, en sentido lógico, ampliar la desigualdad. La contingencia de este fenómeno obliga a

preguntarnos no sólo por la eficacia de la política pública de desarrollo social en general,

sino por su eficiencia y la prioridad en los objetivos de la misma. Temas que reclaman
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Figura E.6: Impacto del Seguro Popular sobre el incremento en la densidad de recursos de la Secretaría de Salud por

jurisdicción sanitaria
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(c) Clases de efectos
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(e) Clases de efectos
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Fuente: elaboración propia con datos de la Dirección General de Información en Salud y el Seguro Popular.

La densidad se expresa por cada mil habitantes sin seguridad social tradicional asociada al trabajo: IMSS, ISSSTE, PEMEX, Defensa o Marina. Sólo se cuentan aquellos

médicos y enfermeras en labores clínicas (en contacto con pacientes).

La gráficas a la izquierda en cada subfigura presentan el resultado de estimar clases latentes de efectos aleatorios del Seguro Popular sobre el incremento en

la densidad del respectivo recurso, ponderados por el inverso de la probabilidad de observar la respectiva historia de tratamiento. Los números en la región in-

terna de de estas gráficas se refieren a las pendientes estimadas para cada clase. Las gráficas a la derecha presentan el indice de correlación de Pearson entre

los mismos efectos aleatorios y el Índice de Marginación de las jurisdicciones sanitarias siguiendo el método de estimación del Consejo Nacional de Población

http://www.conapo.gob.mx/es/CONAPO/Indices_de_Marginacion_Publicaciones.

Muy alta, alta, media, baja y muy baja marginación se refiere al nivel del Índice de Marginación promedio de las jurisdicciones sanitarias en cada clase.
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particularmente la atención de contribuyentes y beneficiarios como primeros implicados.

Garantizar el derecho a la protección de la salud, como ideal regulativo, demanda de

la sociedad evaluar la manera en que se invierten sus recursos escasos. ¿Cuál es la mejor

senda a seguir para franquear el acceso efectivo a los servicios de salud en México? Los

resultados de nuestra investigación contribuyen a esta discusión con información empírica

sobre el probable impacto del SP sobre los recursos materiales y humanos de la SSA.

Con ello abonamos a un conocimiento más preciso sobre el SPSS mexicano que permita

mejorar el diseño de la política de salud en México. Esta es, sin duda, una de las cuestiones

de mayor importancia en materia de política pública en nuestro país, cuya última expresión

es el SP.

Nuestro argumento se presenta en tres capítulos, susceptibles de leerse por separa-

do, escritos en inglés –lengua puente por excelencia en la disciplina– con la intención de

alcanzar al mayor número de especialistas interesados. En el Capítulo 1 analizamos las

implicaciones de diferentes supuestos causales en la evaluación del SP. Ahí mostramos la

necesidad de extender la metodología de puntajes de propensión para analizar tratamientos

continuos variables en el tiempo. En el Capítulo 2 presentamos un nuevo procedimiento

semiparamétrico que permite inferir cantidades causales, asociadas a intervenciones di-

námicas continuas. Esto último a través del maridaje de la bibliografía sobre tratamien-

tos continuos con la de tratamientos dinámicos. El procedimiento propuesto permite esti-

mar funciones dosis-respuesta, media y cuantil, a través de regresiones locales aplicadas a

muestras ponderadas que controlan por variables confusoras variables en el tiempo. Es en

este capítulo que se estima y discute el impacto del SP sobre la distribución de los recursos

en salud. Dada la relativa complejidad detrás del procedimiento discutido en el Capítu-

lo 2, en el Capítulo 3 presentamos un estimador robusto que facilita el análisis causal en

contextos dinámicos con variables continuas. Por último se ofrecen algunos comentarios

finales.

Cada vez más se reconoce que la política de desarrollo social en México se beneficiaría

de un diseño más abierto, en un esquema de corresponsabilidad con la sociedad civil, que
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promueva tanto la investigación académica como mecanismos de Contraloría Social. En

último término, esperamos que la presente investigación ayude a estimular el surgimiento

de un nuevo modo de hacer política pública.
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Appendix A

Tables and Derivations

A.1 Tables from Chapter 1
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Table A.1: Descriptive Statistics of the Sanitary Jurisdictions

Variablea Sample Mean Std. Dev. Min Max Obs.

SP coverageb
Fullc 0.56 0.19 0.06 1.08 233

Trimmedd 0.55 0.17 0.13 0.94 194

Doctor’s offices
Full 0.54 0.35 0.17 3.05 233

Trimmed 0.45 0.20 0.17 1.53 194

Staffed hospital beds
Full 0.66 1.01 0.00 9.70 233

Trimmed 0.42 0.30 0.00 2.16 194

Non-staffed hospital beds
Full 0.76 0.49 0.00 3.58 233

Trimmed 0.67 0.37 0.00 1.69 194

Physicians with day-to-day

contact with patients

Full 1.06 0.98 0.22 10.47 233

Trimmed 0.81 0.36 0.22 2.21 194

Physicians without day-to-day

contact with patients

Full 0.09 0.16 0.00 1.63 233

Trimmed 0.06 0.05 0.00 0.24 194
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Variablea Sample Mean Std. Dev. Min Max Obs.

Nurses with day-to-day contact

with patients

Full 1.39 1.47 0.16 13.72 233

Trimmed 1.02 0.49 0.16 3.12 194

Nurses without day-to-day

contact with patients

Full 0.11 0.16 0.00 1.34 233

Trimmed 0.07 0.07 0.00 0.53 194

Source: Own elaboration based on data from the Sistema Nacional de Información en Salud (National Health Information System) and Seguro Popular administrative records
a Other than SP coverage, variables are expressed per thousand population without traditional health insurance: IMSS, ISSSTE, Pemex, the Ministry of Defense or the Navy.
b Affiliates as proportion of the population without traditional health insurance.
cThe full sample result from aggregating the municipality level data to the sanitary jurisdiction level.
dThe trimmed sample results from dropping the farthest away observations in the covariate space according to Gower’s metric.
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Table A.2: Average Treatment Effects for Dichotomized SP coverage on Sanitary

Jurisdictionsa

Result Variable 2010-2001 Bootstrap Normal-based

(Change in Density)b Sample Coef. Std. Err. z p > z [95% Conf. Interval]

Doctor’s offices

UMc 0.06 0.02 2.94 0.00 0.02 0.10

CBPSd 0.05 0.02 2.88 0.00 0.02 0.08

GMe 0.05 0.02 3.05 0.00 0.02 0.08

NP-CBPSf 0.05 0.02 2.50 0.01 0.01 0.08

Physicians with day-to-day

contact with patients

UM 0.12 0.04 3.38 0.00 0.05 0.19

CBPS 0.13 0.04 3.34 0.00 0.05 0.20

GM 0.11 0.03 3.23 0.00 0.04 0.18

NP-CBPS 0.13 0.05 2.91 0.00 0.04 0.23

Physicians without

day-to-day contact with

patients

UM 0.01 0.01 1.40 0.16 0.00 0.02

CBPS 0.00 0.01 0.92 0.36 -0.01 0.02

GM 0.00 0.01 0.11 0.91 -0.01 0.01

NP-CBPS 0.00 0.01 0.77 0.44 -0.01 0.02

Table continues
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Result Variable 2010-2001 Bootstrap Normal-based

(Change in Density)b Sample Coef. Std. Err. z p > z [95% Conf. Interval]

Nurses with day-to-day

contact with patients

UM 0.15 0.05 3.15 0.00 0.06 0.24

CBPS 0.18 0.05 3.75 0.00 0.09 0.28

GM 0.13 0.05 2.83 0.01 0.04 0.23

NP-CBPS 0.20 0.06 3.53 0.00 0.09 0.31

Nurses without day-to-day

contact with patients

UM 0.02 0.01 2.51 0.01 0.00 0.04

CBPS 0.02 0.01 2.78 0.01 0.01 0.03

GM 0.01 0.01 1.61 0.11 0.00 0.02

NP-CBPS 0.01 0.01 2.29 0.02 0.00 0.02

Source: Own elaboration based on data from the Sistema Nacional de Información en Salud (National Health Information System) and Seguro Popular administrative records

Estimates based on 1000 replications. Bootstrapping takes into account the matching algorithm.
a Treatment variable results from dichotomizing Seguro Popular coverage in 2009 around its median.
b Per thousand population without traditional health insurance: IMSS, ISSSTE, Pemex, the Ministry of Defense or the Navy.
c Unmatched sample refers to the 194 sanitary jurisdictions with the smallest mean distance to the rest of the observations in the data.
d Sample matched using Genetic Matching.
e Sample matched using Covariate Balance Propensity Score.
f Sample matched using Non-parametric Covariate Balance Propensity Score.
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Table A.3: Covariate-Balance for SP coverage with Balanced Samples with respect to

Dichotomized Treatment on Sanitary Jurisdictionsa

Bootstrap Normal-based

Variable 2001b Treatment Samplec Coef.d Std. Err. z p > z [95% Conf. Interval]

Doctor’s offices

Dichotomous

UM 0.10 0.03 3.61 0.00 0.05 0.16

CBPS 0.03 0.02 1.91 0.06 0.00 0.06

GM 0.01 0.01 1.06 0.29 -0.01 0.03

NP-CBPS 0.00 0.00 0.24 0.81 0.00 0.00

SP coverage

UM 0.44 0.07 5.94 0.00 0.29 0.58

CBPS 0.30 0.07 4.37 0.00 0.16 0.43

GM 0.23 0.05 4.27 0.00 0.13 0.34

NP-CBPS 0.24 0.07 3.31 0.00 0.10 0.38

Table continues
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Bootstrap Normal-based

Variable 2001b Treatment Samplec Coef.d Std. Err. z p > z [95% Conf. Interval]

Staffed hospital beds

Dichotomous

UM -0.05 0.04 -1.20 0.23 -0.14 0.03

CBPS -0.01 0.02 -0.25 0.80 -0.05 0.04

GM -0.02 0.02 -0.97 0.33 -0.06 0.02

NP-CBPS 0.00 0.00 1.22 0.22 0.00 0.00

SP coverage

UM -0.17 0.13 -1.29 0.20 -0.42 0.09

CBPS -0.06 0.10 -0.58 0.56 -0.25 0.14

GM -0.06 0.10 -0.55 0.58 -0.26 0.14

NP-CBPS -0.01 0.09 -0.07 0.94 -0.18 0.16

Table continues
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Bootstrap Normal-based

Variable 2001b Treatment Samplec Coef.d Std. Err. z p > z [95% Conf. Interval]

Non-staffed hospital

beds

Dichotomous

UM 0.27 0.05 5.46 0.00 0.17 0.36

CBPS 0.05 0.03 1.79 0.07 0.00 0.10

GM 0.02 0.02 1.31 0.19 -0.01 0.06

NP-CBPS 0.00 0.00 -0.17 0.86 -0.01 0.00

SP coverage

UM 1.01 0.14 7.47 0.00 0.75 1.28

CBPS 0.60 0.14 4.20 0.00 0.32 0.88

GM 0.51 0.12 4.29 0.00 0.27 0.74

NP-CBPS 0.51 0.16 3.14 0.00 0.19 0.83

Table continues
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Bootstrap Normal-based

Variable 2001b Treatment Samplec Coef.d Std. Err. z p > z [95% Conf. Interval]

Physicians with

day-to-day contact with

patients

Dichotomous

UM 0.12 0.05 2.38 0.02 0.02 0.22

CBPS 0.05 0.03 1.59 0.11 -0.01 0.10

GM 0.01 0.01 0.61 0.55 -0.02 0.04

NP-CBPS 0.00 0.00 0.30 0.77 0.00 0.00

SP coverage

UM 0.56 0.13 4.13 0.00 0.29 0.82

CBPS 0.40 0.11 3.68 0.00 0.19 0.61

GM 0.29 0.09 3.23 0.00 0.11 0.47

NP-CBPS 0.31 0.10 3.27 0.00 0.12 0.50

Table continues
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Bootstrap Normal-based

Variable 2001b Treatment Samplec Coef.d Std. Err. z p > z [95% Conf. Interval]

Physicians without

day-to-day contact with

patients

Dichotomous

UM -0.01 0.01 -0.91 0.36 -0.02 0.01

CBPS 0.00 0.00 -0.08 0.94 -0.01 0.01

GM 0.00 0.00 -0.83 0.41 -0.01 0.00

NP-CBPS 0.00 0.00 0.83 0.41 0.00 0.00

SP coverage

UM -0.03 0.02 -1.12 0.26 -0.07 0.02

CBPS -0.01 0.02 -0.54 0.59 -0.05 0.03

GM 0.00 0.02 0.01 1.00 -0.04 0.04

NP-CBPS 0.00 0.02 -0.01 1.00 -0.04 0.04

Table continues
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Bootstrap Normal-based

Variable 2001b Treatment Samplec Coef.d Std. Err. z p > z [95% Conf. Interval]

Nurses with day-to-day

contact with patients

Dichotomous

UM 0.10 0.07 1.38 0.17 -0.04 0.24

CBPS 0.06 0.04 1.50 0.13 -0.02 0.14

GM 0.01 0.02 0.23 0.82 -0.04 0.05

NP-CBPS 0.00 0.00 0.76 0.45 0.00 0.00

SP coverage

UM 0.51 0.18 2.78 0.01 0.15 0.86

CBPS 0.41 0.15 2.85 0.00 0.13 0.70

GM 0.33 0.13 2.54 0.01 0.08 0.59

NP-CBPS 0.32 0.13 2.44 0.02 0.06 0.58

Table continues
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Bootstrap Normal-based

Variable 2001b Treatment Samplec Coef.d Std. Err. z p > z [95% Conf. Interval]

Nurses without

day-to-day contact with

patients

Dichotomous

UM -0.02 0.01 -1.63 0.10 -0.04 0.00

CBPS -0.01 0.01 -1.10 0.27 -0.02 0.00

GM -0.01 0.00 -1.43 0.15 -0.01 0.00

NP-CBPS 0.00 0.00 0.37 0.71 0.00 0.00

SP coverage

UM -0.06 0.03 -1.75 0.08 -0.12 0.01

CBPS -0.02 0.03 -0.94 0.35 -0.07 0.03

GM -0.02 0.02 -0.85 0.40 -0.06 0.03

NP-CBPS 0.00 0.02 0.01 0.99 -0.04 0.04

Source: Own elaboration based on data from the Sistema Nacional de Información en Salud (National Health Information System) and Seguro Popular administrative records

Estimates based on 1000 replications. Bootstrapping takes into account the matching algorithm.
a SP coverage refers to affiliates in 2009 as proportion of the population without traditional (work-related) health insurance (IMSS, ISSSTE, Pemex, the Ministry of Defense

or the Navy). Dichotomous treatment variable results from dichotomizing Seguro Popular coverage in 2009 around its median.
b Per thousand population without traditional health insurance.
c UM corresponds to the unmatched 194 sanitary jurisdictions with the smallest mean distance to the rest of the observations in the data, CBPS to the sample matched using

Covariate Balance Propensity Score, GM to the sample matched using Genetic Matching and NP-CBPS to the sample matched using Non-parametric Covariate Balance

Propensity Score, all with respect to dichotomized treatment.
d Coefficients result from regressing each covariate in 2001 on the dichotomized and original SP coverage in 2009.
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Table A.4: Covariate-Balance for SP coverage on Sanitary Jurisdictionsa

Variable 2001b Samplec Coef.d Std. Err. z p > z [95% Conf. Interval]

Doctor’s offices

UM 0.44 0.08 5.83 0.00 0.29 0.59

OLS-SW -0.06 0.17 -0.35 0.73 -0.39 0.27

CBPS-OVER 0.17 0.16 1.06 0.29 -0.14 0.48

CBPS-EXACT 0.03 0.06 0.50 0.62 -0.09 0.15

NP-CBPS 0.00 0.02 -0.02 0.99 -0.03 0.03

Staffed hospital beds

UM -0.17 0.13 -1.25 0.21 -0.42 0.09

OLS-SW -0.03 0.17 -0.16 0.88 -0.37 0.31

CBPS-OVER 0.09 0.15 0.65 0.52 -0.19 0.38

CBPS-EXACT 0.00 0.05 0.00 1.00 -0.11 0.11

NP-CBPS 0.00 0.01 0.09 0.93 -0.03 0.03

Table continues
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Bootstrap Normal-based

Variable 2001b Samplec Coef.d Std. Err. z p > z [95% Conf. Interval]

Non-staffed hospital

beds

UM 1.01 0.14 7.16 0.00 0.74 1.29

OLS-SW -0.08 0.35 -0.22 0.83 -0.75 0.60

CBPS-OVER 0.44 0.32 1.37 0.17 -0.19 1.06

CBPS-EXACT 0.05 0.11 0.46 0.64 -0.16 0.26

NP-CBPS 0.00 0.04 -0.02 0.99 -0.09 0.08

Physicians with

day-to-day contact with

patients

UM 0.56 0.13 4.28 0.00 0.30 0.81

OLS-SW -0.10 0.27 -0.38 0.70 -0.63 0.42

CBPS-OVER 0.31 0.18 1.70 0.09 -0.05 0.68

CBPS-EXACT 0.04 0.08 0.52 0.60 -0.11 0.19

NP-CBPS 0.00 0.02 -0.02 0.99 -0.04 0.04

Table continues
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Bootstrap Normal-based

Variable 2001b Samplec Coef.d Std. Err. z p > z [95% Conf. Interval]

Physicians without

day-to-day contact with

patients

UM -0.03 0.02 -1.13 0.26 -0.07 0.02

OLS-SW 0.02 0.04 0.71 0.48 -0.04 0.09

CBPS-OVER 0.02 0.03 0.73 0.46 -0.04 0.08

CBPS-EXACT 0.00 0.01 0.42 0.67 -0.01 0.02

NP-CBPS 0.00 0.00 0.06 0.96 0.00 0.00

Nurses with day-to-day

contact with patients

UM 0.51 0.17 2.91 0.00 0.17 0.85

OLS-SW 0.00 0.37 0.01 0.99 -0.72 0.73

CBPS-OVER 0.38 0.23 1.68 0.09 -0.06 0.82

CBPS-EXACT 0.05 0.09 0.52 0.60 -0.13 0.22

NP-CBPS 0.00 0.02 0.05 0.96 -0.04 0.04

Table continues



143

Bootstrap Normal-based

Variable 2001b Samplec Coef.d Std. Err. z p > z [95% Conf. Interval]

Nurses without

day-to-day contact with

patients

UM -0.06 0.03 -1.74 0.08 -0.12 0.01

OLS-SW 0.01 0.05 0.20 0.84 -0.09 0.12

CBPS-OVER 0.03 0.05 0.59 0.55 -0.06 0.12

CBPS-EXACT 0.00 0.01 -0.08 0.94 -0.02 0.02

NP-CBPS 0.00 0.00 0.07 0.95 -0.01 0.01

Source: Own elaboration based on data from the Sistema Nacional de Información en Salud (National Health Information System) and Seguro Popular administrative records

Estimates based on 1000 replications. Bootstrapping takes into account the matching algorithm.
a SP coverage refers to affiliates in 2009 as proportion of the population without traditional (work-related) health insurance (IMSS, ISSSTE, Pemex, the Ministry of Defense

or the Navy).
b Per thousand population without traditional health insurance.
c UM corresponds to the unmatched 194 sanitary jurisdictions with the smallest mean distance to the rest of the observations in the data, OLS-SW to the sample weighted

using Robins’ stabilized weights assuming Gaussian distribution fitted with all two-way interactions; CBPS-OVER to the sample weighted using Over-identified Covariate

Balance Propensity Score, which gives equal importance to both correctly predict treatment-assignation and balancing covariates; CBPS-EXACT to the sample weighted

using Exactly-identified Covariate Balance Propensity Score, which privileges covariate balance over the probabilistic model; and NPCBPS to the sample weighted using

Non-parametric Covariate Balance Propensity Score, which dispenses with models altogether only minimizing covariate balance.
d Coefficients result from regressing each covariate in 2001 on the SP coverage in 2009.
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Table A.5: Average Treatment Effect of SP coverage on Sanitary Jurisdictionsa

Result Variable 2010-2001 Bootstrap Normal-based

(Change in Density)b Samplec Coef.d Std. Err. z p > z [95% Conf. Interval]

Doctor’s offices

UM 0.27 0.06 4.74 0.00 0.16 0.38

OLS-SW 0.25 0.08 3.01 0.00 0.09 0.41

CBPS-OVER 0.20 0.06 3.18 0.00 0.08 0.32

CBPS-EXACT 0.15 0.09 1.66 0.10 -0.03 0.32

NP-CBPS 0.19 0.08 2.33 0.02 0.03 0.35

Physicians with day-to-day

contact with patients

UM 0.49 0.10 4.72 0.00 0.28 0.69

OLS-SW 0.68 0.22 3.06 0.00 0.24 1.11

CBPS-OVER 0.69 0.13 5.28 0.00 0.43 0.94

CBPS-EXACT 0.70 0.15 4.61 0.00 0.40 1.00

NP-CBPS 0.64 0.17 3.71 0.00 0.30 0.97

Table continues
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Result Variable 2010-2001 Bootstrap Normal-based

(Change in Density)b Samplec Coef.d Std. Err. z p > z [95% Conf. Interval]

Physicians without

day-to-day contact with

patients

UM 0.02 0.02 1.18 0.24 -0.02 0.06

OLS-SW -0.02 0.03 -0.82 0.41 -0.07 0.03

CBPS-OVER 0.01 0.02 0.25 0.81 -0.04 0.05

CBPS-EXACT 0.01 0.03 0.20 0.84 -0.05 0.06

NP-CBPS -0.01 0.03 -0.23 0.81 -0.06 0.04

Nurses with day-to-day

contact with patients

UM 0.52 0.16 3.26 0.00 0.21 0.83

OLS-SW 0.87 0.27 3.23 0.00 0.34 1.40

CBPS-OVER 0.85 0.17 4.89 0.00 0.51 1.19

CBPS-EXACT 0.93 0.23 4.10 0.00 0.49 1.38

NP-CBPS 0.79 0.24 3.22 0.00 0.31 1.27

Table continues
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Result Variable 2010-2001 Bootstrap Normal-based

(Change in Density)b Samplec Coef.d Std. Err. z p > z [95% Conf. Interval]

Nurses without day-to-day

contact with patients

UM 0.08 0.03 2.71 0.01 0.02 0.14

OLS-SW 0.04 0.03 1.35 0.18 -0.02 0.11

CBPS-OVER 0.06 0.03 2.03 0.04 0.00 0.12

CBPS-EXACT 0.07 0.03 2.14 0.03 0.01 0.13

NP-CBPS 0.05 0.03 1.89 0.06 0.00 0.11

Source: Own elaboration based on data from the Sistema Nacional de Información en Salud (National Health Information System) and Seguro Popular administrative records

Estimates based on 1000 replications. Bootstrapping takes into account the matching algorithm.
a SP coverage refers to affiliates in 2009 as proportion of the population without traditional health insurance: IMSS, ISSSTE, Pemex, the Ministry of Defense or the Navy.
b Per thousand population without traditional health insurance.
c UM corresponds to the unmatched 194 sanitary jurisdictions with the smallest mean distance to the rest of the observations in the data, OLS-SW to the sample weighted

using Robins’ stabilized weights assuming Gaussian distribution fitted with all two-way interactions; CBPS-OVER to the sample weighted using Over-identified Covariate

Balance Propensity Score, which gives equal importance to both correctly predict treatment-assignation and balancing covariates; CBPS-EXACT to the sample weighted

using Exactly-identified Covariate Balance Propensity Score, which privileges covariate balance over the probabilistic model; and NPCBPS to the sample weighted using

Non-parametric Covariate Balance Propensity Score, which dispenses with models altogether only minimizing covariate balance.
d Coefficients result from regressing each result variable on the SP coverage in 2009.
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Table A.6: Quantile Treatment Effect of SP coverage on Sanitary Jurisdictionsa

/Sampleb UM OLS-SW CBPS-OVER CBPS-EXACT NP-CBPS

Res. Variablec Quantile Coef.d p > z Coef.d p > z Coef.d p > z Coef.d p > z Coef.d p > z

Doctor’s

offices

.10 0.15 0.07 0.02 0.84 0.16 0.09 -0.02 0.89 -0.02 0.86

.25 0.16 0.00 0.15 0.01 0.14 0.00 0.15 0.06 0.15 0.02

.50 0.26 0.00 0.34 0.00 0.21 0.00 0.26 0.01 0.21 0.07

.75 0.30 0.00 0.37 0.02 0.22 0.00 0.25 0.03 0.28 0.05

.90 0.38 0.00 0.39 0.02 0.31 0.00 0.34 0.02 0.36 0.01

.95 0.45 0.00 0.48 0.00 0.44 0.00 0.44 0.01 0.44 0.00

Table continues
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/Sampleb UM OLS-SW CBPS-OVER CBPS-EXACT NP-CBPS

Res. Variablec Quantile Coef.d p > z Coef.d p > z Coef.d p > z Coef.d p > z Coef.d p > z

Physicians

with

day-to-day

contact with

patients

.10 0.40 0.00 0.35 0.13 0.40 0.02 0.32 0.24 0.32 0.15

.25 0.43 0.00 0.46 0.14 0.55 0.00 0.53 0.03 0.43 0.07

.50 0.58 0.00 0.87 0.00 0.78 0.00 0.76 0.00 0.73 0.00

.75 0.50 0.00 0.76 0.02 0.79 0.00 0.81 0.00 0.76 0.00

.90 0.32 0.25 0.50 0.14 0.50 0.03 0.53 0.05 0.46 0.05

.95 0.00 0.99 0.60 0.23 0.15 0.77 0.30 0.53 0.21 0.74

Table continues
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/Sampleb UM OLS-SW CBPS-OVER CBPS-EXACT NP-CBPS

Res. Variablec Quantile Coef.d p > z Coef.d p > z Coef.d p > z Coef.d p > z Coef.d p > z

Nurses with

day-to-day

contact with

patients

.10 0.42 0.02 0.28 0.26 0.47 0.03 0.41 0.14 0.39 0.12

.25 0.33 0.01 0.52 0.06 0.85 0.00 0.74 0.01 0.64 0.02

.50 0.57 0.01 1.21 0.00 1.23 0.00 1.36 0.00 1.15 0.00

.75 0.73 0.00 1.20 0.06 0.86 0.00 1.02 0.01 0.94 0.04

.90 0.66 0.09 1.00 0.15 0.68 0.03 1.10 0.02 0.84 0.07

.95 0.30 0.66 0.82 0.16 0.52 0.28 1.12 0.02 0.39 0.47

Source: Own elaboration based on data from the Sistema Nacional de Información en Salud (National Health Information System) and Seguro Popular administrative records

Estimates based on 1000 replications. Bootstrapping takes into account the matching algorithm.
a Affiliates in 2009 as proportion of the population without traditional (labor-related) health insurance: IMSS, ISSSTE, Pemex, the Ministry of Defense or the Navy.
b UM corresponds to the unmatched 194 sanitary jurisdictions with the smallest mean distance to the rest of the observations in the data, OLS-SW to the sample weighted

using Robins’ stabilized weights assuming Gaussian distribution fitted with all two-way interactions; CBPS-OVER to the sample weighted using Over-identified Covariate

Balance Propensity Score, which gives equal importance to both correctly predict treatment-assignation and balancing covariates; CBPS-EXACT to the sample weighted

using Exactly-identified Covariate Balance Propensity Score, which privileges covariate balance over the probabilistic model; and NPCBPS to the sample weighted using

Non-parametric Covariate Balance Propensity Score, which dispenses with models altogether only minimizing covariate balance.
c 2010-2001 change in density (per thousand population without traditional health insurance).
d Coefficients result from a quantile regression of each result variable on the SP coverage in 2009.
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Table A.7: Interaction Treatment Effect of SP coverage with Pre-treatment Covariates on

Sanitary Jurisdictionsa

/Sampleb UM OLS-SW CBPS-OVER CBPS-EXACT NP-CBPS

Res. Var.c Termsd Coef.e p > z Coef.e p > z Coef.e p > z Coef.e p > z Coef.e p > z

Doctor’s

offices

SP 0.31 0.01 0.33 0.00 0.26 0.02 0.37 0.01 0.19 0.16

SPxDO -0.16 0.53 -0.38 0.21 -0.13 0.67 0.33 0.35 -0.26 0.37

SPxSHB -0.16 0.13 -0.05 0.72 -0.13 0.25 0.06 0.69 -0.03 0.84

SPxNSHB 0.03 0.71 0.08 0.40 0.05 0.53 0.09 0.30 0.08 0.41

SPxPWC 0.20 0.35 0.11 0.66 0.10 0.70 -0.60 0.09 0.28 0.27

SPxPWOC -0.65 0.21 -0.10 0.88 -0.18 0.73 0.01 0.99 -0.01 0.99

SPxNWC -0.09 0.38 -0.03 0.77 -0.07 0.52 -0.01 0.95 -0.17 0.17

SPxNWOC 0.49 0.54 0.18 0.77 0.30 0.69 0.48 0.60 0.27 0.72

Table continues
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/Sampleb UM OLS-SW CBPS-OVER CBPS-EXACT NP-CBPS

Res. Var.c Termsd Coef.e p > z Coef.e p > z Coef.e p > z Coef.e p > z Coef.e p > z

Physicians

with

day-to-day

contact

with

patients

SP 0.53 0.00 0.69 0.01 0.64 0.00 0.74 0.00 0.52 0.05

SPxDO -0.55 0.20 -0.87 0.10 -0.47 0.34 0.01 0.99 -0.76 0.18

SPxSHB 0.10 0.66 0.10 0.68 0.10 0.68 0.32 0.27 0.20 0.51

SPxNSHB -0.04 0.74 -0.05 0.75 -0.12 0.31 -0.06 0.74 0.02 0.90

SPxPWC 0.24 0.46 0.20 0.64 0.21 0.57 -0.34 0.47 0.44 0.32

SPxPWOC 1.72 0.21 2.76 0.11 2.33 0.10 2.52 0.05 3.07 0.05

SPxNWC 0.05 0.77 0.10 0.58 0.04 0.81 0.03 0.91 -0.11 0.63

SPxNWOC -1.13 0.11 -0.98 0.34 -1.15 0.13 -0.96 0.35 -1.48 0.18

Table continues
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/Sampleb UM OLS-SW CBPS-OVER CBPS-EXACT NP-CBPS

Res. Var.c Termsd Coef.e p > z Coef.e p > z Coef.e p > z Coef.e p > z Coef.e p > z

Nurses

with

day-to-day

contact

with

patients

SP 0.61 0.01 0.88 0.01 0.87 0.00 0.79 0.02 0.69 0.06

SPxDO -0.64 0.09 -0.79 0.09 -0.69 0.06 -0.85 0.08 -0.99 0.03

SPxSHB 0.55 0.05 0.25 0.44 0.48 0.12 0.49 0.16 0.46 0.21

SPxNSHB -0.01 0.92 -0.12 0.54 -0.15 0.30 -0.12 0.56 0.03 0.89

SPxPWC 0.40 0.26 0.35 0.46 0.55 0.15 0.93 0.06 0.77 0.11

SPxPWOC 2.25 0.10 2.56 0.24 1.84 0.18 2.07 0.22 3.11 0.04

SPxNWC -0.25 0.39 -0.07 0.83 -0.29 0.29 -0.43 0.23 -0.44 0.18

SPxNWOC -1.00 0.25 -0.57 0.66 -0.60 0.53 -0.40 0.75 -0.86 0.49

Source: Own elaboration based on data from the Sistema Nacional de Información en Salud (National Health Information System) and Seguro Popular administrative records

Estimates based on 1000 replications. Bootstrapping takes into account the matching algorithm.
a Affiliates in 2009 as proportion of the population without traditional (labor-related) health insurance: IMSS, ISSSTE, Pemex, the Ministry of Defense or the Navy.
b UM corresponds to the unmatched 194 sanitary jurisdictions with the smallest mean distance to the rest of the observations in the data, OLS-SW to the sample weighted

using Robins’ stabilized weights assuming Gaussian distribution fitted with all two-way interactions; CBPS-OVER to the sample weighted using Over-identified Covariate

Balance Propensity Score, which gives equal importance to both correctly predict treatment-assignation and balancing covariates; CBPS-EXACT to the sample weighted

using Exactly-identified Covariate Balance Propensity Score, which privileges covariate balance over the probabilistic model; and NPCBPS to the sample weighted using

Non-parametric Covariate Balance Propensity Score, which dispenses with models altogether only minimizing covariate balance.
c 2010-2001 change in density (per thousand population without traditional health insurance).
d SP corresponds to Seguro Popular coverage, the rest of the terms correspond to the interaction of Seguro Popular coverage with pre-treatment covariates as follows: SPxDO

to the interaction with the density of Doctor’s Offices in 2001, SPxSHB to the interaction with the density of Staffed Hospital Beds, SPxNSHB to the interaction with the

density of Non-Staffed Hospital Beds, SPxPWC to the interaction with the density of Physicians with day-to-day contact with patients, SPxPWoC to the interaction with the

density of Physicians without day-to-day contact with patients, SPxNWC to the interaction with the density of Nurses with day-to-day contact with patients and SPxNOWC to

the interaction with the density of Nurses without day-to-day contact with patients.
e Coefficients result from regressing each result variable on the SP coverage in 2009 and its interaction with all 7 pre-treatment covariates.
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A.2 Derivation and Tables from Chapter 3

Equation 3.3 follows from plugging the Gaussian distribution,

SWit (At, X t) =
t∏

t′=0

fσ2 (Ait′)

fθ (Ait′ | Ait′−1, X it′)

=
t∏

t′=0

✚
✚✚1

σ
√

2π
exp

{
− 1

2σ2 A2
t

}

✚
✚✚1

σ
√

2π
exp

{
− 1

2σ2

[
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(
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t−1α + X⊤
t β

)]2
}

=
t∏

t′=0

exp
{

1

2σ2

([
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(
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t−1α + X⊤
t β

)]2 − A2
t

)}

=
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exp
{

1

2σ2

(
�
�A2
t − 2At

(
A⊤

t−1α + X⊤
t β

)
+

(
A⊤

t−1α + X⊤
t β

)2 −�
�A2
t

)}

=
t∏

t′=0

exp
[

1

2σ2

{
−2Ait′

(
A⊤

it′−1α + X⊤
it′β

)
+

(
A⊤

it′−1α + X⊤
it′β

)2
}]

.

Equation 3.4 follows from plugging the definition of Robins’ stabilized weights,

E [SWit (Ait, X it) AitX it]

= E

[
t∏

t′=0

f (Ait′)

f (Ait′ | Ait′−1, X it′)
AitX it

]

=

ˆ

{
ˆ t∏

t′=0

f (Ait′)

f (Ait′ | Ait′−1, X it′)
AitdF (Ait | X it)

}
X itdF (X it)

= E (Ait) E (X it),

where last equality follows from assuming that current variables can only be affected by
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the past; and that the marginal distribution of At is independent across time periods, i.e.,

f (Ait | X it)

= f (Ait | Ait−1, X it) f (Ait−1 | Ait−2, X it) · · · f (Ai1 | X it)

= f (Ait | Ait−1, X it) f (Ait−1 | Ait−2, X it−1) · · · f (Ai1 | X i1)

=
t∏

t′=0

f (Ait′ | Ait′−1, X it′) .

The elements of the last row and column of
∑

θ (At, X t) are derived as follows.
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∑
θ [1, 3] =

∑
θ [3, 1]

= E [g1g3 | (Ait−1, X it)]
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Where the last equality follows from assuming the marginal distribution of At to be Gaussian with mean zero,

and thus E (Ait) = 0 and E (A2
it) = σ2.
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∑
θ [2, 3] =
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Where the last two equalities follow from assuming the marginal distribution of At to be Gaussian with mean

zero, making its third moment equal zero, E (A3
it), and its second moment equal its variance, E (A2

it) = σ2.
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Where the last equality follows from recognizing the Gaussian distribution of Ait with mean -
(
A⊤

it′−1α + X⊤
it′β

)

and variance σ2, whose second noncentral moment appears enclosed in the first set of brackets.
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Table A.8: Covariate-Balance for Time-varying SP coverage on Sanitary Jurisdictionsa

Bootstrap Normal-based

Variableb Samplec Coef.d Std. Err. z p > z [95% Conf. Interval]

Doctor’s offices

UW 0.10 0.03 3.75 0.00 0.05 0.15

GLM 0.05 0.02 2.89 0.00 0.02 0.09

CBIPW-OVER 0.01 0.06 0.20 0.84 -0.10 0.13

CBIPW-EXACT 0.01 0.02 0.47 0.64 -0.03 0.05

Staffed hospital beds

UW 0.00 0.04 0.02 0.98 -0.07 0.07

GLM 0.01 0.02 0.46 0.65 -0.03 0.05

CBIPW-OVER 0.02 0.05 0.43 0.67 -0.07 0.11

CBIPW-EXACT 0.01 0.02 0.40 0.69 -0.04 0.05

Non-staffed hospital

beds

UW 0.24 0.07 3.61 0.00 0.11 0.37

GLM -0.01 0.03 -0.32 0.75 -0.06 0.04

CBIPW-OVER -0.08 0.12 -0.67 0.50 -0.31 0.15

CBIPW-EXACT 0.01 0.02 0.40 0.69 -0.04 0.06

Table continues
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Bootstrap Normal-based

Variableb Samplec Coef.d Std. Err. z p > z [95% Conf. Interval]

Physicians with

day-to-day contact with

patients

UW 0.21 0.06 3.54 0.00 0.09 0.33

GLM 0.13 0.04 3.66 0.00 0.06 0.21

CBIPW-OVER 0.11 0.08 1.27 0.21 -0.06 0.27

CBIPW-EXACT 0.02 0.04 0.55 0.58 -0.05 0.09

Physicians without

day-to-day contact with

patients

UW -0.01 0.01 -1.37 0.17 -0.02 0.00

GLM 0.00 0.00 -0.57 0.57 -0.01 0.01

CBIPW-OVER 0.00 0.01 0.06 0.95 -0.03 0.03

CBIPW-EXACT 0.00 0.00 0.25 0.80 -0.01 0.01

Nurses with day-to-day

contact with patients

UW 0.25 0.09 2.88 0.00 0.08 0.41

GLM 0.14 0.05 2.95 0.00 0.05 0.24

CBIPW-OVER 0.11 0.13 0.82 0.41 -0.15 0.36

CBIPW-EXACT 0.03 0.04 0.70 0.49 -0.06 0.12

Table continues
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Bootstrap Normal-based

Variableb Samplec Coef.d Std. Err. z p > z [95% Conf. Interval]

Nurses without

day-to-day contact with

patients

UW -0.02 0.01 -1.93 0.05 -0.04 0.00

GLM 0.00 0.01 -0.61 0.54 -0.01 0.01

CBIPW-OVER 0.00 0.02 -0.12 0.91 -0.04 0.04

CBIPW-EXACT 0.00 0.01 0.37 0.71 -0.01 0.01

Source: Own elaboration based on data from the Sistema Nacional de Información en Salud (National Health Information System) and Seguro Popular administrative records

Estimates based on 1000 replications. Bootstrapping takes into account the matching algorithm.
a SP coverage refers to affiliates as proportion of the population without traditional (work-related) health insurance (IMSS, ISSSTE, Pemex, the Ministry of Defense or the

Navy).
b Per thousand population without traditional health insurance.
c UW corresponds to the unweighted 194 sanitary jurisdictions with the smallest mean distance to the rest of the observations in the data; GLM to the sample weighted

using OLS and an empty model as stabilizer; CBIPW-OVER to the sample weighted using over-identified correlation-breaking inverse-probability weights, which gives equal

importance to both correctly predict treatment-assignation and balancing covariates and CBPS-EXACT to the sample weighted using Just-identified CBIPW, which privileges

covariate balance over the probabilistic model.
d Coefficients result from a pooled regressions (2328 obs.) of each covariate on the yearly increment of SP coverage.
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Table A.9: Average Treatment Effect of SP coverage on Sanitary Jurisdictionsa

Bootstrap Normal-based

Outcome Variableb Samplec Coef.d Std. Err. z p > z [95% Conf. Interval]

Doctor’s offices

UW 0.20 0.01 16.90 0.00 0.18 0.23

GLM 0.19 0.01 17.37 0.00 0.16 0.21

CBIPW-OVER 0.19 0.04 5.31 0.00 0.12 0.26

CBIPW-EXACT 0.19 0.01 16.03 0.00 0.17 0.22

Physicians with

day-to-day contact with

patients

UW 0.53 0.02 22.42 0.00 0.49 0.58

GLM 0.51 0.02 21.50 0.00 0.46 0.56

CBIPW-OVER 0.52 0.05 10.36 0.00 0.42 0.61

CBIPW-EXACT 0.51 0.03 15.23 0.00 0.45 0.58

Table continues
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Bootstrap Normal-based

Outcome Variableb Samplec Coef.d Std. Err. z p > z [95% Conf. Interval]

Nurses with day-to-day

contact with patients

UW 0.73 0.04 19.00 0.00 0.66 0.81

GLM 0.71 0.03 20.81 0.00 0.65 0.78

CBIPW-OVER 0.72 0.05 15.46 0.00 0.63 0.82

CBIPW-EXACT 0.72 0.04 18.09 0.00 0.64 0.80

Source: Own elaboration based on data from the Sistema Nacional de Información en Salud (National Health Information System) and Seguro Popular administrative records

Estimates based on 1000 replications. Bootstrapping takes into account the matching algorithm.
a SP coverage refers to affiliates as proportion of the population without traditional (work-related) health insurance (IMSS, ISSSTE, Pemex, the Ministry of Defense or the

Navy).
b Increment on the relative number (per thousand population without traditional health insurance) with respect to year prior the implementation of the program.
c UW corresponds to the unweighted 194 sanitary jurisdictions with the smallest mean distance to the rest of the observations in the data; GLM to the sample weighted

using OLS and an empty model as stabilizer; CBIPW-OVER to the sample weighted using over-identified correlation-breaking inverse-probability weights, which gives equal

importance to both correctly predict treatment-assignation and balancing covariates and CBPS-EXACT to the sample weighted using Just-identified CBIPW, which privileges

covariate balance over the probabilistic model.
d Coefficients result from pooled regressions (2328 obs.) of each outcome variable on (cumulated) SP coverage.
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Appendix B

Programming code (Stata®)

Do-file used to obtain the Correlation Breaking Inverse Prob-

ability of Treatment Weights in Chapter 3.

The next code is an adaptation of the code CBPSContinuous.r by Christian Fong, Chad

Hazlett, and Kosuke Imai [14]. This code does not define a Stata® command (ado-file),

readers are free to contact authors directly regarding any doubts or an electronic (.do)

version.The authors would like to thank Christian Fong for useful comments. The usual

disclaimer applies.
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1 cap prog drop CBMSMContinuous
2 mata
3 mata clear
4 end
5
6 prog CBMSMContinuous, eclass
7 version 13
8 syntax varlist [if] [in] [, bal_only bal_only_init init_points(numlist) nelder_mead]
9 marksample touse
10 gettoken lhs rhs : varlist
11
12 mat b = J(1,`:word count `rhs' _cons sigmasq',0)
13 mat b_ort = J(1,`:word count `rhs' _cons sigmasq',0)
14 summ `lhs' if `touse', d
15 mat sw = J(r(N),1,0)
16 mat sw_1 = J(r(N),1,0)
17 mat balance = J(`:word count `rhs'', 1,0)
18 mat basel = J(`:word count `rhs'', 1,0)
19 sort id t
20
21 tempvar bootrep bs_id
22 tempname bs_mid
23 bys id t: gen `bootrep'=_n
24 sort id `bootrep' t
25 egen bs_id = group(id `bootrep')
26
27
28 mat colnames b = (intercept) `rhs' _sigmasq
29 mat colnames b_ort = (intercept) `rhs' _sigmasq
30 local init_points: subinstr local init_points " " ", ", all
31
32 if ("`init_points'"!=""){
33 mata: i_CBMSM_c("`lhs'", "`rhs'", "`touse'", "`bal_only'", "`bal_only_init'",

"`nelder_mead'", (`init_points'))
34 }
35 else {
36 mata: i_CBMSM_c("`lhs'", "`rhs'", "`touse'", "`bal_only'", "`bal_only_init'",

"`nelder_mead'")
37 }
38 drop bs_id
39 mat sw_transpose=sw'
40 mat b_all=b_ort, sw_transpose
41 eret post b_ort
42 eret matrix sw sw
43 eret matrix sw_1 sw_1
44 eret matrix balance balance
45 eret matrix basel basel
46 eret local state "`=c(seed)'"
47 eret di
48 end
49
50 mata:
51 void i_lossf(todo,b,loss,g,H)
52 {
53 external Ttilde, Xtilde, info, time, stabilizers
54 n = rows(Ttilde)
55 k = cols(Xtilde)
56 probs_min=1e-6
57 cons = J(n,1,1)
58
59 XtildeXtilde = cross(Xtilde,Xtilde)
60 XtildeTtilde = cross(Xtilde,Ttilde)
61 mcoef = pinv(XtildeXtilde)*XtildeTtilde
62 e = Ttilde - (Xtilde)*mcoef
63 sigmasq_mco=mean((Ttilde - Xtilde*mcoef):^2)
64 Ttilde_hat=(Xtilde)*mcoef
65
66 sigmasq = exp(log(sigmasq_mco)*b)
67 probs_curr=normalden(Ttilde, Xtilde*(mcoef*b), sqrt(sigmasq))
68 probs_curr=rowmin((cons:-probs_min,probs_curr))
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69 probs_curr=rowmax((cons*probs_min,probs_curr))
70
71 probs_curr=log(probs_curr)
72
73 for (i=1; i<=rows(info); i++) {
74 j0 = info[i, 1]
75 j1 = info[i, 2]
76 for (j=j0+1; j<=j1; j++) {
77 probs_curr[j] = probs_curr[j-1] + probs_curr[j]
78 }
79
80 }
81
82 w= stabilizers' - probs_curr
83 sw=w
84 swsq=2*sw
85 sw=exp(sw)
86 swsq=exp(swsq)
87
88 sw_1=J(rows(Ttilde),1,1)
89 for (i=1; i<=rows(info); i++) {
90 j0 = info[i, 1]
91 j1 = info[i, 2]
92 for (j=j0+1; j<=j1; j++) {
93 sw_1[j] = sw[j-1]
94 }
95
96 }
97
98 swsq_1=J(rows(Ttilde),1,1)
99 for (i=1; i<=rows(info); i++) {
100 j0 = info[i, 1]
101 j1 = info[i, 2]
102 for (j=j0+1; j<=j1; j++) {
103 swsq_1[j] = swsq[j-1]
104 }
105
106 }
107
108
109 w_curr=Ttilde:*sw
110
111 w_curr_del=1/n*Xtilde'*w_curr
112
113 score_1= 1/n*Xtilde'*(Ttilde-Xtilde*(mcoef*b))/sigmasq
114 score_2= 1/n*cons'*((Ttilde - Xtilde*(mcoef*b)):^2/(2*sigmasq^2) :- 1/(2*sigmasq))
115
116 gbar=(score_1 \score_2 \ w_curr_del)
117
118 n_identity_vec = J(rows(Ttilde),1,1)
119
120 Xtilde_1_1=1/sigmasq*Xtilde'*Xtilde
121 Xtilde_1_2=0*Xtilde'*n_identity_vec
122 Xtilde_1_3=Xtilde'*(Xtilde:*sw_1)
123 Xtilde_2_2=n_identity_vec'*n_identity_vec*(2*sigmasq^2)^(-1)
124 Xtilde_2_3=Xtilde'*((-Xtilde*(mcoef*b)/sigmasq):*sw_1)
125 Xtilde_3_3=Xtilde:*rowmin((exp((Xtilde*(mcoef*b)):^2/sigmasq + log(sigmasq :+ (

Xtilde*(mcoef*b)):^2)), cons*10^250))
126 Xtilde_3_3=Xtilde'*(Xtilde_3_3:*swsq_1)
127
128 V=(1/n*(Xtilde_1_1,Xtilde_1_2,Xtilde_1_3) \ 1/n*(Xtilde_1_2',Xtilde_2_2,Xtilde_2_3')

 \ 1/n*(Xtilde_1_3,Xtilde_2_3,Xtilde_3_3))
129 invV=pinv(V)
130
131 loss1=gbar'*invV*gbar
132 loss=loss1*n
133
134 }
135
136
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137
138
139
140 void i_loss(todo,b,loss,g,H)
141 {
142 external Ttilde, Xtilde, info, time, stabilizers
143
144 n = rows(Ttilde)
145 k = cols(Xtilde)
146 probs_min=1e-6
147 cons = J(n,1,1)
148
149 XtildeXtilde = cross(Xtilde,Xtilde)
150 XtildeTtilde = cross(Xtilde,Ttilde)
151
152 mcoef = pinv(XtildeXtilde)*XtildeTtilde
153 e = Ttilde - (Xtilde)*mcoef
154 sigmasq_mco=mean((Ttilde - Xtilde*mcoef):^2)
155
156 Ttilde_hat=(Xtilde)*mcoef
157
158 sigmasq = exp(b[cols(Xtilde)+1])
159
160 probs_curr=normalden(Ttilde, Xtilde*b[1..cols(Xtilde)]', sqrt(sigmasq))
161
162 probs_curr=rowmin((cons:-probs_min,probs_curr))
163 probs_curr=rowmax((cons*probs_min,probs_curr))
164
165 probs_curr=log(probs_curr)
166
167 for (i=1; i<=rows(info); i++) {
168 j0 = info[i, 1]
169 j1 = info[i, 2]
170 for (j=j0+1; j<=j1; j++) {
171 probs_curr[j] = probs_curr[j-1] + probs_curr[j]
172 }
173
174 }
175
176 w= stabilizers' - probs_curr
177 sw=w
178 swsq=2*sw
179 sw=exp(sw)
180 swsq=exp(swsq)
181 sw_1=J(rows(Ttilde),1,1)
182 for (i=1; i<=rows(info); i++) {
183 j0 = info[i, 1]
184 j1 = info[i, 2]
185 for (j=j0+1; j<=j1; j++) {
186 sw_1[j] = sw[j-1]
187 }
188
189 }
190
191 swsq_1=J(rows(Ttilde),1,1)
192 for (i=1; i<=rows(info); i++) {
193 j0 = info[i, 1]
194 j1 = info[i, 2]
195 for (j=j0+1; j<=j1; j++) {
196 swsq_1[j] = swsq[j-1]
197 }
198 }
199
200
201 w_curr=Ttilde:*sw
202 w_curr_del=1/n*Xtilde'*w_curr
203
204 score_1= 1/n*Xtilde'*(Ttilde-Xtilde*b[1..cols(Xtilde)]')/sigmasq
205 score_2= 1/n*cons'*((Ttilde - Xtilde*b[1..cols(Xtilde)]'):^2/(2*sigmasq^2) :- 1/(2*

sigmasq))



170

206
207 gbar=(score_1 \score_2 \ w_curr_del)
208
209 n_identity_vec = J(rows(Ttilde),1,1)
210
211 Xtilde_1_1=1/sigmasq*Xtilde'*Xtilde
212 Xtilde_1_2=0*Xtilde'*n_identity_vec
213 Xtilde_1_3=Xtilde'*(Xtilde:*sw_1)
214 Xtilde_2_2=n_identity_vec'*n_identity_vec*(2*sigmasq^2)^(-1)
215 Xtilde_2_3=Xtilde'*((-Xtilde*b[1..cols(Xtilde)]'/sigmasq):*sw_1)
216 Xtilde_3_3=Xtilde:*rowmin((exp((Xtilde*b[1..cols(Xtilde)]'):^2/sigmasq + log(sigmasq

:+ (Xtilde*b[1..cols(Xtilde)]'):^2)), cons*10^250))
217 Xtilde_3_3=Xtilde'*(Xtilde_3_3:*swsq_1)
218
219 V=(1/n*(Xtilde_1_1,Xtilde_1_2,Xtilde_1_3) \ 1/n*(Xtilde_1_2',Xtilde_2_2,Xtilde_2_3')

 \ 1/n*(Xtilde_1_3,Xtilde_2_3,Xtilde_3_3))
220 invV=pinv(V)
221
222 loss1=gbar'*invV*gbar
223 loss=loss1*n
224
225 if (todo >= 1) {
226
227 dgbar_1_1 = quadcross(-Xtilde,Xtilde/sigmasq)
228 dgbar_1_2 = (-(Ttilde - Xtilde*b[1..cols(Xtilde)]')/(sigmasq^2))'*Xtilde
229 dgbar_2_2 = n_identity_vec'*(-(Ttilde - Xtilde*b[1..cols(Xtilde)]'):^2/(sigmasq^

3) :+ (2*sigmasq^2)^(-1))
230
231 dgbar_3_1=(Xtilde):*(Ttilde-Xtilde*b[1..cols(Xtilde)]')/sigmasq
232
233
234 for (i=1; i<=rows(info); i++) {
235 j0 = info[i, 1]
236 j1 = info[i, 2]
237 for (j=j0+1; j<=j1; j++) {
238 dgbar_3_1[j,.] = dgbar_3_1[j-1,.] + dgbar_3_1[j,.]
239 }
240
241 }
242
243 dgbar_3_1 = ((dgbar_3_1:*w_curr))'*Xtilde
244 dgbar_3_2 = (Ttilde - Xtilde*b[1..cols(Xtilde)]'):^2/(2*sigmasq^2) :- 1/(2*

sigmasq)
245
246 for (i=1; i<=rows(info); i++) {
247 j0 = info[i, 1]
248 j1 = info[i, 2]
249 for (j=j0+1; j<=j1; j++) {
250 dgbar_3_2[j] = dgbar_3_2[j-1] + dgbar_3_2[j]
251 }
252
253 }
254
255 dgbar_3_2 = (-w_curr:*(dgbar_3_2))'*Xtilde
256
257 dgbar = 1/n*((dgbar_1_1 \ dgbar_1_2*sigmasq),
258 (dgbar_1_2'\ dgbar_2_2*sigmasq),
259 (dgbar_3_1 \ dgbar_3_2*sigmasq))
260
261 gt = 2*n*dgbar*invV*gbar
262 g = gt'
263
264 }
265
266 if (todo == 2) {
267
268 H = 2*n*dgbar*invV*dgbar'
269 _makesymmetric(H)
270
271 }
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272
273
274 }
275
276
277 void i_loss_bal_only(todo,b,loss,g,H)
278 {
279 external Ttilde, Xtilde, info, time, stabilizers
280
281 n = rows(Ttilde)
282 k = cols(Xtilde)
283 probs_min=1e-6
284 cons = J(n,1,1)
285
286 XtildeXtilde = cross(Xtilde,Xtilde)
287 XtildeTtilde = cross(Xtilde,Ttilde)
288 mcoef = pinv(XtildeXtilde)*XtildeTtilde
289 e = Ttilde - (Xtilde)*mcoef
290 sigmasq_mco=mean((Ttilde - Xtilde*mcoef):^2)
291 Ttilde_hat=(Xtilde)*mcoef
292
293 sigmasq = exp(b[cols(Xtilde)+1])
294
295 probs_curr=normalden(Ttilde, Xtilde*b[1..cols(Xtilde)]', sqrt(sigmasq))
296 /**/
297 probs_curr=rowmin((cons:-probs_min,probs_curr))
298 probs_curr=rowmax((cons*probs_min,probs_curr))
299
300 probs_curr=log(probs_curr)
301
302 for (i=1; i<=rows(info); i++) {
303 j0 = info[i, 1]
304 j1 = info[i, 2]
305 for (j=j0+1; j<=j1; j++) {
306 probs_curr[j] = probs_curr[j-1] + probs_curr[j]
307 }
308
309 }
310
311 w= stabilizers' - probs_curr
312
313 sw=w
314 swsq=2*sw
315 sw=exp(sw)
316 swsq=exp(swsq)
317
318 sw_1=J(rows(Ttilde),1,1)
319 for (i=1; i<=rows(info); i++) {
320 j0 = info[i, 1]
321 j1 = info[i, 2]
322 for (j=j0+1; j<=j1; j++) {
323 sw_1[j] = sw[j-1]
324 }
325
326 }
327
328 swsq_1=J(rows(Ttilde),1,1)
329 for (i=1; i<=rows(info); i++) {
330 j0 = info[i, 1]
331 j1 = info[i, 2]
332 for (j=j0+1; j<=j1; j++) {
333 swsq_1[j] = swsq[j-1]
334 }
335
336 }
337
338
339 w_curr=Ttilde:*sw
340 w_curr_del=1/n*Xtilde'*w_curr
341 gbar=w_curr_del
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342
343 invV=pinv(Xtilde'*Xtilde)
344
345 loss1=gbar'*invV*gbar
346 loss=loss1*n
347
348 if (todo >= 1) {
349
350
351 dgbar_3_1=(Xtilde):*(Ttilde-Xtilde*b[1..cols(Xtilde)]')/sigmasq
352
353
354 for (i=1; i<=rows(info); i++) {
355 j0 = info[i, 1]
356 j1 = info[i, 2]
357 for (j=j0+1; j<=j1; j++) {
358 dgbar_3_1[j,.] = dgbar_3_1[j-1,.] + dgbar_3_1[j,.]
359 }
360
361 }
362
363
364 dgbar_3_1 = ((dgbar_3_1:*w_curr))'*Xtilde
365
366 dgbar_3_2 = (Ttilde - Xtilde*b[1..cols(Xtilde)]'):^2/(2*sigmasq^2) :- 1/(2*

sigmasq)
367
368 for (i=1; i<=rows(info); i++) {
369 j0 = info[i, 1]
370 j1 = info[i, 2]
371 for (j=j0+1; j<=j1; j++) {
372 dgbar_3_2[j] = dgbar_3_2[j-1] + dgbar_3_2[j]
373 }
374
375 }
376
377 dgbar_3_2 = (-w_curr:*(dgbar_3_2))'*Xtilde
378
379
380
381 dgbar = 1/n*((dgbar_3_1) \
382 sigmasq*(dgbar_3_2))
383
384 gt = 2*n*dgbar*invV*gbar
385 g = gt'
386
387 }
388
389 if (todo == 2) {
390
391 H = 2*n*dgbar*invV*dgbar'
392 _makesymmetric(H)
393
394 }
395
396
397 }
398
399 void i_CBMSM_c(string scalar lhs, string scalar rhs, string scalar ok, string scalar

bal_only, string scalar bal_only_init, string scalar NM,| real vector init_points)
400 {
401
402
403 external treat, X, Ttilde, Xtilde, panel_st, time, info, stabilizers
404 panel_st = st_data(., ("bs_id", "t"), ok)
405 time = st_data(., ("t"), ok)
406 info=panelsetup(panel_st, 1)
407 treat = st_data(., tokens(lhs), ok)
408 cons = J(rows(treat),1,1)
409 probs_min=1e-6
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410
411 X = st_data(., tokens(rhs), ok)
412 X_orig=X
413 x_sd= (diagonal(sqrt(quadvariance(X))))'
414 X_mean=mean(X)
415 X=(X:-mean(X)):/ x_sd
416 X= cons, X
417 U = s = Vt = J(0,0,.)
418 svd(X,U,s,Vt)
419 X=U
420
421 Xtilde=(X :- mean(X))
422 T=(treat:-mean(treat))/(sqrt(quadvariance(treat)))
423 Ttilde=(T:-mean(T))
424
425 n = rows(Ttilde)
426 k = cols(Xtilde)
427
428 XtildeXtilde = cross(Xtilde,Xtilde)
429 XtildeTtilde = cross(Xtilde,Ttilde)
430 mcoef = pinv(XtildeXtilde)*XtildeTtilde
431 Ttilde_hat=(Xtilde)*mcoef
432 e = Ttilde - (Xtilde)*mcoef
433 sigmasq_mco=mean((Ttilde - Xtilde*mcoef):^2)
434
435 stabilizers=normalden(Ttilde[1,.], Ttilde_hat, sqrt(sigmasq_mco))
436
437 stabilizers=rowmin((cons:-probs_min,stabilizers))
438 stabilizers=rowmax((cons*probs_min,stabilizers))
439
440 i=2
441
442 while (i<=n) {
443 probs=normalden(Ttilde[i,.], Ttilde_hat, sqrt(sigmasq_mco))
444 /**/
445 probs=rowmin((cons:-probs_min,probs))
446 probs=rowmax((cons*probs_min,probs))
447
448 stabilizers=(stabilizers,probs)
449 i++
450 }
451
452 stabilizers=mean(stabilizers)
453
454 stabilizers=log(stabilizers)
455
456 for (i=1; i<=rows(info); i++) {
457 j0 = info[i, 1]
458 j1 = info[i, 2]
459 for (j=j0+1; j<=j1; j++) {
460 stabilizers[j] = stabilizers[j-1] + stabilizers[j]
461 }
462
463 }
464
465
466 if (args()==6) {
467 init = (mcoef', log(sigmasq_mco))
468
469 }
470
471 if (args()==7) {
472 init = init_points
473 }
474
475 S = optimize_init()
476
477 if (bal_only=="" & bal_only_init=="") {
478 optimize_init_evaluator(S, &i_loss())
479 }
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480 else {
481 optimize_init_evaluator(S, &i_loss_bal_only())
482 }
483
484 optimize_init_which(S,"min")
485
486 if (NM=="") {
487 optimize_init_evaluatortype(S,"d2")
488 optimize_init_params(S,init)
489 optimize_init_technique(S, "nr dfp bfgs")
490 }
491 else {
492 optimize_init_evaluatortype(S,"d0")
493 optimize_init_params(S,init)
494 optimize_init_technique(S, "nm")
495
496 optimize_init_nmsimplexdeltas(S, J(1,cols(init),1/100000))
497
498 }
499
500 optimize_init_singularHmethod(S, "hybrid" )
501
502 optimize_init_trace_dots(S, "on")
503 optimize_init_trace_value(S, "on")
504 optimize_init_trace_tol(S, "on")
505 optimize_init_trace_step(S, "on")
506 optimize_init_trace_paramdiffs(S, "on")
507 optimize_init_trace_params(S, "on")
508 optimize_init_trace_gradient(S, "on")
509 optimize_init_trace_Hessian(S, "on")
510
511 _optimize(S)
512
513 if (_optimize(S)==0) {
514 p = optimize_result_params(S)
515 }
516
517 else {
518 optimize_init_evaluatortype(S,"d0")
519 optimize_init_params(S,init)
520 optimize_init_technique(S, "nm")
521 optimize_init_nmsimplexdeltas(S, J(1,cols(init),1))
522 p = optimize(S)
523 }
524
525 if (bal_only_init!="") {
526 init = p
527 if (bal_only=="") {
528 optimize_init_evaluator(S, &i_loss())
529 }
530 else {
531 optimize_init_evaluator(S, &i_loss_bal_only())
532 }
533 optimize_init_evaluatortype(S,"d2")
534 optimize_init_params(S,init)
535 optimize_init_technique(S, "nr dfp bfgs")
536
537 _optimize(S)
538
539 if (_optimize(S)==0) {
540 p = optimize_result_params(S)
541 }
542 else {
543 optimize_init_evaluatortype(S,"d0")
544 optimize_init_params(S,init)
545 optimize_init_technique(S, "nm")
546 optimize_init_nmsimplexdeltas(S, J(1,cols(init),1))
547 p = optimize(S)
548 }
549
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550 }
551
552
553 printf("Minimization report \n")
554 optimize_query(S)
555
556 mlf=optimize_result_value(S)
557 printf("Minimum loss function value = %9.4f \n", mlf)
558
559
560 beta_opt= p[1..cols(X)]
561 sigmasq_opt = exp(p[cols(X)+1])
562 probs_opt = normalden(Ttilde, Xtilde*beta_opt', sqrt(sigmasq_opt))
563 /**/
564 probs_opt = rowmin((cons:-probs_min,probs_opt))
565 probs_opt = rowmax((cons*probs_min,probs_opt))
566
567 probs_opt = log(probs_opt)
568
569 for (i=1; i<=rows(info); i++) {
570 j0 = info[i, 1]
571 j1 = info[i, 2]
572 for (j=j0+1; j<=j1; j++) {
573 probs_opt[j] = probs_opt[j-1] + probs_opt[j]
574 }
575
576 }
577
578 w_opt = stabilizers' - probs_opt
579
580 sw_opt=w_opt
581 sw_opt=exp(sw_opt)
582
583 sw_opt_1=J(rows(Ttilde),1,1)
584 for (i=1; i<=rows(info); i++) {
585 j0 = info[i, 1]
586 j1 = info[i, 2]
587 for (j=j0+1; j<=j1; j++) {
588 sw_opt_1[j] = sw_opt[j-1]
589 }
590 }
591
592 bal = J(cols(X_orig), 1,0)
593 baseline = J(cols(X_orig), 1,0)
594
595 for (j=1; j<=cols(X_orig); j++) {
596 bal[j,1] = (mean(sw_opt:*X_orig[,j]:*treat) - mean(sw_opt:*X_orig[,j

])*mean(sw_opt:*treat)*n/sum(sw_opt))/(sqrt(mean(sw_opt:*X_orig[,j]:^2) - mean(sw_opt:*
X_orig[,j]):^2*n/sum(sw_opt))*sqrt(mean(sw_opt:*treat:^2) - mean(sw_opt:*treat):^2*n/sum(
sw_opt)))

597 baseline[j,1] = quadcorrelation((treat, X_orig[,j]))[1,2]
598
599 }
600
601
602 bal
603 baseline
604
605 beta_opt = pinv(X'*X)*X'*(Xtilde*p[1..cols(X)]' :+ mean(T))
606 sinv = s':^-1
607 beta_opt = Vt'*diag(sinv)*beta_opt
608 beta_opt = beta_opt':/(1,x_sd)
609 beta_opt[.,1] = beta_opt[.,1]-(X_mean*beta_opt[2..cols(X)]')
610
611 st_replacematrix("b_ort",p)
612 st_replacematrix("b",(beta_opt,sigmasq_opt))
613 st_replacematrix("sw",sw_opt)
614 st_replacematrix("sw_1",sw_opt_1)
615 st_replacematrix("balance",bal)
616 st_replacematrix("basel",baseline)
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617

618 }

619 end

620



Disclaimer

The software (do-file) is provided by the author as is and any express or implied war-

ranties, including, but not limited to, the implied warranties of merchantability and fitness

for a particular purpose are disclaimed. In no event shall the author be liable for any di-

rect, indirect, incidental, special, exemplary, or consequential damages (including, but not

limited to, procurement of substitute goods or services; loss of use, data, or profits; or

business interruption) however caused and on any theory of liability, whether in contract,

strict liability, or tort (including negligence or otherwise) arising in any way out of the use

of this software, even if advised of the possibility of such damage.
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