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PREFACE

The idea of this publication originated from the desire to cover
some technical, theoretical and empirical gaps in the literature
on game-based models and evolutionary dynamics. This book is
about selected developments and applications of optimal control
and, more particularly, evolutionary dynamics. It is mainly in-
tended for readers in economics and mathematics but may also
be useful for those in sociology, politics, health, public security
and natural resources. The book contains 13 chapters that are
focused on new modeling developments and applications to mi-
croeconomics and public policy. The vast majority of the chapters
included have undergone expert criticism in congresses and other
academic meetings, which has enriched their contributions.

Its �rst three chapters cover modeling developments, explor-
ing innovative approaches and methods. Chapter I’s authors �nd
that there are minimax strategies (as game against nature) un-
der a discounted cost criterion when holding times on states are
non-observable by the controller in semi-Markov control models.
Chapter II presents a new class of cooperative games where the
characteristic function is de�ned by a set of matrices which has
a vector as its image. An axiomatically characterized solution is
provided. Part One ends with Chapter III, in which its authors
o�er original results on the state of the art of axiomatic solutions
for partition function form games.

The following four chapters o�er applications for micro-
economics. Chapter IV studies a simultaneous game in two stages
with perfect equilibrium. It �nds that the shadow cost of public
funds produces an important impact on the capacity choice
in a mixed duopoly with product di�erentiation. In Chapter V,
the framework of general equilibrium theory is dynamized by
incorporating decisions made by �rm managers. These decisions
serve as an engine of economic evolution along a path of general

xvii
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equilibrium dynamics in the long run. Chapter VI, on the other
hand, is based on two models of two economies with indivisible
goods in a metric space, proposing general conditions for no
emptiness of the core of both models considering the social
planner’s problem. Chapter VII contributes to the literature on
the relationship between market size, and entry, using the case of
Mexico. The authors �nd a positive relationship, in both news-
paper and radio markets, between market size and the number
of products, with higher elasticity found in the number of radio
stations with respect to population, than in newspapers.

The six remaining chapters focus on policy applications. Key
issues on economic development, natural resources, health, public
security and politics are analyzed. Chapter VIII proposes two
models of a “big push” policy for industrialization; one model is
static and the other is dynamic, incorporating an evolutionary
dynamics approach.

Chapter IX is based on replicator dynamics, analyzing the
interaction between actors (cooperators, defectors and enforcers)
and forest resources. The stability of the system is studied in order
to determine a sustainable policy towards forest resources. Chap-
ter X focuses on optimal control policies in forest management.
Di�ering from previous works, this chapter considers a pro�t
function depending on the timber production and forest mainte-
nance costs, and therefore, brings a more precise overview of the
optimal forest management problem. Chapter XI studies optimal
control policies for speci�c epidemic models. In Chapter XII, a
normal game model is developed and applied to public security
policies. As a dominant equilibrium, municipal presidents seek
their private interests and police o�cers obey them, receiving
monetary payo�s for corruption and for obedience. Finally, Chap-
ter XIII compares three �scal strategies to prevent the majority of
a population from favoring secession from their country to form
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an independent one. An optimal concession is found to keep a
country uni�ed.

Saul Mendoza-Palacios and Alfonso Mercado





I. SEMI-MARKOV CONTROL MODELS
AND GAMES AGAINST NATURE

Fernando Luque-Vásquez, J. Adolfo Minjárez-Sosa and Luz del Carmen
Rosas-Rosas

Abstract

We deal with a class of semi-Markov control models with Borel
state and control spaces and possibly unbounded costs, where
the holding times on states are non-observable and their distri-
butions are unknown by the controller. The system is modeled
as a game against nature, which is a particular case of a minimax
control system. The objective is to show the existence of minimax
strategies under a discounted cost criterion.
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2 GAMES AND EVOLUTIONARY DYNAMICS

1. Introduction

This chapter deals with a class of semi-Markov control models
with Borel state and control spaces, possibly unbounded costs, and
unknown holding time distributions under a discounted optimal-
ity criterion. Speci�cally, we assume that the holding times are
nonnegative and non-observable random variables (r.v.’s) whose
unknown distributions may change from decision epoch to deci-
sion epoch.

This work is a sequel to Luque-Vásquez and Minjárez-Sosa
[13] where we have studied the case when the holding times are
observable, independent and identically distributed (i.i.d.) r.v.’s
with a common density function which is independent of the
state-action pairs. Under such an assumption of observability,
it was possible to implement statistical estimation methods of
the density, together with optimization procedures, to construct
nearly optimal policies. Instead, in this work, we assume that
the only information the controller has is that the holding time
distributions belong to an appropriate set of probability measures
Θ which depends on the state-action pairs. In this scenario, the
semi-Markov optimal control problem is studied as a minimax
control problem known as game against nature, which, roughly
speaking, can be formulated as follows: the controller has an op-
ponent, namely, “nature,” that, at each decision epoch, selects a
distribution from the set Θ for the corresponding holding time.
Then, the controller will try to minimize its cost in the worst sce-
nario imposed by nature. The controller’s objective is to choose
actions directed to minimize the maximum discounted cost gen-
erated on the set Θ. Therefore, our main objective in this paper
is to show the existence of minimax strategies.

As is well known, a condition to ensure the existence of mea-
surable selectors in minimax control problems (see, e.g., González-
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Trejo et al. [5], Jaskiewicz and Nowak [9], and Luque-Vásquez et al.
[15]) is the compactness (or σ−compactness) of the opponent con-
trol set. At �rst glance, we assume such a condition in our problem
could be too strong, since the holding times are nonnegative r.v.’s,
and, therefore, the opponent control set would be formed by prob-
ability measures on [0,∞), which is not necessarily a σ−compact
set. However, by imposing an additional condition, compactness
is achieved. Speci�cally, we take Θ := P0[0,∞), where P0[0,∞)
is the set of probability measures on [0,∞) with �nite expecta-
tion, and whose σ−compactness is shown in Luque-Vásquez and
Minjárez-Sosa [14].

Minimax Markov control systems and their applications have
been widely studied for both the discrete and continuous time
cases (see, e.g., Altman and Hordijk [1], Coraluppi and Marcus [4],
and González-Trejo et al. [5]1). It is worth remarking on the dif-
ference between the Markovian case and our problem. Typically,
minimax Markov control systems are applied to study control
problems when the random disturbance process, that is, the driv-
ing process, is a sequence of independent and non-observable
r.v.’s with unknown distributions. In this case, the opponent, at
each stage t, selects a probability measure θt which determines
the transition law to the next state as well as the mean one-stage
cost. Then, it is easy to see that the Markovian performance index
depends explicitly on the sequence {θt} collected throughout the
evolution of the system according to the opponent strategies se-
lected, and then it is possible to obtain a minimax equation. Hence,
the minimax control problem is stated in a standard way: to �nd
a strategy that minimizes the maximum cost over all admissible

1See also Hordijk et al. [7], Jagannathan [8], Jaskiewicz and Nowak [9],
Kalyanasundaram et al. [10], Küenle [11], Kurano [12], Milliken et al. [16],
Savkin and Peterson [18], and Yu and Guo [20].
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strategies for the opponent. Instead, for the minimax semi-Markov
control problem we are concerned with, because the opponent
selects the holding time distribution θt, we �rst need to state a
representation of the performance index in terms of the sequence
{θt} ⊂ P0[0,∞), and next obtain the corresponding minimax
equation. However, since, for general strategies, the holding times
are not necessarily conditionally independent, such a representa-
tion is only possible when the controller as well as the opponent
are restricted to applying Markovian strategies. According to this
fact, before showing the existence of minimax strategies, we need
to prove the su�ciency of the Markov strategies to solve the mini-
max semi-Markov control problem. To the best of our knowledge,
minimax semi-Markov control systems have not been studied
under our context.

The chapter is organized as follows. In Section 2, we present
the semi-Markov control problem, whereas in Section 3, we de-
�ne the strategies. Then, in Section 4, we describe the minimax
discounted optimality criterion and the assumptions we will be
dealing with. Next, in Section 5, we present the reduction of the
minimax problem to the class of Markov strategies. Finally, Sec-
tions 6 and 7 contain the preliminary and the main results, re-
spectively.

2. The semi-Markov control model

Notation. Given a Borel spaceX (that is, a Borel subset of a com-
plete and separable metric space), its Borel σ-algebra is denoted
by B(X), and “measurable” for either sets or functions, which
means “Borel measurable.” P(X) denotes the set of probability
measures on X. Let X and Y be Borel spaces. Then a stochastic
kernel Q(dx | y) on X given Y is a function such that Q(· | y) is
a probability measure on X for each �xed y ∈ Y, and Q(B | ·)
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is a measurable function on Y for each �xed B ∈ B (X). We
denote by N (N0) the set of positive (nonnegative) integers; R
(R+) denotes the set of real (nonnegative real) numbers.
Minimax semi-Markov control model.We consider the fol-
lowing minimax semi-Markov control model:

MSMC = (X,A,Θ,KA,K, Q,D, d) (2.1)

whereX is the state space,A represents the controller’s action space
and Θ is the opponent’s action space or nature space. We assume
that X and A are Borel spaces and Θ is the set of probability
measures on [0,∞) with �nite expectation; that is,

Θ = P0[0,∞) :=

{
θ ∈ P[0,∞) :

∫ ∞

0

sθ(ds) <∞
}
.

The set KA ∈ B (X × A) is the constraint set for the controller,
which induces a multifunction x 7−→ A(x) from X to A where

A (x) := {a ∈ A : (x, a) ∈ KA}

represents the set of admissible actions (or controls) for the con-
troller when the state is x ∈ X . We assume that KA contains the
graph of a measurable function from X to A, or equivalently, the
multifunction x 7−→ A(x) has a measurable selector, that is, a
measurable function f : X → A such that f(x) ∈ A(x) for all
x ∈ X, which holds under Assumption 4.2 below.

The set K ∈ B (X × A×Θ) is the constraint set for the oppo-
nent and

Θ(x, a) := {θ ∈ Θ : (x, a, θ) ∈ K}
is the set of admissible actions for the opponent when the state
is x ∈ X and the controller chooses the action a ∈ A(x). We
assume that K contains the graph of a measurable function from
KA to Θ. Again, this condition holds under Assumption 4.2.
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The transition law Q(· | ·) is a stochastic kernel on X given
KA, and the cost functions D and d are (possibly unbounded)
nonnegative measurable functions on KA.
Interpretation. At the time of the nth decision epoch Tn (n =
0, 1, ...), the system is in the state xn = x ∈ X and the controller
chooses an action an = a ∈ A(x). Then the opponent (nature)
picks a probability distribution θn = θ ∈ Θ(x, a) and the system
remains in the state x during a nonnegative random time δn+1

with distribution θ. Next, the following happens:

1) an immediate cost D (x, a) is incurred;

2) the system jumps to a new state xn+1 = y according to a
transition law Q (· | x, a); and

3) a cost rate d (x, a) is imposed until the transition occurs.
Once the transition to state y occurs, the process is repeated.

The random variable δn is called the nth holding time, and
it is observed that the decision epochs {Tn} are T0 = 0 and
Tn = Tn−1 + δn for n = 1, 2, ....

In particular, we assume that the costs are continuously dis-
counted with a discount factor α > 0, that is: a cost C incurred
at time t is equivalent to a cost C exp(−αt) at time 0. Then, the
one-stage cost function c : K→ R is given by

c (x, a, θ) := D(x, a) + d(x, a)

∞∫

0

t∫

0

exp(−αs)dsθ (dt) . (2.2)

Therefore, because of the dependence of the one-stage cost on
the distribution θ ∈ Θ(x, a) selected by the opponent, the goal
of the controller is to minimize the maximum cost imposed by
nature. Thus, the controller must select actions guaranteeing the
best performance in the worst possible situation.
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Remark 2.1. (a) We suppose that Θ is endowed with a weak
topology. Hence, θn

w→ θ if and only if
∫
udθn →

∫
udθ for each

bounded and continuous function u en [0,∞).
(b) Furthermore, from Luque-Vásquez and Minjárez-Sosa [14]

we have that Θ is a σ-compact space.

3. Strategies

The actions or controls applied by the controller as well as his/her
opponent at the decision epochs are selected according to rules
known as control strategies de�ned as follows:

Let H0 := X, H′
0 := KA, and for n ∈ N let Hn := (K)n ×X

and H
′
n := (K)n × KA. Hence, generic elements of Hn and H

′
n

called “histories” are of the form

hn = (x0, a0, θ0, ..., xn−1, an−1, θn−1, xn)

and h′n = (hn, an), respectively.
A strategy for the controllerπ = {πn} is a sequence of stochas-

tic kernels on A given Hn such that πn(A(xn)|hn) = 1 for all
hn ∈ Hn and n ∈ N0. If there exists a sequence {φn} of stochas-
tic kernels on A given X such that πn(·|hn) = φn(·|xn), then π
is called a Markov strategy for the controller. We denote by Π
the set of all strategies and Φ is the set of Markov strategies for
the controller. A strategy π is said to be a deterministic Markov
strategy if there exists a sequence {fn} of functions in the set

FA := {f : X → A | f is measurable,

and f (x) ∈ A (x) ∀x ∈ X}

such that for each n = 0, 1, 2, ... πn(·|hn) is concentrated at
fn(xn). If, in addition, fn ≡ f ∈ FA, then π is said to be a station-
ary strategy for the controller.
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A strategy for the opponent is a sequence γ = {γn} of stochas-
tic kernels on Θ given H

′
n such that γn(Θ(xn, an)|h′n) = 1 for all

h′n ∈ H
′
n and n ∈ N0. If there exists a sequence {ψn} of stochas-

tic kernels on Θ given X × A such that γn(·|h′n) = ψn(·|xn, an),
then γ is called a Markov strategy for the opponent. The set of
all strategies for the opponent is denoted by Γ and Ψ is the set of
all Markov strategies for the opponent. A strategy γ is said to be
a deterministic Markov strategy for the opponent if there exists a
sequence {gn} of functions in the set

FΘ := {g : X×A→ Θ | g is measurable,

g(x, a) ∈ Θ(x, a) ∀(x, a) ∈ KA}
such that γn(·|h′n) is concentrated at gn(xn, an). If gn ≡ g ∈ FΘ

for all n, then γ is said to be stationary strategy for the opponent.
As usual, every stationary strategy for the controller (opponent)
is identi�ed with the corresponding function f (g).

Let (Ω,F) be the (canonical) measurable space consisting of
the sample space Ω = (X × A × Θ)∞ and the corresponding
product σ-algebra F . Then, by a theorem of Ionescu Tulcea (see,
e.g., Bertsekas and Shreve [2]), for each pair of strategies (π, γ) ∈
Π × Γ and x ∈ X , there is a probability measure P πγ

x and a
stochastic process {(xn, an, θn), n = 0, 1, ...} where xn, an and
θn represent the state and the actions of the controller and the
opponent, respectively, at the time of the nth decision epoch. This
process satis�es: for Y ∈ B(X),

P πγ
x (x0 ∈ Y ) = δx(Y );

P πγ
x (xn+1 ∈ Y | h′n, θn) = Q(Y | xn, an);

P πγ
x (an ∈ A′ | hn) = πn(A

′ | hn), A′ ∈ B(A);
P πγ
x (θn ∈ B′ | h′n) = γn(B

′ | h′n), B′ ∈ B(Θ);

and
P πγ
x (δn+1 ≤ t | h′n, θn) = θn ([0, t]) , t > 0.
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4. Minimax discounted optimality

criterion

For a �xed α > 0, an initial state x inX and each pair of strategies
(π, γ) ∈ Π× Γ, the total expected discounted cost is de�ned as

V (π, γ, x) := Eπγ
x

[
∞∑

n=0

exp(−αTn)c(xn, an, θn)
]

(4.3)

where Eπγ
x denotes the expectation operator with respect to the

probability measure P πγ
x .

Let

V ′(π, x) := sup
γ∈Γ

V (π, γ, x) , x ∈ X, π ∈ Π. (4.4)

Then, the minimax control problem associated with the control
modelMSMC is to �nd a strategy π∗ ∈ Π such that

V ′(π∗, x) = inf
π∈Π

V ′ (π, x) = inf
π∈Π

sup
γ∈Γ

V (π, γ, x) =: V ∗ (x) .

(4.5)
For (x, a) ∈ KA and θ ∈ Θ(x, a) we de�ne:

∆α (θ) :=

∞∫

0

exp (−αs) θ (ds) (4.6)

and

τα (θ) :=
1−∆α (θ)

α
. (4.7)

Then the one-stage-cost function can be rewritten as,

c(x, a, θ) = D(x, a) + τα(θ)d(x, a), (x, a, θ) ∈ K. (4.8)
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To conclude this section, we now introduce two sets of condi-
tions on the modelMSMC (2.1). Assumption 4.1 is a (uniform)
regularity condition and ensures that in a bounded time interval
there are, at most, a �nite number of transitions of the process,
while in Assumption 4.2, we impose continuity and compactness
conditions to ensure the existence of minimax selectors.

Assumption 4.1. There exist η > 0 and ε > 0 such that for all
(x, a) ∈ KA and θ ∈ Θ(x, a)

θ([0, η]) < 1− ε.

From Assumption 4.1 we have that for all (x, a) ∈ KA and
θ ∈ Θ(x, a),

∫ ∞

0

e−αsθ(ds) ≤ θ([0, η]) + e−αη(1− θ([0, η])

< 1− ε(1− e−αη) < 1,

which implies,

λ := sup
(x,a)∈KA

sup
θ∈Θ(x,a)

∆α (θ) < 1. (4.9)

Assumption 4.2. (a) The cost functions D(x, a) and d(x, a) are
lower semicontinuous (l.s.c.) on KA. Moreover, there exist a con-
tinuous functionW : X → [1,∞) and positive constants c̄1, c̄2 ,
and β such that

1 ≤ β < λ−1, (4.10)

sup
a∈A(x)

D(x, a) ≤ c̄1W (x), sup
a∈A(x)

d(x, a) ≤ c̄2W (x), (4.11)

and
∫

X

W (y)Q (dy | x, a) ≤ βW (x) ∀ (x, a) ∈ KA. (4.12)
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(b) For each bounded and continuous function u : X → R, the
function

(x, a) 7−→
∫

X

u (y)Q (dy | x, a)

is continuous on KA.
(c) The function

(x, a) 7−→
∫

X

W (y)Q (dy | x, a)

is continuous on KA.
(d) The set A(x) is compact for each x ∈ X . In addition, the set
valued mapping x→ A(x) is upper semi-continuous (u.s.c.).
(e) The set Θ(x, a) is σ-compact for each (x, a) ∈ KA and the set
valued mapping (x, a) 7−→ Θ(x, a) is l.s.c.

Remark 4.3. (a) From Assumption 4.2(b), if u : X → R is l.s.c.,
then the function

(x, a) 7−→
∫

X

u (y)Q (dy | x, a)

is l.s.c. on KA.
(b) From (4.11) in Assumption 4.2(a), c (x, a, θ) ≤ c̄W (x)

∀ (x, a, θ) ∈ K, where c̄ := c̄1+ c̄2.
(c) For each (x, a) ∈ KA, ∆α (θ) , τα (θ) and c (x, a, ·) are

continuous on Θ(x, a). Indeed, if {θn} is a sequence in Θ(x, a)
such that θn

w→ θ, then

lim
n→∞

∆α (θn) = lim
n→∞

∞∫

0

exp (−αs) θn (ds)

=

∞∫

0

exp (−αs) θ (ds) = ∆α (θ) ,
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which, in turn, yields

lim
n→∞

τα (θn) = τα (θ) (4.13)

and
lim
n→∞

c (x, a, θn) = c (x, a, θ) .

(d) From Assumption 4.2(a), (4.8), and (4.13), it follows that
c (·, ·, ·) is l.s.c. on K.

(e) Assumption 4.2(d), (e) implies the existence of measurable
selectors for the set valued functions x → A(x) and (x, a) 7−→
Θ(x, a) (see Brown and Purves [3]). Moreover, since Θ is σ-
compact [see Remark 2.1(b)], the σ-compactness condition in
Assumption 4.2(e) can be replaced by the assumption that Θ(x, a)
be closed for all (x, a) ∈ KA.

We denote by BW the normed linear space of all measurable
functions u : X → R with norm

∥u∥W := sup
x∈X

|u (x)|
W (x)

<∞, (4.14)

and by LW the subspace of l.s.c. functions in BW .

5. Reduction of the minimax problem

In this section we will prove that for each pair (π, γ) ∈ Π × Γ
there exists a pair (σ, ρ) ∈ Φ×Ψ such that for each x ∈ X,

V (π, γ, x) = V (σ, ρ, x).

Furthermore, we obtain an alternative representation of the per-
formance index (4.3) of the family of markovian strategies with
which we can get a more tractable minimax equation in the next
sections.
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For (π, γ) ∈ Π × Γ, x ∈ X and n = 0, 1, ... we de�ne the
�nite measuresMπγ

x,n on X × A×Θ andmπγ
x,n on X by

Mπγ
x,n(D) := Eπγ

x e−αTnI{(xn, an, θn) ∈ D} (5.15)

and
mπγ

x,n(Y ) := Eπγ
x e−αTnI{xn ∈ Y }

where D ∈ B(X × A×Θ), Y ∈ B(X) and I{·} is the indicator
function.

Sincemπγ
x,n is the marginal ofMπγ

x,n on X, by Corollary 7.27.2
in Bertsekas and Shreve [2], there exists a stochastic kernel νn
on X × Θ given X such that for Y ∈ B(X), A′ ∈ B(A) and
B′ ∈ B(Θ),

Mπγ
x,n(Y × A′ × B′) =

∫

Y

νn(A
′ × B′ | y)mπγ

x,n(dy).

Then, by Corollary 7.27.1 in Bertsekas and Shreve [2], there exist
stochastic kernels σn on A given X and ρn on Θ given X × A
such that

Mπγ
x,n(Y × A′ × B′) =

∫

Y

∫

A′

ρn(B
′ | y, a)σn(da | y)mπγ

x,n(dy).

(5.16)
AsMπγ

x,n is concentrated onK, then for everyn = 0, 1, 2, ...we can
select versions of σn and ρn such that for every y ∈ X, σn(A(y) |
y) = 1 and ρn(Θ(y, a) | y, a) = 1 for every (y, a) ∈ KA. Hence,
σ := {σn} is a Markov strategy for the controller and ρ := {ρn}
is a Markov strategy for the opponent.

Lemma 5.1. Let g : X × A × Θ → R and h : X → R be
nonnegative measurable functions. Then for every n = 0, 1, 2, ...

Eπγ
x e−αTng(xn, an, θn) =

∫

X×A×Θ

g(y, a, θ)Mπγ
x,n(d(y, a, θ))

(5.17)
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and

Eπγ
x e−αTnh(xn) =

∫

X

h(y)mπγ
x,n(dy). (5.18)

Proof. If D ∈ B(X × A × Θ) and g = ID, then (5.17) follows
directly from (5.15). Thus, by linearity and the monotone conver-
gence theorem, we obtain the result for a nonnegative measurable
function g. The proof of (5.18) is analogous.

Lemma 5.2. Let (π, γ) be a pair of strategies in Π× Γ, and σ =
{σn}, ρ = {ρn} the corresponding Markov strategies de�ned in
(5.16). Then for x ∈ X and n = 0, 1, 2, ...

Mπγ
x,n =Mσρ

x,n (5.19)

and V (π, γ, x) = V (σ, ρ, x).

Proof. We will prove (5.19) by induction. First, observe that for
Y ∈ B(X),

mπγ
x,0(Y ) := Eπγ

x I{x0 ∈ Y } = δx(Y ) = mσρ
x,0(Y ).

Moreover, from (5.15) and (5.16) it follows that for Y ∈ B(X),
A′ ∈ B(A) and B′ ∈ B(Θ),

Mπγ
x,0(Y × A′ × B′) =Mσρ

x,0(Y × A′ × B′).
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Suppose that (5.19) holds for some n ∈ N0. Then

mπγ
x,n+1(Y )

= Eπγ
x e−αTn+1I{xn+1 ∈ Y }

= Eπγ
x Eπγ

x [e−α(Tn+δn+1)I{xn+1 ∈ Y } | Tn, xn, an, θn]
= Eπγ

x e−αTnEπγ
x

[
e−αδn+1I{xn+1 ∈ Y } | Tn, xn, an, θn

]

= Eπγ
x e−αTnQ(Y | xn, an)

∫ ∞

0

e−αsθn(ds) (5.20)

=

∫

X×A×Θ

g(y, a, θ)Mπγ
x,n(d(y, a, θ))

=

∫

X×A×Θ

g(y, a, θ)Mσρ
x,n(d(y, a, θ)),

where g(y, a, θ) = Q(Y | y, a)
∫∞

0
e−αsθ(ds). By setting σ = π

and ρ = γ and repeating the process in (5.20), we obtain

mπγ
x,n+1(Y ) = mσρ

x,n+1(Y ). (5.21)

Now, we prove that

Mπγ
x,n+1 =Mσρ

x,n+1. (5.22)

For this, �rst observe that from (5.16) and (5.21),

Mπγ
x,n+1(Y × A′ × B′)

=

∫

Y

∫

A′

ρn+1(B
′ | y, a)σn+1(da | y)mπγ

x,n+1(dy)

=

∫

Y

∫

A′

ρn+1(B
′ | y, a)σn+1(da | y)mσρ

x,n+1(dy). (5.23)
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On the other hand,

Mσρ
x,n+1(Y × A′ × B′)

= Eσρ
x e−αTn+1I{xn+1 ∈ Y, an+1 ∈ A′, θn+1 ∈ B′}

= Eσρ
x Eσρ

x [e−αTn+1I{xn+1 ∈ Y, an+1 ∈ A′, θn+1 ∈ B′} | Tn+1, xn+1]

= Eσρ
x e−αTn+1I{xn+1 ∈ Y }Eσρ

x [I{an+1 ∈ A′, θn+1 ∈ B′} | Tn+1, xn+1]

= Eσρ
x e−αTn+1I{xn+1 ∈ Y }

∫
A′ ρn+1(B

′ | xn+1, an+1)σn+1(dan+1 | xn+1)

=

∫

X

I{y ∈ Y }
∫

A′

ρn+1(B
′ | y, a)σn+1(da | y)mσρ

x,n+1(dy)

=

∫

Y

∫

A′

ρn+1(B
′ | y, a)σn+1(da | y)mσρ

x,n+1(dy), (5.24)

where we have used (5.18) with

h(y) = I{y ∈ Y }
∫

A′

ρn+1(B
′ | y, a)σn+1(da | y).

Then (5.22) follows from (5.23) and (5.24). From (5.17) (with g = c)
and (5.19) we obtain

V (π, γ, x) = V (σ, ρ, x).

Hence, by Lemma 5.2, the minimax problem can be reduced in
the following manner: �nd a Markov strategy σ∗ ∈ Φ such that

V ′(σ∗, x) = inf
σ∈Φ

V ′ (σ, x) = inf
σ∈Φ

sup
ρ∈Ψ

V (σ, ρ, x) .

We conclude this section introducing an alternative represen-
tation of the performance index (4.3).

Proposition 5.3. For each x ∈ X and a pair (σ, ρ) ∈ Φ×Ψ,

V (σ, ρ, x) := Eσρ
x

[
c(x0, a0, θ0) +

∞∑

j=1

j−1∏

k=0

∆α (θk) c(xj, aj, θj)

]
.
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Proof. Note that for x ∈ X and (σ, ρ) ∈ Φ× Ψ, it follows from
the construction of P σγ

x that

Eσρ
x e−αT1c(x1, a1, θ1)

=

∫

A

σ0(da0 | x)
∫

Θ

∫ ∞

0

e−αt1θ0(dt1)ρ0(dθ0 | x, a0)
∫

X

Q(dx1 | x, a0)
∫

A

σ1(da1 | x1)
∫

Θ

c(x1, a1, θ1)ρ1(dθ1 | x1, a1)

=

∫

A

σ0(da0 | x)
∫

Θ

∆α(θ0)ρ0(dθ0 | x, a0)
∫

X

Q(dx1 | x, a0)
∫

A

σ1(da1 | x1)
∫

Θ

c(x1, a1, θ1)ρ1(dθ1 | x1, a1)

= Eσρ
x ∆α(θ0)c(x1, a1, θ1),

and for n = 2, 3, ...

Eσρ
x e−αTnc(xn, an, θn) = Eσρ

x ∆α(θ0) · · ·∆α(θn−1)c(xn, an, θn).

Then we can write

V (σ, ρ, x) := Eσρ
x

[
c(x0, a0, θ0) +

∞∑

j=1

j−1∏

k=0

∆α (θk) c(xj, aj, θj)

]
.

6. Preliminary results

For a function u ∈ BW and (x, a, θ) ∈ K, we de�ne

H (u, x, a, θ) := c (x, a, θ) + ∆α (θ)

∫

X

u (y)Q (dy | x, a) ,

(6.25)
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and
Tαu (x) := inf

a∈A(x)
sup

θ∈Θ(x,a)

H (u, x, a, θ) . (6.26)

A �rst consequence from previous assumptions is the follow-
ing:

Lemma 6.1. If Assumptions 4.1 and 4.2 hold, then:
(a) The operator Tα maps LW into itself.
(b) For each u ∈ LW there exists f ∗ ∈ FA such that

Tαu (x) = sup
θ∈Θ(x,f∗)

H (u, x, f ∗, θ) , x ∈ X. (6.27)

Proof. (a) Note that from Assumption 4.2(a) and Remark 4.3, for
every u ∈ LW , H (u, ·, ·, ·) is l.s.c. on K and

H (u, x, a, θ) ≤ c̄W (x) + λ ∥u∥W
∫

X

W (y)Q (dy | x, a)

≤ c̄W (x) + λβ ∥u∥W W (x) = KW (x) ,

where K := c̄+ λβ ∥u∥W <∞.
On the other hand, let {(xn, an)} be a sequence in KA con-

verging to (x, a) ∈ KA, and θ0 ∈ Θ(x, a) be arbitrary. Then, since
(x, a) 7−→ Θ(x, a) is l.s.c., there exists θn ∈ Θ(xn, an) such that
θn → θ0 (see Proposition D.2 in Hernández-Lerma and Lasserre
[6]). Hence,

lim inf
n→∞

sup
θ∈Θ(xn,an)

H (u, xn, an, θ) ≥ lim inf
n→∞

H (u, xn, an, θn)

≥ H (u, x, a, θ0) ,

where the last inequality follows from the lower semicontinuity
of H (u, ·, ·, ·) on K. Since θ0 is arbitrary, we obtain

lim inf
n→∞

sup
θ∈Θ(xn,an)

H (u, xn, an, θ) ≥ sup
θ∈Θ(x,a)

H (u, x, a, θ) .
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Therefore, the function

(x, a) 7−→ sup
θ∈Θ(x,a)

H (u, x, a, θ) (6.28)

is l.s.c. on KA. Then, from a well known result in Schäl [19] (see,
also, Proposition D.5 in Hernández-Lerma and Lasserre [6]), we
have that

Tαu (x) = inf
a∈A(x)

sup
θ∈Θ(x,a)

H (u, x, a, θ) (6.29)

is l.s.c. on X and

|Tαu (x)| ≤ KW (x) . (6.30)

Hence, from (6.29) and (6.30), Tαu (·) ∈ LW for all u ∈ LW .
(b) Since the function de�ned in (6.28) is nonnegative and

l.s.c. on KA, standard arguments on the existence of minimizers
(see for instance Rieder [17] or Schäl [19]) imply the existence of
f ∗ ∈ FA such that (6.27) holds.

Lemma 6.2. If Assumptions 4.1 and 4.2(a) hold, Tα is a contraction
operator on LW with modulus λβ < 1, i.e.,

∥Tαu− Tαu′∥W ≤ λβ ∥u− u′∥W ∀u, u′ ∈ LW .

Proof. Let u,u′ ∈ LW . Then,

|Tαu (x)− Tαu′ (x)|

≤
∣∣∣∣∣ inf
a∈A(x)

sup
θ∈Θ(x,a)

H (u, x, a, θ)− inf
a∈A(x)

sup
θ∈Θ(x,a)

H (u′, x, a, θ)

∣∣∣∣∣

≤ sup
a∈A(x)

sup
θ∈Θ(x,a)

∆α (θ)

∫

X

|u (y)− u′ (y)|Q (dy | x, a)

≤ λ ∥u− u′∥W
∫

X

W (y)Q (dy | x, a)

≤ λβW (x) ∥u− u′∥W .
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Thus,

∥Tαu− Tαu′∥W ≤ λβ ∥u− u′∥W ∀u, u′ ∈ LW .

For each n ∈ N, x ∈ X and (σ, ρ) ∈ Φ × Ψ we de�ne the
n-stage expected discounted cost as,

V n(σ, ρ, x)

:=





Eσρ
x [c(x0, a0, θ0)] n = 1

Eσρ
x

[
c(x0, a0, θ0) +

n−1∑
j=1

j−1∏
k=0

∆α (θk) c(xj, aj, θj)

]
≥ 2.

In addition, we de�ne the sequence {vn} in LW as v0 ≡ 0, and
for n ∈ N,

vn (x) = Tαvn−1 (x) , x ∈ X . (6.31)

Hence, for all x ∈ X and (σ, ρ) ∈ Φ×Ψ,

V n(σ, ρ, x)↗ V (σ, ρ, x) (6.32)

and
vn (x) ≤ sup

γ∈Γ
V n(σ, γ, x) ∀n ∈ N. (6.33)

7. Main results

Theorem 7.1. Under Assumptions 4.1 and 4.2, there exist a function
v̂ : X → R and a policy f ∗ ∈ FA such that:

(a) v̂ is the unique function in LW satisfying

v̂ = Tαv̂, (7.34)
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∥vn − v̂∥W ≤
c̄ (λβ)n

1− λβ ∀n ∈ N, (7.35)

and

lim
n→∞

λnEσρ
x [v̂ (xn)] = 0 ∀σ ∈ Φ, ρ ∈ Ψ, x ∈ X; (7.36)

(b) for all x ∈ X ,

v̂ (x) = sup
θ∈Θ(x,f∗)



c (x, f

∗, θ) + ∆α (θ)

∫

X

v̂ (y)Q (dy | x, f ∗)



 .

Proof. (a) Since Tα is a contraction operator which maps LW into
itself (see Lemma 6.1) and LW ⊂ BW is complete, from Banach’s
Fixed Point Theorem, there exists a unique function v̂ ∈ LW such
that (7.34) holds and

∥vn − v̂∥W ≤ (λβ)n ∥v0 − v̂∥W (7.37)

= (λβ)n ∥v̂∥W ∀n ∈ N.

Moreover, since

∥v̂∥W = ∥Tαv̂∥W ≤ c̄+ (λβ)n ∥v̂∥W ,

by iteration we obtain

∥v̂∥W ≤
c̄

1− λβ . (7.38)

Hence, (7.35) follows from (7.37) and (7.38).
Now, from Assumption 4.2(a), for σ ∈ Φ, ρ ∈ Ψ, x ∈ X,n ∈

N0,
Eσρ

x [W (xn+1)] ≤ βEσρ
x [W (xn)] ,
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which implies

Eσρ
x [W (xn)] ≤ βnW (x) ,

or
λnEσρ

x [W (xn)] ≤ (λβ)nW (x)

and therefore,
lim
n→∞

λnEσρ
x [W (xn)] = 0.

This yields
lim
n→∞

λnEσρ
x [v̂ (xn)] = 0,

which concludes the proof of (a).
The proof of part (b) follows directly from Lemma 6.1(b).

Theorem 7.2. If Assumption 4.2 holds, then:
(a) v̂ = V ∗.
(b) There exists a minimax strategy f ∗ ∈ FA, that is,

V ∗ (x) = inf
σ∈Φ

sup
ρ∈Ψ

V (σ, ρ, x) = sup
ρ∈Ψ

V (f ∗, ρ, x) .

Proof. (a) Let f ∗ ∈ FA be a stationary policy such that for all
x ∈ X,

v̂ (x) = sup
θ∈Θ(x,f∗)



c (x, f

∗, θ) + ∆α (θ)

∫

X

v̂ (y)Q (dy | x, f ∗)



 .

Then for all x ∈ X and θ ∈ Θ(x, f ∗(x))

v̂ (x) ≥ c (x, f ∗, θ) + ∆α (θ)

∫

X

v̂ (y)Q (dy | x, f ∗) . (7.39)
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Now, let ρ′ ∈ Ψ be an arbitrary Markov strategy for the opponent.
Iterating the inequality (7.39), a straightforward calculation yields

v̂ (x) ≥ Ef∗ρ′

x

[
c (x0, f

∗, θ0) +
n−1∑

j=1

j−1∏

k=0

∆α (θk) c(xj, f
∗, θj)

]

+Ef∗ρ′

x

[
j−1∏

k=0

∆α (θk) v̂ (xn)

]
,

which in turn implies

v̂ (x) ≥ V n(f ∗, ρ′, x).

Letting n→∞ we obtain

v̂ (x) ≥ V (f ∗, ρ′, x) ∀x ∈ X, ρ′ ∈ Ψ

and this yields

v̂ (x) ≥ sup
ρ∈Ψ

V (f ∗, ρ, x) ∀x ∈ X. (7.40)

Therefore,
v̂ (x) ≥ V ∗(x).

To prove the reverse inequality, observe that for all σ ∈ Φ and
n ∈ N, from (6.33) we have

vn (x) ≤ sup
ρ∈Ψ

V n(σ, ρ, x).

Now, since vn → v̂ as n→∞, from (6.32) we obtain

v̂ (x) ≤ sup
ρ∈Ψ

V (σ, ρ, x),
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which implies

v̂ (x) ≤ inf
σ∈Φ

sup
ρ∈Ψ

V (σ, ρ, x) = V ∗ (x) ∀x ∈ X,

and therefore,
v̂ (x) = V ∗ (x) .

(b) From Theorem 7.1(b) and part (a) there exists f ∗ ∈ FA

such that

V ∗ (x)

= sup
θ∈Θ(x,f∗)



c (x, f

∗, θ) + ∆α (θ)

∫

X

V ∗ (y)Q (dy | x, f ∗)



 .

Then, from (7.40) with V ∗ instead of v̂, we have

V ∗ (x) ≥ sup
ρ∈Ψ

V (f ∗, ρ, x) ≥ inf
σ∈Φ

sup
ρ∈Ψ

V (σ, ρ, x),

which implies

V ∗ (x) = inf
π∈Π

sup
γ∈Γ

V (π, γ, x) = sup
γ∈Γ

V (f ∗, γ, x).

Therefore, f ∗ is a minimax strategy.
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II. VECTORIAL COOPERATIVE GAMES
WITH MATRIX CHARACTERISTIC
FUNCTIONS

Louis Michael Murillo Prado and William Olvera-Lopez

Abstract

In this work we show a new class of vectorial cooperative games
where the characteristic function is de�ned by a set of matrices.
Also, we show some situations where this new modeling can
be applied for solving allocation problems. In the same way, we
establish a relation between this new class of games and the trans-
ferable utility games on characteristic function form as well as
multi-choice games. Finally, we provide an axiomatically charac-
terized solution for the model proposed.

1. Introduction

From the very beginning, with the seminal work of Morgenstern
andVonNeumann [5], game theory has arisen as a helpfulmethod-
ology for solving problems related to agents and utilities as a result
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of their interactions. One of the branches of game theory, non-
cooperative game theory, assumes that the decisions taken by an
agent (or a player), in addition to the decisions of the other agents,
involve an individual utility for every agent, and it is the perfect
model for studying competing situations. There are tremendous
advances, results and variations on this branch, as the results from
Nash [7], Myerson [6], Harsanyi and Selten [3] demonstrate, just
to cite a few works. On the other hand, cooperative game theory
is perfect to deal with situations where there exist interactions
among subsets of agents. So, each subset of players has associated
a joint amount of payo�, and it is interesting to �nd fair ways
for allocating that kind of pro�t amongst the players. Some of
the most important works about cooperative game theory are
from Shapley [9], Owen [8] and Aumann and Maschler [1]. Game
theory has been one of the fastest growing mathematical �elds in
the last decades.

One interesting problem in several associations and societies
is to allocate an amount among a set of agents taking into account
their individual performance in each one of several activities. For
example, in educational and research institutions, professors and
researchers receive bonuses according to their performance in
activities such as teaching, publishing papers, directing theses,
etc. So, at the end of a given period of time, a given committee
valuates the performance of the whole institution and assigns the
total amount of bonuses (in monetary units) for the institution
which must be distributed among the agents in some way, but
taking into account their individual performances (for example, it
makes sense that a professor without scienti�c publications and
teaching should not receive any kind of bonus).

Another example arises in societies where the people must
work generating basic services for the community, such as tap
water, education and electricity. According to the skills of each
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person, or the time expended on each task related to those services,
an amount of electricity is produced, a certain quantity of tap
water is provided and some educational infrastructure is created.
So, how does a society allocate these services among the agents
who produce them? These kinds of problems can be studied using
vectorial cooperative games with matrix characteristic functions.

In a general framework, in these games there is a �nite set
of agents and their performance in a set of activities is known
(so, it makes sense to use a matrix characteristic function) and
then, there is an amount associated for each activity related to the
performance of all the agents. In this work, we assume that there
exists a maximum available performance for each activity. In the
example of the previous paragraph related to the production of
services, the time that each person spent generating electricity,
producing tap water and creating educational infrastructure has
associated a certain amount of electricity, tap water and educa-
tional infrastructure (for example, if nobody spent time generating
electricity, it would not be possible to produce tap water but there
would be a lot of electricity available to the community). That is
the reason to assume that the image of our characteristic func-
tion is a vector. Vectorial cooperative games were introduced by
Fernández-García et al. [2], but this is the �rst time they are being
studied jointly with matrix characteristic functions. We believe
that this is an innovative proposal to the cooperative game theory
�eld. So, after introducing the general model, we relate it to the
classical notion of transferable utility games as well as the multi-
choice cooperative games (introduced by Hsiao and Raghavan
[4]), where we notice that both models are particular cases of our
modeling, which strengthens it. Finally, we show a solution for
this new class of games characterized axiomatically.

This paper is organized as follows: in Section 2, we show the
de�nitions and notation used in the work; in the same section, we
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show that some models in cooperative game theory are special
cases of our model. In Section 3, we show a solution axiomatically
characterized for ourmodel, showing its equivalencywith a model
based on orders. Finally, we show some conclusions and ideas for
future work.

2. Definitions and notation

Let N := {1, 2, . . . , n} and M := {1, 2, . . . ,m} be a �nite set
of agents and a �nite set of categories, respectively. We assume
that each agent has a measurable performance h ∈ Z+ in each
category, and �xing a number k ∈ N, we assume that h ≤ k.
So, the set of performances of the problem is denoted by Zk :=
{0, . . . , k}. Thus, the set of matrices with n rows andm columns
with entries on Zk is denoted byMn

m(Zk). Henceforth, we denote
byK the matrix inM

n
m(Zk) with all entries equal to k, by 0 the

matrix in M
n
m(Zk) with all entries equal to 0 and by 0 the m-

dimensional vector with all its entries equal to 0.
So, given a set of n agents, a set ofm categories and a number

k ∈ N, a vectorial cooperative game with a matrix characteristic
function (henceforth, aM − game), is a mapping

v : Mn
m(Zk)→ R

m, with v(0) = 0.

The idea behind these kinds of games is to model situations
where the performance of each agent in every category impacts
the amount obtained in each category for all in the society. The
last condition of the previous equation assures that if there is no
performance by anyone in any category, then there is no amount
generated by the society in any category.

The set ofM -games with set of n agents, m categories and
k ∈ N is denoted by

Gn
m(k) := {v | v : Mn

m(Zk)→ R
m, with v(0) = 0}
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where it is straightforward to verify that Gn
m(k) is a vector space

under the usual operations:

• v(αS) = α v(S) with α ∈ R and for all S ∈M
n
m(Zk)

• v(S + T ) = v(S) + v(T ) for all S, T ∈M
n
m(Zk).

Example 2.1. Consider a society with three people. Each person
has 5 available working periods of time for each activity to work
in a water purifying plant and in a power plant generating elec-
tricity. The distribution of time each person works determines
the total puri�ed water produced and the electricity generated.
For example, if we represent the people as rows and the activities
as columns (the �rst column represents the working periods as-
signed to the water purifying plant, and the second, to the power
plant), we could have




3 2
1 3
1 4


⇒ (3, 4), and




3 2
1 5
1 4


⇒ (4, 5).

According to the �rst distribution, Person 1 assigns three periods
for working in the water purifying plant and two periods in the
power plant, and so on. Considering the assignments of the other
persons, the society obtains three units of puri�ed water and
four units of electricity. In the second distribution, Person 2 now
assigns 5 working periods to working in the power plant and then,
because there is more generated electricity, it could be possible
to obtain more puri�ed water, too. These are the situations that
can be adequately modeled usingM -games. The problem is how
to divide the total production among all the activities and players
when all of them assign their total available time.

A solution for anM -game is a mapping

φ : Gn
m(k)→M

n
m(R)
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where φij(v) denotes the payo� of agent i ∈ N in the category
j ∈M according to v ∈ GN

M(k).

When k = 1 and m = 1, then GN
M(k) ≡ GN , the set of

cooperative games with transferable utility (TU-games). It is easy
to prove this, because, in this case, the M -game is de�ned by
n-dimensional column vectors with entries equal to one or zero.
So, the value associated to each vector in theM -game is related to
the value of a coalition where the players in the coalition match
the entries on the column vector with entries equal to one.

Example 2.2. We show an example of the equivalency of an
M -game with a TU-game, where n = 4, k = 1 andm = 1.

v







1
0
0
1





 = 10 ⇒ v({1, 4}) = 10.

Also, it is possible to verify that if k ≥ 1 and m = 1, anM -
game is equal to a multi-choice cooperative game with maximum
level of activity given by k. Then, we assure that theM -games
are a very general kind of game, because the classical TU-games
and the multichoice cooperative games are particular cases of this
model.

Henceforth, we assume that the number of agents and the
number of categories are �xed, so we are not going to use n and
m any more unless it is strictly necessary. For simpli�cation, we
establish the next equivalency in the notation:

Mk ≡M
n
m(Zk).
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3. Characterizing solutions

In this section we show an axiomatic characterization of a solution
forM -games. The axioms have similar versions in other kinds of
games, for example, the classical TU-games.

Axiom 3.1. (Additivity) A solution φ : Gn
m(k)→M

n
m(R) satis-

�es the additivity axiom if

φ(v) + φ(w) = φ(v + w),

for every pair of problems v, w ∈ Gn
m(k).

According to this axiom, if we can divide a problem into sub-
problems and apply an additive solution to the original problem,
the result must be equal to the sum of applying the additive solu-
tion to the subproblems.

Axiom 3.2. (E�ciency by categories) A solution φ : Gn
m(k)→

M
n
m(R) satis�es the e�ciency by categories axiom if

∑

i∈N

φij(v) = vj(K), ∀j ∈M.

This axiom establishes that the amount to allocate in each
category must be the amount generated by the agents when all of
them are performing at their maximum capacity in each category.
So, to accept this axiom implies that each agent is capable of
performing as well as the maximum in each category.

We say that category j ∈M is a null category in the problem
v ∈ Gn

m(k) if vj(A) = 0 for every A ∈Mk.

Axiom 3.3. (Null category) A solution φ : Gn
m(k) → M

n
m(R)

satis�es the null category axiom if

φij(v) = 0
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for each agent i ∈ N in every null category j ∈M in the problem
v ∈ Gn

m(k).

A category is null when it does not matter what the agents
do: the amount obtained in that category is equal to zero always.
So, in these kinds of situations, it makes sense to have a payo�
equal to zero for each player in a null category.

We de�ne theminimum performance of agent i in the category
j in theM - game v ∈ Gn

n(k),m
v
ij , as the number in Zk such that

for every A ∈Mk with Aij ≤ mij − 1 we have v(A) = 0.

Axiom 3.4. (Proportionality according to the minimum perfor-
mance) A solution φ : Gn

m(k)→M
n
m(R) satis�es the proportion-

ality according to the minimum performance axiom if

φik(v)

φjk(v)
=
mv

ik

mv
jk

for every pair of agents i, j ∈ N with minimum performance
levelsmv

ik ym
v
jk in the category k.

The idea behind this axiom is to assign proportional payo�s
to players that have a minimum required performance in a given
category: the payo�s must be proportional to those required lev-
els.

We denote by e
j
i ∈ Mk the matrix with all its entries equal

to zero except the ij-th entry, which value is equal to one. In the
same way, ei ∈ Z

m
k denotes the m-dimensional vector with all

its entries equal to zero except the i-th entry, that is equal to one.
Likewise, for a matrix A, Aij denotes the value of the matrix in
the ij-th entry.

Theorem 3.5. There exists a unique solution φ : Gn
m(k) →

M
n
m(R) satisfying the additivity, e�ciency by categories, null cate-

gory and proportionality according to the minimum performance
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axioms. Even more, that solution is given by

φij(v) =
∑

S∈Mk

m∑

h=1

Sij∑

r=1

cS[vj(S)− vj(S − rehi )], ∀i ∈ N, j ∈M,

(3.1)
where

• cS =
Sc∑

h=0

(S+ + h− 1)!(k ·m · n− S+ − h)!
(k ·m · n)! ·

(
Sc

h

)
.

• S+ =
∑

i∈N
j∈M

Sij .

• S = |(i, j) | Sij ̸= k, ∀i ∈ N, j ∈M}|.

• Sc = k · n ·m− S+ − S.
To prove the previous theorem, it is mandatory to de�ne a spe-

cial set ofM -games that we call unanimity M -games as follows:
for every pair of matrices S, T ∈Mk and for every ℓ ∈M :

uℓS(T ) =

{
eℓ, if Tij ≥ Sij ∀i ∈ N, j ∈M ;
0, otherwise.

As an additional notation,we say that twomatrices T, S ∈Mk,
T ≤ S if Tij ≤ Sij for every i ∈ N , j ∈M . Similarly, we de�ne
other order relationships in the set of matrices.

Lemma 3.6. The set of unanimityM -games {uℓS | ∀S ∈Mk, S ̸=
0, ℓ ∈M} is a basis for Gn

m(k) and then, anyM -game v could be
written as follows:

v =
∑

ℓ∈M

∑

S∈Mk
S ̸=0

cℓv(S)u
ℓ
S



38 GAMES AND EVOLUTIONARY DYNAMICS

where
cℓv(S) = vℓ(S)−

∑

T≤S
T ̸=S

clv(T ).

It is easy to see that the previous lemma is true, because the
structure of the unanimity ofM -games is the same as the una-
nimity of TU-games with characteristic function forms and, in
our model, we have the same notion by category. Please refer to
Shapley [9] regarding this issue.

Proof. (Proof of Theorem 3.5) First, we are going to prove unique-
ness. As the solution φ is additive, we have that everyM -game
v ∈ Gn

m(k)

φij(v) =
∑

ℓ∈M

∑

S∈Mk
S ̸=0

φij(c
ℓ
v(S)u

ℓ
S),

and then, it is enough to prove uniqueness for the M -games
cℓv(S)u

ℓ
S . Notice that every unanimity M -game assigns a zero

value to the categories not equal to ℓ. Because of the null category
axiom, we have

φij(c
ℓ
v(S)u

ℓ
S) =

{
r, if j = ℓ;
0, otherwise

for some r ∈ R. Notice that all the entries related to S for uℓS
are minimum performance levels. So, because of the e�ciency by
categories and proportionality according to the minimum perfor-
mance axiom, we have

φij(c
ℓ
v(S)u

ℓ
S) =





cℓv(S) ·
Sij∑

i∈N

Sij

, if j = ℓ;

0, otherwise
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and then, we �nish the proof that a solution satisfying the axioms
of the theorem de�nes a solution uniquely.

Now, we need to prove that expression (3.1) satis�es the ax-
ioms of the theorem. To prove that Solution (3.1) is additive
and that satis�es the null category and proportionality regarding
the minimum performance is straigthforward (for the latter, it is
enough to see that for a unanimity ofM -games uℓS each entry
related to S is a minimum performance level). To show that the
solution (3.1) satis�es the e�ciency by category axiom, we are
going to use orders of agents and, consequently, we are going to
provide an alternative interpretation for the solution (3.1) based
on how each category is performed by the agents.

Given aM -game v ∈ Gn
m(k), we de�ne the extended set of

agents as follows:

D = {ihj | i ∈ N, j ∈M,h ∈ {1, . . . , k}}.
This set represents every unit of possible performance in each cat-
egory of a single player. For example, if we have two players and
two possible categories with a maximum performance of three
units (n = 2, m = 2 and k = 3), then we have a set of twelve
extended players. So, for example, the player 231 is representing
the third activity of player 2 in the category 1. Thus, a permu-
tation on the symmetric group SD models the order in which
the activities are done, from the beginning, where anybody has
done any activity, until everybody has done all their activities.
According to the previous example, the order

σ = (112, 2
1
2, 1

3
1, 1

2
2, 2

3
1, 1

2
1, 1

3
2, 2

2
2, 2

2
1, 1

1
1, 2

3
2, 2

1
1)

can be interpreted in several ways:

1. First, Player 1 does one activity from category 2. After that,
Player 2 does an activity from category 2. In third place,
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Player 1 makes an activity from category one, and so on.
Finally, the last activity is done by Player 2 from category 1.
According to this interpretation, it is important who does
each activity from which category, where the number of
the activity done, does not matter. So, under this interpre-
tation, there is the assumption that increasing the number
of activities in one unit in any category implies the same
e�ort. A scheme about how to �ll the matrix following the
previous order is as follows:
[
0 1
0 0

]
⇒
[
0 1
0 1

]
⇒
[
1 1
0 1

]
⇒
[
1 2
0 1

]
⇒
[
1 2
1 1

]
⇒
[
2 2
1 1

]

[
2 3
1 1

]
⇒
[
2 3
1 2

]
⇒
[
2 3
2 2

]
⇒
[
3 3
2 2

]
⇒
[
3 3
2 3

]
⇒
[
3 3
3 3

]

2. Second, it could be interesting to distinguish between the
individual e�orts in each activity in each category. So, for
validating an activity, it is mandatory to do the previous
activities for every category. That is, under this second ap-
proach, the extended player 131 is taken into account (or,
for taking into account the third activity of Player 1 in the
category 1); it is mandatory for Player 1 to have previously
done the activities 1 and 2 in the category 1. So, under this
approach, a scheme about how to �ll the corresponding
matrix of activities is as follows:[
0 1
0 0

]
⇒
[
0 1
0 1

]
⇒
[
0 1
0 1

]
⇒
[
0 2
0 1

]
⇒
[
0 2
0 1

]
⇒
[
0 2
0 1

]

[
0 3
0 1

]
⇒
[
0 3
0 2

]
⇒
[
0 3
0 2

]
⇒
[
3 3
0 2

]
⇒
[
3 3
0 3

]
⇒
[
3 3
3 3

]

If we want to use these two approaches for �lling the activities
matrix adding unitary activities, then it is a�ordable to pay to each
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extended player his marginal contribution for each category in
respect to each order and to consider the payo� for Player i in the
category j according to a given order as the sum of the payo�s of
the extended players ihj for h ∈ {1, . . . , k}. This procedure must
be applied to every possible order. So, assuming that all the orders
have the same importance, the idea is to take the arithmetic mean
over these marginal contributions over all the orders. If we apply
this procedure under the �rst approach, the result is equal to the
Shapley value (Shapley [9]) for each extended player and then
we must add the payo�s for the corresponding extended players
for Player i in the category j. Under the second approach, the
result is equal to formulation (3.1). Let us show it with the next
example: Let v be anM -game with n = 2,m = 2 and k = 3, and
we want to calculate the payo� for Player 1 in the category j. So,
under this second approach based on orders, one of the marginal
contributions to be considered in the calculation is

vj

([
2 3
1 0

])
− vj

([
2 1
1 0

])
.

This marginal contribution indicates how the amount changes in
category j when Player 1 increases his activity in category 2 from
1 to 3. There exist (k ·m · n)! possible orders of the extended set
of players and then, it will be enough to count how many of these
player 121 produce that contribution (the sub-index of the extended
player of interest depends on the change in the position in the
matrix, in this example, from 3 to 1). Notice that it is mandatory
that the extended players 111, 1

2
1, 1

1
2, 1

3
2 and 211 are sited in some

position at the left of the player 121 (not necessarily in that order)
to take into account that marginal contribution, and the extended
players 131, 2

2
1, 2

1
1 must be positioned in some place at the right.

The players 231, 2
2
2 and 232 can occupy any position. So, these are
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the orders producing the previous marginal contribution:

σ1 = (121, 1
3
2, 2

2
2, 2

1
1, 1

1
1, 2

3
2, 1

1
2, 1

2
1, 2

2
1, 2

1
2, 2

3
1, 1

3
1),

σ2 = (232, 1
1
1, 2

1
1, 1

2
1, 1

1
2, 1

3
2, 1

2
1, 1

3
1, 2

2
2, 2

3
1, 2

2
1, 2

1
2).

It is easy to verify that the total number of orders satisfying the
previous conditions for any matrix S ∈Mk is precisely cS , which
includes the total number of possible orders (which we need for
calculating the arithmetic mean). Thus, because the sum of the
marginal contributions of each extended player in a given order
is equal to the value of the matrix of maximum activities in the
category j, Solution (3.1) is e�cient by categories.

4. Conclusions and future work

The main contribution of this work is to show a new class of
cooperative games, where the characteristic function is de�ned
using matrices and the image is a vector. These kinds of games
are useful when the joint performance of the players in certain
categories matters in the amount gained in each category, and
it is mandatory to allocate an amount in some way. We show
that this new model is a general case of classical transferable
utility cooperative games or even multi-choice games. So, the
resulting interest in this new model is justi�ed because several
results for this new model have an equivalency in other kinds of
games. Moreover, we show a solution axiomatically characterized
for our model using orders, where the main di�erence with
other solutions based on orders is to regard each activity in each
category of each player as having an importance related to the
order in which it is done. Classical base- on-orders solutions just
take into account the number of activities done.
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For future work, it would be useful to provide additional ways
for providing the solution given by (3.5), because the proportional-
ity regarding the minimum performance axiom can be controver-
sial. Furthermore, solutions based on extended players could have
several interpretations regarding the order in which the manda-
tory activities are done. So, it could be interesting to characterize
more solutions using alternative marginal contributions. Finally,
because of the equivalency between our model and other models
in cooperative game theory, it could be interesting to show the
solution equivalent to 3.1 in other contexts.
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III. AXIOMATIC SOLUTIONS FOR GAMES
IN PARTITION FUNCTION FORM

Joss Sánchez-Pérez

Abstract

In this work, we present the state-of-the-art and a systematic
overview of solutions for games in partition function form charac-
terized in an axiomatic way. This chapter contains some humble
ideas not elaborated in other publications, such as concepts and
approaches that use de�nitions unsupported by mathematical
theorems. It also contains some of our own original results from
publications on the topic, providing interpretations and compar-
isons, although it avoids taking up subjective positions when
comparing competing models.

1. Introduction

Economic activities, both on the macro and micro level, often
entail wide-spread externalities. This, in turn, leads to disputes
regarding the appropriate compensation levels to be allocated
to the various parties a�ected. The problem of how to fairly di-
vide a surplus obtained through cooperation is one of the most
fundamental issues studied in coalitional game theory and it is
relevant to a wide range of economic and social situations. These
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issues are often di�cult to resolve, especially in environments
with externalities where the bene�ts of a group depend not only
on its members, but also on the arrangement of agents outside
the group. This is the general problem to which this paper con-
tributes. In this line, such a problem was e�ectively modelled in
Lucas and Thrall [7] by the concept of partition function form
games: a partition function assigns a value to each pair consisting
of a coalition and a coalition structure which includes that coali-
tion. The advantage of this model is that it takes into account both
internal factors (coalition itself) and external factors (coalition
structure) that may a�ect cooperative outcomes and allows one to
go deeper into cooperation problems. Thus, it is closer to real-life
situations but more complex to analyze.

Since the introduction of the value by Shapley [17], much
work has been devoted to the fair distribution of the earnings
of cooperation among cooperating players. With a considerable
delay, researchers turned to a more general and more realistic
setting where the cooperation of groups or coalitions a�ects third
parties, that is, when there are externalities.

Shapley’s [17] result has been remarkable in many ways. It is
not only a well-de�ned, nonempty point-solution, but it is fully
characterized by a small number of elementary properties: axioms.

An axiomatization is the full characterization of a concept by
widely accepted elementary ideas, or the (brief) list of axioms that
uniquely determine the solution, in this case, the allocation of the
value of the grand coalition.

Solution concepts may be complicated, and it is not expected
that anyone outside the narrower �eld should be able to com-
pare complex formulae. Axioms, on the other hand, reveal the
true nature of these models. Breaking down the problem into
simple properties, axioms should be understandable to people
well beyond the experts of the �eld and it may be far easier to
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get decision makers to agree on such elementary principles than
on a complex formula. Once there is an agreement on the prin-
ciples, an axiomatization result provides us with a well-de�ned
formula to apply those principles unless these decision makers
drastically change their opinion on the fundamental principles
once the implied allocation is presented.

This logic has worked for characteristic function form games
and it seems far too easy to generalize these properties to the
partition function form setting and obtain the generalization of
the Shapley value to the partition function form setting. Unfortu-
nately, the extensions turn out to be di�cult and even controver-
sial.

The purpose of this chapter is to present the state-of-the-art
and a comprehensive survey of solutions for partition function
form games characterized in an axiomatic method. This chapter
is intended to be accessible to readers with little previous knowl-
edge of cooperative game theory. The concepts and notation used
are formally introduced and the results are presented without
proofs (the reader is generally referred to the original publica-
tions). This chapter is not an original research article but contains
some humble ideas not elaborated in other publications, such
as concepts and approaches that use de�nitions unsupported by
mathematical theorems. It also contains some of our own original
results from publications on the topic, providing interpretations
and comparisons, although it avoids taking up subjective positions
in comparing competing models.1

We present a list of axioms used in the characterization of
extended Shapley values, as well as an adaptation of axioms for

1A good reference for the theory of partition function form games is Kóczy
[6], in which he considers the two fundamental approaches to solve partition
function form games (stability and fairness).
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extended Solidarity values2. The multiplicity of such extensions
is, in part, the result of the multiplicity of extensions of axioms
for characteristic function form games. Partition function form
games are, of course, far more complex, but such a multiplicity of
axioms is confusing and the di�erent variations undermine the
self-evidence of these properties. So �rst, we will focus on the
most basic and widely-accepted and used axioms. Then we move
on to alternatives to marginality, followed by alternatives to the
null player property, and �nally, we look at a set of lesser-known,
alternative properties.

Brie�y, the structure of the chapter is as follows. We �rst
recall the main features of games with externalities in the next
section. In Section 3, we formally introduce the most common
axioms found in related literature that are needed to characterize
concept solutions. In Section 4, we provide several axiomatic
characterizations of solutions related to extensions of the Shapley
value and Solidarity value. Finally, in Section 5, we discuss several
axiomatizations of classes of solutions involving some axioms
presented in Section 3.

2. Framework

Let N = {1, 2, ..., n} be a �xed nonempty �nite set, and let the
members of N be interpreted as players in some game situation.
Given S ⊆ N , PT (S) denotes the set of partitions of S, so

{S1, S2, ..., Sm} ∈ PT (S) i�
m∪
i=1

Si = S, Sj ∩ Sk = ∅ ∀j ̸= k.

For simplicity of notation, PT (N) = PT and by convention,
{∅} ∈ Q for every Q ∈ PT . For S ⊆ N , P (S) denotes the set

2Precise de�nitions will be provided in Sect. 3.
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of partitions that contains coalition S; i.e.,

P (S) = {Q ∈ PT | S ∈ Q} .

Also, let EC = {(S,Q) | S ∈ Q ∈ PT} be the set of embed-
ded coalitions, that is the set of coalitions together with speci�-
cations as to how the other players are aligned. The embedded
coalition (S,Q) is called nontrivial if S ̸= ∅.

De�nition 2.1. A partition function form game3 is a mapping

w : EC → R

with the property that w(∅, Q) = 0 for every Q ∈ PT .

The set of games with externalities with player set N is de-
noted by G, i.e.,

G = {w : EC → R | w(∅, Q) = 0 ∀Q ∈ PT}

and in what follows, we will only use the term ‘game’ to refer to
a partition function form game.

The value w(S,Q) represents the payo� of coalition S, given
the coalition structureQ forms. In these kinds of games, the worth
of some coalition depends not only on what the players of such a
coalition can jointly obtain, but also on the way the other players
are organized. We assume that in any game situation, the universal
coalition N (embedded in {N}) will actually form, so that the
players will have w(N, {N}) to divide among themselves. But we
also anticipate that the actual allocation of this worth will depend
on all the other potential worths w(S,Q), as they in�uence the
relative bargaining strengths of the players.

3Also known as “game with externalities.”
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For anyS ⊆ N , let [S] denote the partition ofS which consists
of the singleton elements of S, i.e., [S] = {{j} | j ∈ S}. For
Q ∈ PT , S ∈ Q and i, k ∈ N , we de�ne Q−S = Q\{S}, S−k =
S\{k}, S+k = S∪{k} andQi denotes the member ofQ to which
i belongs. Additionally, we will denote the cardinality of a set by
its corresponding lower-case letter, for instance n = |N |, s = |S|,
q = |Q| and so on.

Given w1, w2 ∈ G and c ∈ R, we de�ne the sum w1 +w2 and
the product cw1 in G in the usual form, i.e.,

(w1 + w2)(S,Q) = w1(S,Q) + w2(S,Q)

and

(cw1)(S,Q) = cw1(S,Q),

respectively. It is easy to verify thatG is a vector space with these
operations and, also, that dimG = |EC|.

De�nition 2.2. A solution on G is a function φ : G→ R
n that

assigns a real vector for each partition function form game.

If φ is a solution and w ∈ G, then we can interpret φi(w) as
the utility payo� which player i should expect from the game w.

Now, the group of permutations of N , Sn = {θ : N → N | θ
is bijective}, acts on 2N and on EC in the natural way; i.e., for
θ ∈ Sn:

θ(S) = {θ(i) | i ∈ S}

θ(S1, {S1, S2, ..., Sl}) = (θ(S1), {θ(S1), θ(S2), ..., θ(Sl)}).

And also, Sn acts on the space of payo� vectors, Rn:

θ(x1, x2, ..., xn) = (xθ−1(1), xθ−1(2), ..., xθ−1(n)).
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De�nition 2.3. Let (S,Q) ∈ EC and i ∈ S. Consider a partition
Q′ obtained by moving player i from S to some other (possible
empty) member T of Q. The mapping αiT : Q→ Q′ de�ned by

αiT (S) = S−i

αiT (T ) = T+i

αiT (S
′) = S ′ for S ′ ∈ Q−S,−T

is called a move for player i. Notice that αiT (Q) = {S−i, T+i} ∪
Q−S,−T .

On the other hand, a game iswith no externalities4 if and only if
the payo� that the players in a coalition S can jointly obtain if this
coalition is formed, is independent of the way the other players
are organized. This means that in a game with no externalities,
the characteristic function satis�es w(S,Q) = w(S,Q′) for any
two partitions Q,Q′ ∈ PT and any coalition S which belongs
both toQ andQ′. Hence, the worth of a coalition S can be written
without reference to the organization of the remaining players,
w(S) := w(S,Q) for all Q ∋ S, Q ∈ PT .

3. The axioms

In the cooperative game theory framework, axiomatization is an
important approach to get a better understanding of cooperative
solution concepts. Over the years, many di�erent values and other
concepts have been fully characterized by axioms. Some of these
axiomatizations are elegant and some are a little forced. Some
axioms are widely accepted and others are more controversial.
These axioms are used widely and we present them divided into
groups.

4Also known as “game in characteristic function form.”
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3.1. E�ciency

Values are used to �nd a fair allocation of bene�ts or a distribution
of costs. Focusing on the case with externalities, we look for a
similar tool, and therefore, it is useful to �rst clarify what precisely
needs to be shared.

Axiom 3.1 (E�ciency). For all w ∈ G:
∑

i∈N

φi(w) = w(N, {N}).

E�ciency simply states that we are looking at values that
distribute the value of the grand coalition and only the value of the
grand coalition. This axiom is an uncontroversial generalisation,
as this is a direct translation of one of Shapley’s [17] axioms
into the partition function form setting. Since the value of the
grand coalition is not subject to externalities, it is well-de�ned in
partition function form games, too.

On the other hand, the e�ciency axiom presupposes that
players will want to form the grand coalition. This is a justi�ed
assumption if the game is cohesive, but cohesiveness has nothing
to do with externalities. Even in games in characteristic function
form, there may be legal or personal reasons for why players may
not wish to cooperate.

3.2. Anonymity

While e�ciency �xes what should be allocated, the following
axioms discuss how it should be allocated. The �rst property
states that all of the players are equal.

Axiom 3.2 (Anonymity). For every θ ∈ Sn and w ∈ G:

φ(θ · w) = θ · φ(w)
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where the game θ · w is de�ned as (θ · w)(S,Q) = w[θ−1(S,Q)].

Anonymitymeans that player’s payo�s do not depend on their
names and are only derived from their in�uence on the worth of
the coalitions. This is natural for those living in democracies and
rules out biased allocations, such as in dictatorships.

On the other hand, one can de�ne an anonymity axiom with
respect to the embedded coalitions EC . According to the next
axiom, what are worthwhile are the worths of di�erent embedded
coalitions and not which embedded coalitions correspond to those
worths.

To this end, let S ⊆ N and θS a bijection on {(T,Q) ∈ EC |
T = S}. For each w ∈ G, let θS · w be the game de�ned by

(θS · w)(T,Q) =
{
w(T,Q) if T ̸= S
w(θS(S,Q)) if T = S

.

Axiom 3.3 (Embedded coalition anonymity). Let S ⊆ N . Given
a bijection θS on {(T,Q) ∈ EC | T = S} for all w ∈ G and
i ∈ N , it holds that

φi(θS · w) = φi(w).

The next axiom strengthens the anonymity axiom by requiring
that the payo� of a player should not change after permutations
in the set of players inN\S, for any embedded coalition structure
(S,Q).

Formally, given an embedded coalition (S,Q), we denote by
θS,QQ a new partition such that S ∈ θS,QQ, and the other coali-
tions result from a permutation of the set N\S applied to Q−S .5

5That is, in the partition θS,QQ, the players in N\S are reorganized in
sets whose size distribution is the same as in Q

−S .
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Now, given the permutation θS,Q, the permutation game θS,Q ·w is
de�ned by (θS,Q ·w)(S,Q) = w(S, θS,QQ), (θS,Q ·w)(S, θS,QQ) =
w(S,Q) and (θS,Q · w)(T, P ) = w(T, P )

∀(T, P ) ∈ EC\{(S,Q), (S, θS,QQ)}.
Axiom 3.4 (Strong anonymity). A solution φ : G→ R

n satis�es
the strong anonymity axiom6 if

a) for every θ ∈ Sn, φ(θ · w) = θ · φ(w)

b) for every (S,Q) ∈ EC and every permutation θS,Q,

φ (θS,Q · w) = φ(w).

The strong anonymity axiom, naturally, implies anonymity
and imposes, in addition to equal treatment of individual players,
the equal treatment of “externalities” generated by players in a
given embedded coalition structure. Exchanging the names of the
players inducing the same externality does not a�ect the payo�
of any player.

3.3. Symmetry

The next property, symmetry, deals with players who can be freely
exchanged. For its de�nition, we need some additional notation.

Let θ ∈ Sn and i, j ∈ N . We denote by θij ∈ Sn the permu-
tation that exchanges players i and j: θij(i) = j, θij(j) = i, and
θij(k) = k for all k /∈ {i, j}.

Unlike anonymity, that looks at di�erent players at the same
position, symmetry deals with players in di�erent positions but
that have identical roles in the game.

6Other authors use the term ’strong symmetry’ instead of ’strong
anonymity’ (e.g., Macho-Stadler et al. [8]).
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De�nition 3.5 (Symmetric players). Given a game w ∈ G, play-
ers i and j are symmetric in w if w(S,Q) = w [θij (S) , θij (Q)].

Since symmetric players have exchangeable roles in the game,
it is natural to require that they have the same value, too.

Axiom 3.6 (Symmetry). Given a game w ∈ G and symmetric
players i; j ∈ N , then

φi(w) = φj(w).

For some authors, symmetry is also known as the Equal Treat-
ment Property. Unlike anonymity that addresses the labelling of
the players, symmetry compares the values of di�erent players.
Incidentally, exchanging these players has no e�ect on the game,
so this property could be seen as a weaker version of anonymity
restricted to symmetric players.

3.4. Carriers and null payers

The following set of axioms are weak conditions only describing
who should, and who should not, get a share (based on marginal
contributions of players). These axioms establish the di�erence
between important andunimportant, ad absurdum,useless players.
The fair share of useless players, who contribute nothing, is zero.
Does anything qualify as something? The answer is less obvious
than one would think.

Here, for any Q,Q ∈ PT , we de�ne:

Q ∧Q =
{
S ∩ S | S ∈ Q,S ∈ Q,S ∩ S ̸= ∅

}
.

De�nition 3.7 (Carrier set). Given a game w ∈ G, the set S is a
carrier of w if for any embedded coalition (S,Q) ∈ EC ,

w(S,Q) = w
(
S ∩ S,Q ∧ {S,N\S}

)
.
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In other words, when we want to determine the worth of a
coalition, the only thing that matters is who the members from the
carrier S are and how those members are partitioned. However,
note that the way players outside of the carrier are partitioned,
may in�uence w(S,Q), and therefore, they may in�uence the
game via the externalities.

Axiom 3.8 (Carrier). For all w ∈ G and all S ∈ 2N\{∅}, if S is
a carrier of w, then

∑

i∈S

φi(w) = w(N, {N}).

The previous axiom states that the worth of the grand coalition
must be divided among the members of a carrier. Since only
the carrier generates value in this game, and its members share
the entire payo�, those outside of the carrier, the players who
contribute nothing, also do not get anything.

Now we turn to players who contribute nothing to the game.
Such players are sometimes referred to as null players and some-
times as dummies; the literature on partition function form games
uses the two terms interchangeably. Null players are players who
have no in�uence on the game at all in the following sense:

De�nition 3.9 (Null player). Let w ∈ G and i ∈ N . Player i is a
null player in the game w, if for all P ∈ PT (N−i) and all S ∈ P ,

w(S, P ∪ {{i}}) = w(S+i, (P−S) ∪ {S+i}).

Once the de�nition of a null player has been clari�ed, we can
give the nullity axiom which states that players who contribute
nothing, do not get anything.

Axiom 3.10 (Null player property). If i ∈ N is a null player in
the game w ∈ G, then φi(w) = 0.
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The following concept, null player in the strong sense, is orig-
inally introduced by Bolger [2] as dummy; others refer to it as
weak dummy player, linking it to the weak dummy axiom (weak
null player axiom). In this work, we prefer to follow de Clippel
and Serrano [3] and call it a null player in the strong sense.

De�nition 3.11 (Null player in the strong sense). i ∈ N is called
a null player in the strong sense in the game w if

w(S,Q) = w (S−i, αiT (Q)) (3.1)

for each embedded coalition (S,Q) such that i ∈ S and each
T ∈ Q−S .7

Thus, the worth of a coalition is not changed if a null player in
the strong sense is transferred to another coalition in the partition.

Axiom3.12 (Weaknull player property). Let i ∈ N and letw ∈ G.
If i is a null player in the strong sense in w, then φi(w) = 0.

Notice that for a player to be a null player in the strong sense,
it must be the case that he alone receives zero for any organization
of the other players and has no e�ect on the worth of any coalition
S. The weak null player property only makes sure that a player
with absolutely no in�uence on the gains that any coalition can
obtain, should not receive, nor pay anything.

The following property considers null players with slightly
weaker conditions where only the aggregate of the equations
given by (3.1) with S ∋ i is considered, while for some partitions,
a null player may actually contribute something. There are alter-
native names for this concept, too. Hu and Yang [5] simply call

7This de�nition of a null player agrees with the de�nition presented in Bol-
ger [2] and Macho-Stadler et al. [8], and it is di�erent than the one considered
in Myerson [9] and Albizuri et al. [1].
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such players dummy as opposed to Bolger’s “weak dummy” (in
our terminology, null player in the strong sense).

De�nition 3.13 (Null player in the weak sense). i ∈ N is called
a null player in the weak sense in the game w if

∑

T∈Q,T ̸∋i

[
w(Qi, Q)− w

(
Qi

−i, αiT (Q)
)]

= 0.

Axiom 3.14 (Strong null player property). Let i ∈ N and let
w ∈ G. If i is a null player in the weak sense inw, then φi(w) = 0.

Besides the previous versions of null player properties, one can
think about other alternatives to deal with the issue of de�ning
players that are not important according to a principle of “average
marginal contributions.”

For instance, one way of de�ning an average marginal con-
tribution is the following: for any (S,Q) ∈ EC such that S ̸= ∅

and any w ∈ G:

Cw(S,Q) =
1

s

∑

j∈S

[w(S,Q)− w(S−j, {S−j, {j}} ∪Q−S)] .

(3.2)
This amount, Cw(S,Q), captures the notion of an average
marginal contribution of a member of S (given the coalition
structure Q), with a speci�c restriction of the organization of
players after player j leaves coalition S. In this respect, player j
simply leaves S and then he/she acts alone, whereas the other
coalitions remain unchanged.

However, it is not the only way to consider this. For every
(S,Q) ∈ EC such that S ̸= ∅ and every w ∈ G:

Aw(S,Q) =
1

s

∑

j∈S

1

|P (S−j)|
∑

Q′∈P (S−j)

[w(S,Q)− w(S−j, Q
′)] .

(3.3)
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As expected, we can interpret Aw(S,Q) as an average marginal
contribution of a member of S, given the coalition structure Q.
In the computation of w(S,Q)− w(S−j, Q

′), notice that Q′ is a
partition of N that re�ects the dynamics of coalition formation
(among players in N\S−j) once player j has left the main coali-
tion S. Even when players in N\S−j form a coalitional structure
completely di�erent from the original one (Q), the essence of the
idea of marginal contribution remains. The reason relies on the
fact that other agents’ behavior could be a consequence of the
departure of j from S; thus, this possibility must be taken into
account.

For both de�nitions ((3.2) and (3.3)), note that if S contains
only one player, then Aw(S,Q) = Cw(S,Q) = w(S,Q).

Once we have considered this notion of average marginal
contributions, we can reformulate a null player property in the
following sense:

De�nition 3.15. i ∈ N is called a null player in the game w if
A

w
(S,Q) = 0 for every (S,Q) ∈ EC such that i ∈ S.

Now, we give the following version of a nullity axiom for
games with externalities:

Axiom 3.16 (C−Average nullity). If i ∈ N is a player for which
Cw(S,Q) = 0 for every (S,Q) ∈ EC such that i ∈ S, then
φi(w) = 0.

Axiom 3.17 (A−Average nullity). If i ∈ N is a player for which
Aw(S,Q) = 0 for every (S,Q) ∈ EC such that i ∈ S, then
φi(w) = 0.
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3.5. Oligarchy

The oligarchy axiom, introduced by Albizuri et al. [1], states that
there is a speci�c coalition (the oligarchic coalition) with whom
the worth of the grand coalition (N, {N}) is obtained. Further-
more, in these games, this speci�c coalition is needed to obtain a
non null worth. This axiom requires the worth ofN to be divided
among players that belong to that coalition.

Axiom 3.18 (Oligarchy). Let w ∈ G. If there exists T ⊆ N such
that

w(S,Q) =

{
w(N, {N}) if S ⊇ T
0 otherwise

then,
∑
i∈T

φi(w) = w(N, {N}).

3.6. Additivity and linearity

While the previous axioms focused on the comparison of players
within a given game, the following axioms tell us how values in
di�erent games are related and these properties are important in
the characterization proofs.

Axiom 3.19 (Additivity). For all w1, w2 ∈ G:

φ(w1 + w2) = φ(w1) + φ(w2).

The axiom of additivity means that when a group of players
shares the bene�ts (or costs) stemming from two di�erent issues,
how much each player obtains does not depend on whether they
consider the two issues together, or one by one. Hence, the agenda
does not a�ect the �nal outcome.

Axiom 3.20 (Linearity). For all w1, w2 ∈ G and c ∈ R:

φ(w1 + w2) = φ(w1) + φ(w2) and φ(cw1) = cφ(w1).
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Linearity clearly implies additivity: it generalises it to arbitrary
combinations. Also, sharing does not depend on the unit used to
measure the bene�ts.

3.7. Marginality

In games with no externalities, the computation of the Shapley
value is a weighted average of marginal contributions. However,
marginality is not mentioned in any of the original axioms. It is
Young [18] who �rst uses this property as one of the axioms for
partition function form games, Bolger [2] uses it �rst and presents
an extension of the Shapley value using such an axiomatization.

Axiom 3.21 (Marginality). Let w1, w2 ∈ G. If for each partition
Q ∈ PT ,

∑

S∈Q,S ̸=Qi

[
w1(Q

i, Q)− w1

(
Qi

−i, αiS(Q)
)]

=
∑

S∈Q,S ̸=Qi

[
w2(Q

i, Q)− w2

(
Qi

−i, αiS(Q)
)]
,

then φ(w1) = φ(w2).

Following the analysis of Bolger [2], consider an embedded
coalition (S−i, αiT (Q)) obtained from (S,Q) by a move for player
i (from S to T ∈ Q−S). Such a move is called a pivot move
if S wins with respect to (S,Q) and S−i loses with respect to
(S−i, αiT (Q)). The marginality axiom states that for simple games
(the worth of any coalition is either one or zero), a player i obtains
the same payo� in two gamesw1 andw2 if he has the same number
of pivot moves in both games.
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3.8. Similar in�uence

There is an axiom that addresses the issue that similar environ-
ments should lead to similar payo�s for the players. To understand
the motivation for this axiom, consider the following example.

Example 3.22. Take N = {1, 2, 3} and consider the games w1

and w2 de�ned by the worths:

(S,Q) ∈ EC w1(S,Q) w2(S,Q)

{1}, {2}, {3} 0 0 0 1 0 0
{1, 2}, {3} 0 0 0 0
{1, 3}, {2} 0 0 0 0
{2, 3}, {1} 0 1 0 0
{1, 2, 3} 1 1

The two games are very similar. In both, only player 1 can produce
some bene�ts alone. The only di�erence is that in the �rst game
players 2 and 3 should be together for the bene�ts to player 1
to be realized, while in the second game, players 2 and 3 should
be separated. The payo� of players 2 and 3 (hence, the payo�
of player 1, as well) can di�er very much depending on whether
they in�uence the worth of player 1 by staying together, or by
separating. However, we think that this in�uence is very similar
and therefore, it is sensible that players 2 and 3 should receive
the same payo� in both games. This idea leads to the next axiom.

To introduce the similar in�uence axiom, we �rst de�ne the
notion of “similar in�uence.”

De�nition 3.23 (Players with similar in�uence). We say that
a pair of players {i, j} ⊆ N , i ̸= j, has similar in�uence in
games w1, w2 ∈ G if w1(S,Q) = w2(S,Q) for all (S,Q) ∈
EC\{(T, P ), (T, P ′)}, w1(T, P ) = w2(T, P

′), and w1(T, P
′) =



III. AXIOMATIC SOLUTIONS FOR PFFG 63

w2(T, P ); where the only di�erence between the partitions P and
P ′ is that {i}, {j} ∈ P−T , while {i, j} ∈ P ′

−T .

Axiom 3.24 (Similar in�uence). For any two games w1, w2 ∈ G
and for any pair of players {i, j} ⊆ N that has similar in�uence
in those games,

φi(w1) = φi(w2) and φj(w1) = φj(w2).

4. Axiomatic solutions

To study solutions for the problem of the fair distribution of the
surplus generated by a group of people who are willing to cooper-
ate with one another, one can take a normative approach (called
axiomatic solutions or values). Given the coalitions and their sets
of feasible payo�s as primitives, the question tackled is the iden-
ti�cation of �nal payo�s awarded to each agent. An axiomatic
solution provides us with a well-de�ned formula to apply those
principles, unless these decision makers drastically change their
opinion on the fundamental principles once the implied allocation
is presented. In this section, we o�er several values, starting with
the �rst proposal in the literature.

Myerson [9] proceeds axiomatically and proposes a value
that extends the well-known Shapley value, which is de�ned
for games with no externalities. The three axioms that uniquely
characterize the Myerson’s extension are additivity, anonymity,
and a carrier axiom requiring that the surplus is shared only
among the members of the carrier.

Theorem 4.1 (Myerson [9]). There exists a unique solution φM

that satis�es the axioms of anonymity, carrier, and additivity. More-
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over, the function φM is given as:

φM
i (w) =

∑

(S,Q)∈EC

(−1)q−1(q − 1)!


 1

n
−
∑

T∈Q−S ,i/∈T

1

(q − 1)(n− t)


w(S,Q).

Modern axiomatizations split the carrier axiom into two prop-
erties: the �rst, e�ciency, is hardly controversial, but the exten-
sion of the second, null player property, to partition function form
games, is sensitive to the behavioural assumptions used. A null
player is a player who has no value by himself, and contributes
nothing to other coalitions. Both depend on what the rest of the
players do, and variations of these assumptions lead to remarkably
di�erent values.

The axiom of marginality is a powerful axiom for solutions in
games with no externalities. For partition function form games,
it is not su�cient with e�ciency and anonymity alone to fully
characterize a solution8. Bolger [2] needs both additivity and the
weak null player property to characterize his value.

Theorem 4.2 (Bolger [2]). There is a unique value φB : G →
R

n satisfying the weak null player property, anonymity, additivity,
marginality, and e�ciency.

Unfortunately, there is no closed form expression for this value,
but it is computed in a recursive way. As an example, consider
the following case:

8For instance, Clippel and Serrano [3] present two values that satisfy
e�ciency, anonymity, and a weaker version of marginality; while Sánchez-
Pérez [15] provides an analysis of a solution that can be represented as a linear
combination of marginal contributions of players.
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Example 4.3. For N = {i, j, k}, the Bolger value for player i is:

φB
i (w) =

w(N, {N})
3

+
1

12

[
2w({i}, {{i}, {j}, {k}})− w({j}, {{i}, {j}, {k}})

−w({k}, {{i}, {j}, {k}})

]

+
1

12

[
2w({i}, {{i}, {j, k}})− w({j}, {{j}, {i, k}})

−w({k}, {{k}, {i, j}})

]

+
1

6

[
w({i, j}, {{k}, {i, j}}) + w({i, k}, {{j}, {i, k}})

2w({j, k}, {{i}, {j, k}})

]
.

In 2005, Albizuri et al. explore a di�erent way to obtain a
generalization of the Shapley value. They obtain, by means of an
axiomatic approach, another extension for the Shapley value for
games in partition function form. In fact, such a solution can be
obtained as the Shapley value of an expected game.

Theorem 4.4 (Albizuri et al. [1]). There exists a unique solution
φAAR : G→ R

n that satis�es the axioms of e�ciency, additivity,
anonymity, embedded coalition, and the oligarchy axiom. Moreover,
such a solution is given by

φAAR
i (w) =

∑

(S,Q)∈EC
S∋i

(s− 1)!(n− s)!
n!P (S,N)

w(S,Q)−
∑

(S,Q)∈EC
S ̸∋i

s!(n− s− 1)!

n!P (S,N)
w(S,Q)

(4.4)
where P (S,N) = |{(T,Q) ∈ EC | T = S}|.

As mentioned before, the solution given in (4.4) can also be
computed as

φAAR
i (w) = Shi(v

w) (4.5)

for all i ∈ N and all w ∈ G, where vw is a game with no exter-



66 GAMES AND EVOLUTIONARY DYNAMICS

nalities (associated to w) de�ned as

vw(S) =
1

P (S,N)

∑

(T,Q)∈EC

T=S

w(T,Q) for all S ⊆ N

and Sh denotes the Shapley value de�ned by

Shi(v
w) =

∑

{S⊆N :i/∈S}

s!(n− s− 1)!

n!
[vw(S ∪ {i})− vw(S)] .

This approach of constructing a value through the Shapley
value of a game with no externalities generated from a game
in partition fuction form, is called “the average approach.”(See
Macho-Stadler et al. [8]). The average approach does not specify
a particular complementary behaviour, but rather, it assumes that
the coalitional value is calculated as a combination (an average)
of the values of this coalition when embedded in a partition. Once
these values are established for each coalition, they yield a game
with no externalities.

In fact, these authors show the relationship between the aver-
age approach and the strong anonymity axiom and describe the
precise restrictions stemming from the weak null player property.
They basically provide an entire family of solutions that satis�es
the axioms of linearity, strong anonymity and the weak null player
property.

In the following theorem, one more axiom, similar in�uence,
is added to ensure uniqueness.

Theorem 4.5 (Macho-Stadler et al. [8]). There is a unique solu-
tion φMPW that satis�es linearity, strong anonymity, the weak null
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player property and similar in�uence; and it is given by

φMPW
i (w) =

∑

(S,Q)∈EC

S∋i

(s− 1)! Π
T∈Q−S

(t− 1)!

n!
w(S,Q)

−
∑

(S,Q)∈EC

S ̸∋i

s! Π
T∈Q−S

(t− 1)!

(n− s)n! w(S,Q).

In the same sense (generalization of the Shapley value), Pham
Do and Norde [11] provide an extension for games in partition
function form, which is generated with the Shapley value of a
game with no externalities.

Theorem 4.6 (Pham Do and Norde [11]). There exists a unique
solution φPN that satis�es the axioms of additivity, symmetry, e�-
ciency and null player property. This solution is given by:

φPN
i (w) = Shi(v

w) (4.6)

for all i ∈ N and allw ∈ G, where vw is a gamewith no externalities
de�ned by

vw(S) = w(S, {S, [N\S]}) for all S ⊆ N.

Notice that the solution given by (4.6) depends only on a func-
tion that gives the worth of each coalition, independently of the
partition structure. Of course, this completely ignores external-
ities; in fact, it only takes a small part of the partition function
into account.

The following solution is characterized using standard axioms,
such as e�ciency, symmetry, additivity, and a property that makes
sure useless players get nothing. The same axioms and principles
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were used to characterize the solution φPN and, yet, the two
values are drastically di�erent. While the value of Pham Do and
Norde [11] is based on a characteristic function generated under
the assumption that players break all links of cooperation and
end up as singletons when a coalition forms, Hu and Yang [5]
take just the opposite approach and consider a property where
the remaining players do not react at all. This shows just how
sensitive such values are to the details of the de�nition of an
axiom.

Theorem 4.7 (Hu and Yang [5]). There exists a unique solution
φHY satisfying the axioms of e�ciency, symmetry, additivity and
the strong null player property. Such solution is given by

φHY
i (w) =

∑

T∈Q−S

Q∈EC

(s− 1)!(n− s)!
|EC|n! [w(S,Q)− w (S−i, αiT (Q))] .

As an alternative to the Shapley value for games with no ex-
ternalities, Nowak and Radzik [10] developed another coalitional
value (called the Solidarity value) for games without externalities.
With this, the rule followed for sharing the bene�ts among the
players is less competitive9 than the rule used in the Shapley value
and it re�ects some social behavior of players in coalitions. Such a
value is based on the assumption that if a coalition S forms, then
the players who contribution to S more than the average marginal
contribution, support, in some sense, their weaker partners in S.

Those ideas were adapted to partition function form games,
and as �nal examples of full characterizations of solutions, we

9It is very easy to �nd real-life examples where the groups formed seek to
protect their weaker members by giving them a share of the gains obtained by
the group.
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present two extensions of the Solidarity value that allow us to
enrich the analysis from a theoretical point of view and from a
practical perspective. At the theoretical level it would be possible
to formulate (considering the in�uence of coalition structures)
new useful axioms to characterize solutions under the principle of
average marginal contribution. In a practical sense, such an exten-
sion responds to situations in which, in addition to externalities,
social and collective interests predominate.

Theorem 4.8 (Hernández-Lamoneda et al. [4]). The solution
φHSS : G→ R

n given by

φHSS
i (w) =

∑

(S,Q)∈EC

i∈S

(n− s)!(s− 1)!

n!
· Cw(S,Q) (4.7)

for every i ∈ N and every w ∈ G; is the unique solution satisfy-
ing the axioms of linearity, anonymity, e�ciency and C−average
nullity.

Theorem 4.9 (Rodríguez-Segura and Sánchez-Pérez [12]). The
solution φRS : G→ R

n given by

φRS
i (w) =

∑

(S,Q)∈EC

i∈S

(n− s)!(s− 1)!

n! · |P (S)| · Aw(S,Q) (4.8)

for each i ∈ N and eachw ∈ G, is the unique solution satisfying the
axioms of linearity, anonymity, e�ciency and A−average nullity.

Recall that the amountsCw(S,Q) andAw(S,Q) are computed
via (3.2) and (3.3), respectively.

Some examples of scenarios where it would be appropriate to
apply a Solidarity value (for environments where externalities are
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present) are: humanitarian aid to territories a�ected by a natural
disaster, where the formation of blocks exogenous to them could
damage support for the victims; situations in which the distri-
bution of some social bene�t or resource indispensable for the
quality of life tends to favor certain alliances for political conve-
nience; family saving funds where the way in which investors are
organized outside of an alliance a�ects the pro�ts of the same and
where the savers assume a position of solidarity by not expecting
that some of their relatives lose their patrimony.

Applying some extensions of the Shapley value to situations
similar to those mentioned above may not be the best alternative
since agents receive payo�s according to their productivity and so,
some of them may be excluded from any bene�t or vital resource,
whereas, the solution proposed in this article is even more robust,
as it considers all possible ways in which external agents can
organize themselves and assumes a social behavior of the agents.

5. Families of solutions

In this section, we provide four classes of axiomatic solutions.
The families of solutions are the following: i) the class of all
linear anonymous solutions; ii) the class of linear, anonymous
and e�cient solutions; iii) the class of solutions that satis�es the
axioms of linearity, anonymity, e�ciency and weak null player
property; and iv) a class of solutions satisfying linearity, strong
anonymity and the weak null player property.

In order to present such families of solutions, it is necessary
to introduce some de�nitions and notation related to integer
partitions.
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5.1. Partitions of integers

A partition of a nonnegative integer is a way of expressing it
as the unordered sum of other positive integers, and it is often
written in tuple notation. Formally,

De�nition 5.1. λ = [λ1, λ2, ..., λl] is a partition of n (denoted as
λ ⊢ n) i� λ1, λ2, ..., λl are positive integers andλ1+λ2+· · ·+λl =
n. Two partitions, which only di�er in the order of their elements,
are considered to be the same partition.

The set of all partitions of n will be denoted by Π(n).

For example, the partitions of n = 4 are [1, 1, 1, 1], [2, 1, 1],
[2, 2], [3, 1] and [4]. We will abbreviate this notation by dropping
the commas, so [2, 1, 1] becomes [211].

IfQ ∈ PT , there is a unique partition λQ ⊢ n associated with
Q where the elements of λQ are exactly the cardinalities of the
elements of Q. In other words, if Q = {S1, S2, ..., Sm} ∈ PT ,
then λQ = [s1, s2, ..., sm].

For a given λ ⊢ n, we represent by λ
o

the set of numbers
determined by the λi’s, and bymλ

λj
the multiplicity of λj in λ. So,

if λ = [4, 4, 2, 1, 1, 1], then λ
o

= {1, 2, 4}, mλ
1 = 3, mλ

2 = 1 and
mλ

4 = 2. By convention,mλ
0 = 1 for every λ ∈ Π(n).

Additionally, if [λ1, λ2, ..., λl] ⊢ n, for l > k ≥ 1 we de�ne
[λ1, λ2, ..., λl]− [λ1, λ2, ..., λk] = [λk+1, λk+2, ..., λl]. For example,
[4, 3, 2, 1, 1, 1]− [3, 1, 1] = [4, 2, 1].

If λ ∈ Π(n) and λ′ ∈ Π(m), then we can form a partition
λ+ λ′ in Π(n+m) by combining all elements of such partitions.
For example, [4, 3, 2, 1, 1, 1] + [3, 1, 1] = [4, 3, 3, 2, 1, 1, 1, 1, 1].

Finally, for λ ∈ Π(n) and z, r ∈ λ◦ (r ̸= 1), we de�ne λrz =
λ− [r, z] + [r − 1, z + 1].

Now, we need to de�ne certain sets which are used in the
sequel.
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De�nition 5.2. For a positive integer n, let An be a set of pairs
associated with all partitions λ ⊢ n and its elements, i.e.,

An = {(λ, s) | λ ∈ Π(n), s ∈ λ◦}.
Also, de�ne the set of triples

Bn = {(λ, s, t) | λ ∈ Π(n)\{[n]}, s ∈ λ◦, t ∈ (λ− [s])◦}
and similarly, let En be a set of pairs

En = {(λ, s) | λ ∈ Π(n), s ∈ λ◦\{1, n}}.
Example 5.3. If n = 4, then

A4 = {([1111], 1), ([211], 1), ([211], 2), ([22], 2),
([31], 1), ([31], 3), ([4], 4)},

B4 = {([1111], 1, 1), ([211], 1, 1), ([211], 1, 2),
([211], 2, 1), ([22], 2, 2), ([31], 1, 3), ([31], 3, 1)}

and

E4 = {([211], 2), ([22], 2), ([31], 3)}.

5.2. Characterizations

Theorem 5.4 (Hernández-Lamoneda et al. [4]). If the solution
φ : G → R

n satis�es the linearity and anonymity axioms, then
there exist unique real numbers {α(λ,s) | (λ, s) ∈ An} ∪ {β(λ,s,t) |
(λ, s, t) ∈ Bn} such that

φi(w) =
∑

(λ,s)∈An

∑

(S,Q)∈EC

S∋i,|S|=s

λQ=λ

α(λ,s)w(S,Q)

+
∑

(λ,s,t)∈Bn

∑

(S,Q)∈EC

S ̸∋i,|S|=s

λQ=λ,|Qi|=t

β(λ,s,t)w(S,Q). (5.9)
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Conversely, for any real numbers {α(λ,s) | (λ, s) ∈ An}∪{β(λ,s,t) |
(λ, s, t) ∈ Bn}, the solution given by (5.9) is linear and symmetric.

Remark 5.5. It is worthwhile to mention that a complete analysis
of linear anonymous solutions for partition function form games
is treated in Sánchez-Pérez [15] and Sánchez-Pérez [16], where
representation theory techniques are applied to the study of such
solutions.

Theorem 5.6 (Hernández-Lamoneda et al. [4]). The solution φ :
G→ R

n satis�es linearity, anonymity and e�ciency axioms if and
only if it is of the form

φi(w) =
w(N, {N})

n

+
∑

(λ,s,t)∈Bn

β(λ,s,t)




∑

(S,Q)∈EC
S∋i,|S|=s
λQ=λ

∑

T∈Q−S

|T |=t

tw(S,Q)−
∑

(S,Q)∈EC
S ̸∋i,|S|=s

λQ=λ,|Qi|=t

sw(S,Q)




(5.10)

for some real numbers {β(λ,s,t) | (λ, s, t) ∈ Bn}. Moreover, such
representation is unique.

The expression given by (5.10) can be interpreted as follows.
We start by giving w(N,{N})

n
to each player. For each (S,Q) ∈ EC ,

we keep going with one transfer from T to S for each T ∈ Q−S ;
every player in T pays sβ(λQ,s,t)w(S,Q) and every player in S
receives tβ(λQ,s,t)w(S,Q). At the end, the player i has the amount
φi(w) given by the above formula.

Theorem 5.7 (Sánchez-Pérez [13]). The solution φ : G → R
n

satis�es the axioms of linearity, anonymity, e�ciency and weak
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null player property if and only if it is of the form (5.10) for real
numbers {β(λ,s,t) | (λ, s, t) ∈ Bn} such that

i)

β([n−1,1],n−1,1) =
1

n(n− 1)
(5.11)

and

ii) for every (λ, r) ∈ En:

(
1−mλ

r

) [
rβ(λ,r,r) − (r − 1)β(λr

r,r−1,r+1)

]

=
∑

z∈λ◦∪{0}

z ̸=r

[
zmλ

zβ(λ,r,z) − (r − 1)mλ
zβ(λr

z ,r−1,z+1)

]
.

(5.12)

Remark 5.8. The intuition behind the characterization derived
in Theorem 5.7 has an interpretation as a bargaining process:

1. We allocate w(N,{N})
n

to each player.

2. For each (S,Q) ∈ EC and each T ∈ Q−S , we keep going
with one transfer from T to S:

i) Every player in S receives (from every player in T )
the fraction β(λQ,s,t) of the worth w(S,Q):

tβ(λQ,s,t)w(S,Q).

ii) Every player in T pays (to every player in S) a fraction
β(λQ,s,t) of the worth w(S,Q):

sβ(λQ,s,t)w(S,Q).
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3. Finally, these transfers must satisfy β([n−1,1],n−1,1) =
1

n(n−1)

and
∑

T∈Q−S

tβ(λQ,s,t) =
∑

T∈Q−S

(s− 1) β(λαiT (Q),s−1,t+1)

for every (S,Q) ∈ EC such that S ∋ i, s ̸= 1 and s ̸= n.
Here, β(λαiT (Q),s−1,t+1) represents the fraction of the worth
w (S−i, αiT (Q)) that receives each player inS−i from player
i.

Remark 5.9. To gain more intuition, as noted by Sánchez-Pérez
[14], it is not di�cult to show that the solutions characterized in
Theorem 5.7 can be written as a linear combination of marginal
contributions. For games with no externalities, the marginal con-
tribution of a player i within a coalition S is de�ned as the loss
incurred by the other members of S if i leaves the group.

For partition function form games, this number could depend
on the organization of the players not in S. It is natural, there-
fore, to de�ne the marginal contribution of a player within each
embedded coalition. We consider the general case where a player
may join another coalition T after leaving S. For this purpose, we
use the idea behind the de�nition of a null player in the strong
sense.

Formally, let i be a player, let (S,Q) ∈ EC such that S ∋ i
and let T ∈ Q−S . Then the marginal contribution of i to (S,Q)
when i joins T is given by

MCi,(S,Q),T (w) = w(S,Q)− w (S−i, αiT (Q)) . (5.13)

Notice that under this concept of marginal contribution for
partition function form games (given by (5.13)), a player i ∈ N is
a null player in the strong sense ifMCi,(S,Q),T (w) = 0 for every
(S,Q) ∈ EC such that S ∋ i and every T ∈ Q−S .
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Proposition 5.10 (Sánchez-Pérez [14]). Every solution satisfying
the axioms of linearity, anonymity, e�ciency and weak null player
property is a linear combination of marginal contributions:

φi(w) =
∑

(S,Q)∈EC

S∋i,s ̸=1

∑

T∈Q−S

(s− 1) β(λαiT (Q),s−1,t+1)MCi,(S,Q),T (w)

+
∑

(S,Q)∈EC

S∋i,s=1

∑

T∈Q−S

tβ(λQ,s,t)MCi,(S,Q),T (w).

As mentioned in Section 4, Macho-Stadler et al. [8] provide
an approach for constructing a value through the Shapley value
for a game with no externalities generated from a game in par-
tition function form (known as “the average approach”). In an
environment with externalities, the worth of a group of players
is in�uenced by the way the outside players are organized. What
worth should then be “assigned” to that group of players? An ob-
vious candidate is to take an average of the di�erent worths of this
group for all the possible organizations of the other players. Re-
peating this process for all groups leads to an “average”game with
no externalities. A focal candidate now for a value for the original
game with externalities is the Shapley value for the average game.

More formally, the “average approach” consists of, �rst, con-
structing an average game vw associated with the partition func-
tion game w by assigning to each coalition S ⊆ N the average
worth

vw(S) =
∑

(S,Q)∈EC

γ(S,Q) · w(S,Q)

with
∑

(S,Q)∈EC γ(S,Q) = 1. The authors refer to γ(S,Q) as the
“weight” of the partition Q in the computation of the value of
coalition S ∈ Q. Second, the average approach constructs a value
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φ for the partition function game w by taking the Shapley value
of the game vw.

The following theorem shows the intimate relation between
the average approach and strong anonymity, revealing an en-
tire class of solutions satisfying the axioms of linearity, strong
anonymity and the weak null player property.

Theorem 5.11 (Macho-Stadler et al. [8]). Consider a solution
φ that satis�es the axioms of linearity and the weak null player
property. Then φ also satis�es strong anonymity if and only if it can
be constructed through the average approach and with symmetric
weights also satisfying

γ(S,Q) =
∑

T∈Q−S

γ (S−i, αiT (Q))

for all i ∈ S and for all (S,Q) ∈ EC such that s > 1 .
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IV. CAPACITY CHOICE IN A MIXED
DUOPOLY AND THE SHADOW COST
OF PUBLIC FUNDS

Jorge Fernández-Ruiz

Abstract

We study the e�ect of the existence of a shadow cost of public
funds on the capacity choices of �rms in a mixed duopoly in a
market with product di�erentiation. We �nd that it a�ects the
choice of the public �rm when products are substitutes, but it
a�ects neither this �rm’s choice when products are complements,
nor the choice of the private �rm.

1. Introduction

The idea that �rms may hold excessive capacity for strategic
reasons has been widely studied in the literature of pure private
oligopolies, examples being Dixit [4], Brander and Spencer [2] and
Horiba and Tsutsui [6]. This issue has also been analyzed in the
context of mixed oligopolies, where private �rms compete with
public �rms, as in, for instance, Wen and Sasaki [16], Nishimori
and Ogawa [12], Lu and Poddar [9], Ogawa [13], and Barcena-Ruiz
and Garzón [1]. Our paper contributes to this line of research by

J. Fernández-Ruiz
Centro de Estudios Económicos, El Colegio de México. Carretera Picacho-
Ajusco 20, Col. Ampliación Fuentes del Pedregal, 14110 Tlalpan, Ciudad de
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adding the shadow cost of public funds to the analysis of capacity
choices in a mixed duopoly.

As a background for our work, let us mention the papers
by Nishimori and Ogawa [12] and Ogawa [13]1. Nishimori and
Ogawa [12] study a mixed duopoly where �rms �rst choose their
capacities and then compete in quantities in a homogeneous prod-
uct market. They show that while the private �rm chooses to
hold excess capacity, the public �rm chooses under-capacity, in-
stead. Ogawa [13] considers the same framework as Nishimori
and Ogawa [12], but allowing for product di�erentiation, and
�nds that the result of the private �rm continues to hold since it
chooses over-capacity. But the public �rm chooses over-capacity
if products are complements, and under-capacity, if they are sub-
stitutes.

In this paper we extend the above models by considering the
existence of a shadow cost of public funds. We assume, following
Matsumura and Tomaru [11]2, that there is a shadow cost of public
funds, or an excess burden of taxation ofα ≥ 0. In this framework,
the social value of public �rms’ pro�ts is higher than that of private
�rms’ pro�ts because they help to decrease the deadweight loss
of taxation.

We look for the changes that the existence of a shadow cost of
public funds causes on capacity choices in a mixed duopoly. We
�nd that it changes the capacity choice of the public �rm when
products are substitutes –but it does not change this choice when
they are complements– and this does not a�ect the choices of

1See also Fernández-Ruiz [5], who considers the possibility that the private
�rm is (at least partially) owned by foreign investors.

2As Matsumura and Tomaru [11] mention, this approach is based on the
work on contract theory by La�ont and Tirole [8], Olsen and Osmundsen [14]
and La�ont and Pouyet [7], and is similar to the approach by Capuano and
De Feo [3] and Matsumura and Tomaru [10] on mixed oligopolies.
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the private �rm. The rest of this paper is organized as follows.
Section 2 presents the model. Section 3 develops the results and
Section 4 concludes.

2. The model

We extend the model studied in Ogawa [13] that considers a mixed
duopoly with di�erentiated products to incorporate the shadow
costs of public funds.

There is a market where �rm 1 (a private �rm) and �rm 2
(a public �rm) produce di�erentiated products. Let qi be �rm i’s
output. The representative consumer has preferences that can be
represented by the following utility function:

U(q1, q2) = a(q1 + q2)−
(q21 + 2bq1q2 + q22)

2
, (2.1)

which is quadratic, strictly concave and symmetric in q1 and q2,
as in Ogawa [13] and Barcena-Ruiz and Garzón [1]. Maximiza-
tion of this utility function yields the following inverse demand
functions:

pi = a− qi − bqj i = 1, 2; j = 3− i (2.2)

where pi represents �rm i’s price. If b ∈ (−1, 0), the products
are complements and if b ∈ (0, 1), they are substitutes. Using
the utility function in (2.1) and the demand functions in (2.2), we
obtain the following consumer surplus function:

CS =
q21 + q22 + 2bq1q2

2
. (2.3)

We assume that �rm i’s cost function is a function of both its
output qi and its production capacity xi and takes the functional
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form3:

Ci(qi, xi) = mqi + (qi − xi)2 (2.4)

as in Vives [15], Horiba and Tsutsui [6], Nishimori and Ogawa
[12] and Lu and Poddar [9]. This functional form implies that
it is ine�cient to have undercapacity (xi < qi) or overcapacity
(xi > qi), and costs are minimized when productive capacity is
exactly equal to output.

It follows from equations (2.2) and (2.4) that �rm i’s pro�ts
are given by

Πi = (a−qi−bqj)qi−mqi−(qi−xi)2 i = 1, 2; j = 3−i. (2.5)

Social welfare is given by:

SW = CS +Π1 + (1 + α)Π2 (2.6)

where α ≥ 0 represents the shadow costs of public funds.
Firm 1 maximizes its pro�ts as given in equation (2.5). Firm 2

maximizes social welfare as given in equation (2.6).
The game runs as follows: in the �rst stage �rms simulta-

neously choose their productive capacities. In the second stage,
knowing the two �rms’ �rst-stage decisions, they simultaneously
choose their outputs.

3With m < a.
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3. Results

Our solution concept will be subgame-perfect equilibrium. We
start by examining the second stage of the game. In this stage,
the productive capacities x1, x2 have already been set and thus,
each �rm i chooses only its output qi to maximize its objective
function, �rm 1’s pro�ts for �rm 1 and social welfare for �rm 2.

Maximization of �rm 1’s pro�ts with respect to q1 yields:

q1 =
2x1 − bq2 −m+ a

4
. (3.7)

Maximization of social welfare with respect to q2 yields:

q2 =
(2x2 − bq1 −m+ a)α + 2x2 − bq1 −m+ a

4α + 3
. (3.8)

Solving for q1 and q2 in (3.7) and (3.8) yields:

q1 =
(2bx2−8x1+(4−b)m+ab−4a)α+2bx2−6x1+(3−b)m+ab−3a

(b2−16)α+b2−12

(3.9)

q2 =
−(8x2 − 2bx1 − (4− b)m− ab+ 4a)(1 + α)

(b2 − 16)α + b2 − 12
. (3.10)

In the �rst stage of the game, each �rm i chooses xi, antici-
pating the choices q1 and q2 given in equations (3.9) and (3.10).

Firm 1’s choice of xi to maximize its pro�ts leads to:

x1 =
−4(4α+3)

(
(2bx2+(4−b)m+ab−4a)α+2bx2+(3−b)(m−a)

)
(b4−32b2+128)α2+(2b4−56b2+192)α+b4−24b2+72

.

(3.11)
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Firm 2’s choice of x2 to maximize social welfare leads to:

x2 =
−
(
Fα2+

(
(64b−2b3)x1+(112−32b−3b2+b3)(m−a)

)
α
)

(b4−32b2+128)α2+(2b4−50b2+160)α+b4−18b2+48

(3.12)

with
F = 32bx1 + (64− 16b)(m− a).

We can now solve for x1 and x2 in (3.11) and (3.12) to obtain:

x1 =
4(4α + 3)(m− a)G

D
(3.13)

with

G =(b3 − 4b2 − 16b+ 32)α2 + (2b3 − 5b2 − 28b+ 40)α

+ b3 − b2 − 12b+ 12

and

D = (b6 − 48b4 + 512b2 − 1024)α3 + (3b6 − 126b4 + 1216b2 − 2048)α2

+(3b6 − 108b4 + 944b2 − 1344)α + b6 − 30b4 + 240b2 − 288,

while

x2 =
(m− a)H

D
(3.14)

with

H = (16b3 − 64b2 − 256b+ 512)α3 + (−b5 + 3b4 + 64b3 − 192b2 − 704b+ 1280)α2

+(−2b5 + 6b4 + 75b3 − 188b2 − 624b+ 1056)α− b5 + 3b4 + 27b3 − 60b2 − 180b+ 288.

Replacing x1 and x2 from 3.13 and 3.14 into q1, and q2 in 3.9
and 3.10, we obtain:

q1 =
−(m− a)J

D
(3.15)

with
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J = (αb2 + b2 − 16α− 12)((b3 − 4b2 − 16b+ 32)α2

+(2b3 − 5b2 − 28b+ 40)α + b3 − b2 − 12b+ 12)

and

q2 =
−(m− a)K

D
, (3.16)

with

K = (α + 1)(b2α− 16α + b2 − 12)(b3α− 4b2α− 16bα + 32α + b3 − 4b2 − 14b+ 24).

We can obtain x1 − q1 and x2 − q2 from equations (3.13) to
(3.16), as follows:

x1 − q1 =
b2(m− a)(α + 1)L

D
(3.17)

with

L =(b3 − 4b2 − 16b+ 32)α2 + (2b3 − 5b2 − 28b+ 40)α

+ b3 − b2 − 12b+ 12

and

x2 − q2 =
b(m− a)M

D
(3.18)

with

M = (b4−4b3−16b2+32b)α3+(2b4−9b3−26b2+72b−32)α2

+(b4 − 6b3 − 9b2 + 52b− 40)α + (1− b)(b2 − 12).

We then have:

Proposition 3.1. In the mixed duopoly with a shadow cost of public
funds equal to α > 0:
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i) the public �rm chooses over-capacity (x2 − q2 > 0) if the
products are complements. If the products are substitutes, there
exists α∗ > 0 such that it chooses under-capacity (x2 − q2 <
0) when α < α∗ and over-capacity when α > α∗.

ii) The private �rm chooses over-capacity irrespective of whether
the products are complements or substitutes.

Proof. See Appendix.
Let us compare our results with those obtained in the absence

of a shadow cost of public funds. Since in the absence of this cost,
both the private �rm and, if products are complements, the public
�rm, choose over-capacity, the shadow cost of public �rms does
not alter the results on capacity choice. But the existence of this
cost does alter the results of the public �rm’s capacity choice
if products are substitutes because, in the absence of this cost,
the public �rm chooses under-capacity, while, in its presence, it
continues to choose under-capacity only if this cost is low, while
it chooses over-capacity if it is high.

4. Conclusion

We have studied how the existence of a shadow cost of public
funds alters the results of capacity choice in a mixed duopoly
with product di�erentiation. We have found that it changes the
capacity choice of the public �rm if products are substitutes, but
that it alters neither the results of the capacity choice of the public
�rm if products are complements, nor the results of the private
�rm’s capacity choice.
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5. Appendix: Proof of Proposition 3.1 .

5.1. (i) Analysis of x2 − q2.
Notice, �rst, that D < 0 because b6 − 30b4 + 240b2 − 288 < 0
and the coe�cients on α3, α2 and α are also all negative.

Notice now that since, by assumption,m < a, x2 − q2 andM
have di�erent signs when b < 0, while they have the same sign
when b > 0. We will determine the sign of x2−q2 by determining
the sign ofM . Since (1− b)(b2− 12) < 0 when α equals zero,M
will be negative. On the other hand, since (b4−4b3−16b2+32b) <
0 (> 0) when b < 0 (b > 0), when α approaches +∞,M will be
negative when b < 0, and it will be positive when b > 0.

The derivative ofM with respect to α is equal to:

∂M

∂α
= 3(b4−4b3−16b2+32b)α2+2(2b4−9b3−26b2+72b−32)α

+b4 − 6b3 − 9b2 + 52b− 40.

This derivative vanishes at the following two roots:

α1 =
−2b4 + 9b3 + 26b2 − 72b+ 32 +

√
Q

3b4 − 12b3 − 48b2 + 96b

α2 =
−2b4 + 9b3 + 26b2 − 72b+ 32−√Q

3b4 − 12b3 − 48b2 + 96b

with

Q = b8−6b7−20b6+108b5+140b4−288b3−64b2−768b+1024.

Consider �rst the case, b ∈ (0, 1). It can be seen that α2 < 0 <
α1. (The denominator of the two roots is positive. The numerator
of α2 is negative while the numerator of α1 is positive.) Therefore,
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α1 is the only positive value where ∂M
∂α

vanishes. Since ∂M
∂α

< 0
when α approaches zero, [it can be seen that b4 − 6b3 − 9b2 +
52b − 40 < 0 for b ∈ (0, 1)] while ∂M

∂α
> 0 when α approaches

+∞,M reaches a local minimum at α = α1. SinceM is negative
when α = 0, and it is positive when α approaches +∞, this
implies that there exists α∗(> α1) such that M is negative for
α < α∗, and positive for α > α∗. Therefore, x2− q2 < 0(> 0) for
α < α∗(α > α∗).

Consider now the case b ∈ (−1, 0). It can be seen that α2 <
α1 < 0. (The denominator of the roots is negative, while the
numerator is positive). Therefore, ∂M

∂α
does not vanish at any

α > 0. Since ∂M
∂α

< 0 when α approaches zero, we have that
∂M
∂α

< 0 for all α > 0. Since M is strictly decreasing and is
negative when α equals zero, it will be negative for all α > 0.
Therefore, x2 − q2 > 0.

5.2. (ii) Analysis of x1 − q1.
Notice �rst that since bothm−a andD are negative,x1−q1 has the
same sign as L. Notice now thatL > 0, since (1−b)(12−b2) > 0,
and the coe�cients of α2 and α are both positive.

References

[1] J. C. Barcena-Ruiz and M. B. Garzón. “Capacity choice in
a mixed duopoly under price competition”. In: Economics
Bulletin 12.26 (2007), pp. 1–7.

[2] J. A. Brander and B. J. Spencer. “Strategic commitment with
R&D: the symmetric case”. In: The Bell Journal of Economics
(1983), pp. 225–235.



IV. CAPACITY CHOICE IN A MIXED DUOPOLY 91

[3] C. Capuano and G. De Feo. “Privatization in oligopoly:
the impact of the shadow cost of public funds”. In: Rivista
italiana degli economisti 15.2 (2010), pp. 175–208.

[4] A. Dixit. “The role of investment in entry-deterrence”. In:
The economic journal 90.357 (1980), pp. 95–106.

[5] J. Fernández-Ruiz. “Capacity choice in a mixed duopoly
with a foreign competitor”. In: Economics Bulletin 32.3
(2012), pp. 2653–2661.

[6] Y. Horiba and S. Tsutsui. “International duopoly, tari� pol-
icy and the superiority of free trade”. In: The Japanese eco-
nomic review 51.2 (2000), pp. 207–220.

[7] J.-J. La�ont and J. Pouyet. “The subsidiarity bias in regula-
tion”. In: Journal of Public Economics 88.1-2 (2004), pp. 255–
283.

[8] J.-J. La�ont and J. Tirole. A theory of incentives in procure-
ment and regulation. MIT press, 1993.

[9] Y. Lu and S. Poddar. “Mixed oligopoly and the choice of
capacity”. In: Research in Economics 59.4 (2005), pp. 365–
374.

[10] T. Matsumura and Y. Tomaru. “Mixed duopoly, priva-
tization, and subsidization with excess burden of taxa-
tion”. In: Canadian Journal of Economics/Revue canadienne
d’économique 46.2 (2013), pp. 526–554.

[11] T. Matsumura and Y. Tomaru. “Mixed duopoly, location
choice, and shadow cost of public funds”. In: Southern Eco-
nomic Journal 82.2 (2015), pp. 416–429.

[12] A. Nishimori and H. Ogawa. “Do �rms always choose ex-
cess capacity?”. In: Economics Bulletin 12.2 (2004), pp. 1–
7.



92 GAMES AND EVOLUTIONARY DYNAMICS

[13] H. Ogawa. “Capacity choice in the mixed duopoly with
product di�erentiation”. In: Economics Bulletin 12.8 (2006),
pp. 1–6.

[14] T. E. Olsen and P. Osmundsen. “Strategic tax competition;
implications of national ownership”. In: Journal of Public
Economics 81.2 (2001), pp. 253–277.

[15] X. Vives. “Commitment, �exibility and market outcomes”.
In: International Journal of Industrial Organization 4.2
(1986), pp. 217–229.

[16] M. Wen and D. Sasaki. “Would excess capacity in public
�rms be socially optimal?”. In: Economic Record 77.238
(2001), pp. 283–290.



V. EVOLUTION AND GENERAL
EQUILIBRIUM

Elvio Accinelli

Abstract

General Equilibrium plays a central role in the majority of the
areas of economics, providing a rigorous analysis of decentralized
economies under the assumption that no one in particular sets the
prices, but all do it. It is, mainly, a static theory, capable of explain-
ing in a rigorous manner the actual economy, but without a good
explanation of the trading process in the long run. It may, perhaps,
serve as an exercize to describe an economy out of equilibrium
and the process by which this is achieved, which is not an easy
task, and may be impossible, at least without strong restrictions
in the hypotheses. In this work we attempt to introduce a suitable
dynamics along an equilibrium path.

1. Introduction

In this paper, we analyze the theoretical di�culties inherent in
the tâtonnement process to consider the global evolution of an
economy to an equilibrium system of prices. We will consider the
possibility of introducing a complementary dynamics that allows
us to explain the evolution of an economy along the equilibrium
manifold. This last concept is introduced by Balasko [3].
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By introducing a new dynamics to explain the evolution of
economies in their equilibrium variety at the local level, Samuel-
son’s dynamics becomes a good tool to analyze the stability of
each equilibrium. In some way both dynamics are complementary.

Following Accinelli and Covarrubias [1] we consider an evo-
lutionary dynamic on a modi�ed Balasko equilibrium manifold
and we show that economic crises can be considered as a natural
result of the evolution of the economy along an equilibrium path.

The rest of this paper is as follows: in the next section we
consider the Samuelson’s dyanmics as mathematical formaliza-
tions of the tâtonnemet process considered by L. Walras in 1926
(see Walras [9]). In Section 3 we explain our heterodox point of
view. The model is introduced in Section 4 and corresponds to
the model considered previously in Accinelli and Covarrubias
[1]. In Section 5 we give a �rst step to build a dynamics over the
manifold of equilibria. In Section 6 we show a dynamics over
a modi�ed version of the Balasko Manifold, and we show that
singular economies are the threshold of crises that happen as a
result of the choices of owners or managers of �rms. Finally, we
give some conclusions.

2. Samuelson’s dynamics

The main dynamic process in economic theory is given by the
tâtonnemet process; however, this is more of a description than
an explanation. It works as follows:

Let zt(p) = (z1t(p), ..., zlt(p)) be the aggregate excess demand
function of an economy such that in time t there are l di�erent
goods, and prices are p. zit(p) =

∑n
i=1 xit(p, wi)−

∑n
i=1wit where

xit(p, wi) is the demand of the i−th agent when prices are p and
we represent the initial wealth of this agent by wi. To simplify
the notation, we do not specify the time variable. In addition, we
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assume a di�erentiable function of prices p ∈ ℜl
++.

Suppose that in an initial time t0 prices are p(t0) and z(p(t0)) ̸=
0, then the demand-and-supply principle suggests that prices will
adjust upward for goods in excess demand, and downward for
those in excess supply. Using elements of di�erential equations
and dynamical systems theory, Samuelson in 1944 and 1947 pro-
poses a speci�c form for the tâtonement process:

dpl
dt

= clzl(p), for every l ∈ {1, ..., L}

where cl > 0 is a constant a�ecting the speed of adjustment,
and zl(p) the excess demand function for the l − th commodity.
Note that if z(p∗) = 0, then p∗ is an equilibrium for Samuelson’s
dynamics and a Walrasian price vector of equilibrium for the
economy. Thus, if we can show some kind of global stability of
p∗, we can conclude that the economy converges to a steady state.
Such was the idea of Walras, but this road is full of stones.

As simple as this equation is, its interpretation is fraught with
di�culties.

• Which economic agent is in charge of prices?

• Why must the law of one price hold out of equilibrium?

• What sort of time does t represent? It is not real time be-
cause with disequilibrium prices, not all plans can be simul-
taneously realized.

• Perhaps the most sensible answer to this question is that
this axillary variable provides an insight into the equilib-
rium properties, it helps to distinguish good equilibria from
poorly behaving equilibria (restoring an equilibrium after
a disturbance).
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• It is not necessarily true that the equation z(p) = 0 has
only one solution. As G. Debreu has shown, a multiplicity
of solutions is a generic property (see Balasko [3]).

The most suggestive case is for an economy with two goods.

Example 2.1. In the case of an economy with only two goods,
from Walras’s law, we can restrict considerations to one given
price, for instance, p2(t) ≡ 1, and consider �nding the equilibria
with only one price out of equilibrium following the law:

ṗ1 = kz1(p1).

• Each equilibrium price p̄1 corresponds to one stationary
state z1(p̄1) = 0 and de�nes an equilibrium vector price
p = (p̄1, 1).

• If the economy is regular, then we have an odd number of
equilibria, locally stable, or totally unstable, according to
the slope of the excess demand function.

• According to Samuelson’s dynamics, every economy (with
two goods) out of equilibrium will converge to the equilib-
rium.

2.1. Some pessimistic considerations

Unfortunately, as soon as l > 2, the global consideration corre-
sponds to the case where L = 2 cannot be generalized. However,
we can consider the local behavior of equilibria after this state is
reached using Samuelson’s dynamics.
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Figure V.1: Stable and unstable equilibria. Corner equilibria are
stable.

Example 2.2. Consider an exchange economy with L = 3. From
the degree zero homogeneity of the excess demand function, we
consider the normalized set of prices

S = {p ∈ R3
++ : p21 + p22 + p23 = 1}

and c1 = c2 = c3 = 1.

As a consequence of Walras’s law, this normalization has the
virtue that

d(p21 + p22 + p23)

dt
= pz(p) = 0.

So, if p(0) ∈ S, then p(t) ∈ S for all t ≥ 0. The only restric-
tions to the trajectories imposed by the general theory are those
derived from the boundary behavior of the excess demand. In
such a case, in the boundary of S given that excess demand be-
comes positive, the trajectories of prices point inward, near the
boundary. However, there are equilibria that are neither locally
stable, nor locally unstable, and under some initial conditions,
prices may not converge to any equilibrium, depending on the
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characteristics of the excess demand, and it is possible to obtain
cycles. We cannot avoid cycles without strong restrictions in the
preferences of the consumers. Thus, we cannot expect to have
even local convergence.

But, we can analyze the behavior of equilibria after a small
perturbation in the fundamentals of the economy. In conclusion,
if l > 2, then Samuelson’s dynamics does not allow one to make
global considerations on convergence to an equilibrium, but it
is possible to use this dynamics to analyse the local stability of
equilibria.

2.2. Attempting to do some positive analysis

In order to be positive, we can say that in the case where we have
succeeded proving the uniqueness of an equilibrium, then we
could rely on Samuelson’s dynamics. Moreover, this equilibrium
will be globally stable.

But, unfortunately, even assuming that society maximizes a
utility function, in general, uniqueness requires WARP. This is a
very restrictive condition. Even if individual utilities verifyWARP,
it does not necessarily happens in the aggregate (see Debreu [4]).

In contrast to WARP, if the uncompensated law of demand
(ULD), i.e.,∀ p ̸= p′, (p′−p)(xi(p′, w)−x(p, w)] ≤ 0 is veri�ed for
individual demand functions, then it is veri�ed in the aggregate,
and uniqueness of the equilibrium follows. The Mitjushcin and
Polterovich [8] condition

−xiD
2ui(xi)xi

xi∇ui(xi)
< 4 for all xi

implies xi(p, w) satis�es ULD. This condition doesn’t seem to be
excessively restrictive.
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Assuming that the function of excess demand is di�erentiable,
another possibility for (global) stability is that the Jacobian matrix
of the aggregate excess demand (restricted) is negative de�nite for
all p. The Jacobian of the excess demand satis�es pDpz(p) = 0,
and so if l is the amount of goods, then rankDpz(p) ≤ l − 1. But
if rankJpz(p) = l − 1, by the homogeneity of degree zero of the
excess demand function and from Walras’s law, we can restrict
the consideration to l− 1markets and l− 1 prices for a restricted
excess of demand function z̄ : l−1→ l−1 and the corresponding
restricted Jacobian matrix. In this case ULD follows, and we have
only one steady state verifying global stability (see Debreu [4]).

But Dp(x(p, wi)) is negative de�nite for all p if and only if
x(p, w) satis�es the ULD property. In these cases the substitution
e�ect is su�ciently well behaved and overcomes the possible dif-
�culties deriving from the wealth e�ect. This situation is veri�ed
if, for instance, preferences are homothetics.

The weakness of the tâtonnemt’s dynamic and its mathemat-
ical formulation given by Samuelson lies in the fact that it is
determined by the excess demand function, and the main charac-
teristics of the excess demand function are determined by prefer-
ences or utilities. Thus, putting restrictions on the excess demand
function is equivalent to putting restrictions on preferences.

The Sonnenschein-Mantel-Debreu Theorem (see Mantel [5])
shows that the restrictions imposed by the maximization of con-
sumer preferences on the excess demand function are very weak
and the conditions that would validate the tâtonnemt’s process
require strong conditions put on the characteristics of prefer-
ences. Concluding our discussion of this theorem, we can say
that claiming the universality of the tâtonnement’s dynamics
would practically be equivalent to a�rming that given any �eld
of vectors in ℜl, their trajectories always converge to the steady
state.
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However, Samuelson’s dynamics can be very useful for the
study of local stability, although this certainly was not the inten-
tion ofWalras. To consider this point of view, let us now introduce
the concept of Equilibrum Manifold.

Balasko [3] introduces the concept of Equilibrium Manifold.
We will call this manifold the Balasko Manifold. Let ω ̸= 0 ∈ Ω
be the initial distribution of the wealth of the economy, where Ω
characterizes the possible distributions of the initial wealth of the
economy among its agents. In our case Ω = ℜlm

+ where l is the
amount of di�erent goods in the economy, andm is the number of
consumers. The Balasko Manifold is the subset BM ∈ ℜl de�ned
by

BM = {(p, w) ∈ ∆× Ω; z(p, ω) = 0}
where∆ is the simplex inℜl, i.e.:∆ = {p ∈ ∆; p1 + ...+ pl = 1} .
So, by de�nition, (p, ω) is an equilibrium if (p, ω) ∈ BM. Note
that for an economy de�ned by w̄ ∈ Rl

+, p̄ ̸= 0 ∈ ∆ is an equi-
librium price if and only if z(ω̄, p̄) = 0. The main problem is the
following: suppose that in time t0, (p̄, ω̄) ∈ BM and in some time
t1 > t0, we have that (p̃, ω̃) ∈ BM.

The question still unanswered by economic theory is how
the transition occurs from the initial equilibrium existing in t0
to that existing in t1. In the equilibrium manifold, there are only
economies in equilibrium, and current economic theory can tell
us very little about the characteristics of the trajectory along
which the economy passes from one equilibrium state to another.
Modi�cations in the initial wealth, or in its distribution among
the agents of the economy, can cause the economy to change
its equilibrium state, i.e., to pass from the equilibrium (p̄, w̄) to
another (p̃, w̃).

Although, for analyzing the overall stability of the equilibrium,
Samuelson’s dynamics do not seem to be a good tool, it has a very
important role to play when we need to analyze the stability of
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each equilibrium point. That is, locally, Samuelson’s dynamics has
a very signi�cant role to play. If the initial Samuelson’s dynamics
is unstable, then the change in the economy and in its fundamen-
tals can be very large. If the equilibrium is stable for this dynamic,
not very large (local) changes can be reversed through time. But
regardless, we know nothing of what happens outside the Balasko
Manifold.

In what follows, we will try to give an explanation of the
way this change is processed. For that we will introduce a very
heterodox point of view.

3. The heterodox point of view

A respect in which general equilibrium theory remains funda-
mentally static is that it takes the economy’s structure as given
and says nothing about how technology, preferences, or products
change. We focus our attention on technological change. We in-
troduce a continuous-time replicator dynamics in a production
economy with two types of �rms.

• We allow the structure of the economy to change. The
distribution of the �rms in the set of possible technologies
available at each moment changes.

• However, we consider the evolution of the economy in equi-
librium i.e., in the equilibrium manifold, according to the
Balasko Economics-Geometry (see Balasko [3]).

• The pro�t of each �rm is determined by a production plan
corresponding to the Walrasian equilibrium.

• We introduce a characterization of the regular and singular
economies based on the distribution of the �rms over the
set of available technologies.
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• Up to this point we have been following the classical Gen-
eral Equilibrium Theory (GE).

• From now on we attempt to introduce a dynamic in the
framework of GE. But to do this, we need to follow a het-
erodox approach.

Various traditions and schools of thoughts (e.g., Schumpete-
rian Economics, evolutionary economics,) may have much to o�er
to help us understand the dynamics of the economy. Several ef-
forts have been made seeking to integrate these theories in the
framework of the Theory of General Equilibrium, for instance,
Aghion and Howitt [2] and subsequent work. However, these
e�orts have halted.

In our model, the evolution of the economy is determined by
the owners of �rms investing in technologies that o�er greater
rates of pro�ts.

We assume that managers do not have complete information
in the moment of choosing the technology for the next period.
Then we introduce a process of imitation of the most successful
agent and a dynamics closer to the replicator dynamics. But this
dynamics happens along the equilibrium manifold.

4. The model

Consider a production economy such that

• The agents

– A �nite set of agents is I = {1, ...,m} distributed in
two types:

– m1 of them are of type 1 and I1 = {1, ...,m1} is the
set of these agents.
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– The set of agents of type 2 is given by I2 = {m1 +
1, ....,m}.

– Agents of each type have identical preferences⪰i rep-
resented by utility functions ui : R2

+ → R, and iden-
tical endowments ωi = (ωi

1, ω
i
2) ∈ X i = 1, 2, and

identical consumption space X ⊂ R2.

• The �rms

– The set of �rms is F = {1, ...., n} distributed also
between two types according to the technology.

– By Fk we characterize the set of �rms that in a given
time t are using the technology k ∈ {1, 2}. Let |Fk| =
nk be the amount of �rms following the technology
j ∈ {1, 2}. Thus, n = n1 + n2.

– Firms of each type k are characterized by the tech-
nological set Yk ⊂ ℜ2, k = 1, 2 with the habitual
properties.

The economy is a private 2-goods ownership economy, i.e.,
every good is traded in the market at publicly known prices,
consumers trade to maximize well-being, and �rms produce to
maximize pro�ts. The technology is free, so each manager can
choose between Y1 and Y2. Each consumer i ∈ I has a claim to a
share θ̄ij of the pro�t of the �rm j such that

m∑

i=1

θ̄ij = 1 for each �rm j ∈ 1, ..., n.

The wealth of consumers is derived from individual endow-
ments of commodities and from ownership claims (shares) of the
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pro�ts of �rms, which are, therefore, thought as being owned by
consumers.

Wi(n1, n2) =pωi + π1(y1)[
∑

j∈F1

θij)]

+ π2(y2)[
∑

j∈F2

θij, i ∈ {1, ...,m}. (4.1)

For each consumer h ∈ {1, ..,mi} i ∈ {1, 2} the budget set is:

Bi = Bi(p,Wh, θh)h =
{
xih ∈ R2

+ : pxih ≤ Wi(n1, n2)
}
.

• The solution x∗i = xi(p) of the maximization problem
max ui(x) restricted to the budget set, i.e., x ∈ Bi is called
the demand of the i− th agent.

• The solution y∗j = yj(p) of the maximization problem
max p(y) in the technological restriction, i.e., y ∈ Yj is
called the supply of j − th �rm.

Note that since we assume that all �rms are maximizing their
pro�ts, then we have the following system of equalities:

• for the �rms’ production plans, y∗j1 = ... = y∗jni
= ȳj j ∈

{1, 2} and for analogous reasons

• it follows for consumption plans that x∗i1 = ... = x∗imi
=

x̄i i ∈ {1, 2}.

De�nition 4.1. A Walrasian Equilibrium is a feasible allocation
x∗ = (x∗1, ..., x

∗
m, y

∗
1, ..., y

∗
n) ∈ Xm+n and a system of prices p ∈

X∗ such that, at x∗i the i− th consumer, i ∈ I , is maximizing his
preferences given his budget constraint, and at y∗j the j − th �rm,
j ∈ J , is maximizing its pro�ts.
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• Fixed ω = (ω1, ..., ωm), the function z : ∆ → Rl de�ned
as z(p) =

∑m
i=1(xi(p) − ωi) −

∑n
j=1 yj(p) is the excess

demand function.

• A vector p, is an equilibrium vector price if and only if
z(p) = 0 and the corresponding allocation (x(p), y(p)) =
(x∗, y∗) is an equilibrium allocation.

• So, {x(p), y(p), p} is a Walrasian equilbrium.

For our model we have the following de�nition:

De�nition 4.2. Given a private ownership economy with m1

consumers of type 1 andm2 consumers of type 2 such thatm1 +
m2 = m and two types of �rms, n1 producing with a technology
Y1 and n2 �rms producing using Y2 such that n1 + n2 = n, then:
An allocation (x∗1, x

∗2, y∗1, y∗2) and a system (or vector) of prices
p = (p1, p2) constitute a Walrasian (or competitive) equilibrium
if given the vector prices:

(1) Each coordinate of the vector y∗j = (y∗j1 , ..., y
∗j
nj
), repre-

sents an optimal plan of production for each �rm in Yj j ∈
{1, 2}, i.e., for each j ∈ J y∗j , maximizes the pro�ts of �rm
j.

(2) Each bundle set in the vector x∗i = (x∗i1 , ..., x
∗i
mi
) ∈ R2mi

+ ,
where each xih = (xih1, x

i
h2) ∈ R2

+ maximize ui(xih1, x
i
h2),

h ∈ {1, ..., ni} i ∈ {1, 2} in the budget set, and

(3) the allocation (x∗1, x
∗2, y∗1, y∗2) is feasible, i.e.;

∑|m|
i=1 x

∗
i −∑|n|

j=1 y
∗
j =

∑|m|
i=1wi or equivalently

m1x
∗
1 +m2x

∗
2 + n1y

∗
1 + n2y

∗
2 = n1w1 + n2w2.

We assume the following:
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• In time t0 the distribution of the �rms n = (n1, n2) and
consumersm = (m1,m2) is given.

• The set of equilibria that in time t = t0 are reachable de-
pends precisely on the distribution of �rms and consumers
over their respective types.

Also, note that:

• Even under the assumption that the economy is in equi-
librium in the short run, the pro�t rates of �rms are not
necessarily equal.

• Even under the assumption that �rms are maximizing pro�ts,
this level depends on the technological characteristics of each
�rm.

• Before the time t0, nobody knows what pro�ts and utilities
are possible to reach in equilibrium; this will be known only
when the equilibrium is reached.

5. A first step to the dynamics over the

equilibrium manifold

At some later time t1 > t0, when the pro�ts corresponding to the
equilibria are publicly well known, managers can then choose to
change the technology with which they produce, or continue as
before. We assume that it is possible to change the technology
without costs because technology is free. Firms can change the
technology, but n is constant.

Thus at every time t, the economywill change according to the
distribution of the �rms over the set of technologies. Let h1 =

n1

n
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and h2 =
n2

n
be the distribution of the �rms in time t = t so for

each distribution h, we have the economy

Eh =
{
R2

+, ui, wi, I, Y1, Y2, h1, n2

}
.

Note the wealth of consumers depends on the distribution

wi(h) = pwi + π(y∗1)

[
∑

j∈F1

θij

]
+ π(y∗1)

[
∑

j∈F2

θij

]
.

Note that |F1| = h1n and F2 = h2n. If wealth changes, the
demand of consumers change and equilibrium prices change, also.

In Accinelli and Covarrubias [1] it is shown that under the
habitual hypothesis,wi(h) is a continuous function of h, i.e., given
ϵ > 0 there is δ > 0 such that if ∥h̄ − h∥ ≤ δ, then ∥wi(h̄) −
wi(h)∥ ≤ ϵ.

6. The modified Balasko Manifold

Economists like to characterize economies by the distribution of
wealth among consumers ω = (ω1, ....ωn). In this way, if the utili-
ties, technologies and the consumption set is �xed, each economy
can be characterized by the initial wealth that each consumer
has, i.e., ω = (ω1, ..., ωn). The individual wealth is generated
by individual shareholdings of �rms and by their ownership of
stocks of commodities. So, for each w, we have an excess de-
mand function zω and, consequently, a set of equilibrium prices
Eqω = {p; zω(p) = 0}.

De�nition 6.1. We say that p ∈ Eqω is regular if rankzω(p) =
l − 1, where l is the amount of goods in the economy. In another
case, we say that p ∈ Eqwω is critical.
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Figure V.2: Equilibrium Manifold for L = 2 Eq = {(w(h), p) ∈
ℜ × (0, 1) : z(w(h), p) = 0

De�nition 6.2. We say that the economy ω is regular if for all
p ∈ Eqω rankzω(p) = l − 1, where l is the amount of goods in
the economy. In another case, we say that the economy is critical
or singular.

Note that an economy is regular if and only if 0 is a regular
point for the excess demand.

Following Debreu [4], we know that generically in ℜl
++ the

economies characterized by ω are regular. Precisely, the subset of
regular economies is open and dense. Consequently, the subset of
singular economies is a very small set, a meager set. In Debreu [4],
using index theorems, Mas-Colell [6] shows that the cardinality
of Eqω for each regular economy ω is odd.

The Balasko manifold is shown in Figure V.2, where the graph
represents the set (ω, p); z(ω, p) = 0 in the case in which l = 2,
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and the wealth of the economy can be measured by a positive
number w. It is a simpli�ed picture, but takes into account the
facts that, generically, economies are regular, and each one has
an odd number of equilibrium prices.

In our model, the wealth of consumers depends on the distri-
bution h of the �rms over the set Y = (Y1, Y2) of technological
possibilities. The wealth of agents is de�ned as a function of this
distribution and denoted by w(h) = (wi(h), ..., wm(h)). When
the distribution of �rms changes, the wealth of consumers also
changes, and even when all other elements of the economy re-
main �xed, the demand changes as a result of this change in the
wealth of the agents. According to this point of view, we will
denote by zh()̇ the excess demand of the economy Eh. Let us de-
note by Eqh the set of equilibrium prices of the economy Eh, i.e,
Eqh = {p : zh(p) = 0}. Using similar techniques to Debreu [4]
and Mas-Colell [6], it is possible to show that generically in h, Eh
is regular, and that the cardinality of Eqh is odd.

In Accinelli and Covarrubias [1] it is shown that for each
regular economy Eh, there exists a continuous selection ϕ(h) ∈
Eqh such that for all ϵ > 0 there is some δ such thatϕ(h̄−ϕ(h)∥ ≤
ϵ if ∥h̄− h} ≤ δ. This continuous selection does not exist if the
economy is singular (see Accinelli and Covarrubias [1]). This
situation is represented in Figure V.3, where we show the modi�ed
Balasko Manifold that is the set

MMB = {(h, p) ∈ ∆×∆ : z(h, p) = 0} .

We consider that managers choose the technology for the
next period according to the expected value of pro�t rate for
the next period. That is, after the prices are revealed, managers
of �rms k choose to change to technology l ̸= k ∈ {1, 2} if
E(π̄l(y

∗
l )) > E(π̄k(y

∗
k)) or, in the other case, choose to remain as

they were. According to the replicator dynamics (see Maynard
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Figure V.3: The critical equilibrium is unstable

Smith and Price [7] and Weibull [10]), we have that

ḣ1 = hi(E(π̄1(y
∗
1))− E(π̄1(y∗1)))

ḣ2 = −ḣ1.
(6.2)

Managers don’t have complete information to evaluate these
expected values, and need to assign probabilities to the future
states of the world, or they can choose to follow an imitation
process, (see Accinelli andCovarrubias [1]) and thus, the dynamics
of the �rms can be written in the form:

ḣ1 = h1ψ((E(π̄1(y
∗
1))− E(π̄1(y∗1))])

ḣ2 = −ḣ1
(6.3)

where ψ is an increasing function, such that ψ(0) = 0.
Note that a solution of this dynamical system de�nes a trajec-

tory in the equilibrium manifold, because if h(t) = h(t, t0, h0) is
a solution with initial condition h(t0) = h0, then prices change
in such way that z(h(t), p(h(t))) = 0.

We obtain a steady state for the economy if and only ifE(π̄1(y∗1))
= E(π̄1(y

∗
1).
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This continuous evolution is not veri�ed if the economy is
singular, like ws in Figure V.2. In this case, a process of abrupt
changes in prices occurs. Note that if the fundamentals of a singu-
lar economy are perturbed, then, following Samuelson’s dynamics,
the new economy will be regular, and prices converge to a stable
equilibrium. See Figure V.3.

7. Conclusions

Our main objective in this paper was to introduce a dynamics in
the framework of General Equilibrium Theory. To do this, we con-
sider �rms maximizing pro�ts and managers seeking to maximize
pro�t rates. The choices of managers impact the fundamentals of
the economy, in particular, in the wealth of the consumers. So, the
demand of commodities changes and, consequently, the equilib-
rium prices change. These changes are generally smooth, but in a
neighborhood of a critical economy, changes can be abrupt and
unexpected. In this way, driven by the choices of rational agents,
critical economies can be considered the threshold of economic
crises.

In this way, we have shown that the choices of managers
looking to maximize pro�ts are the engines of economic evolution.
Changes in the economic equilibrium can be considered to be the
result of rational decisions and, consequently, economic crises are
inherent in the base of the theoretical foundations of the economy.
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VI. AN ECONOMY WITH INDIVISIBLE
GOODS IN A METRIC SPACE

Saul Mendoza-Palacios and David Cantala

Abstract

This paper presents two economies with indivisible goods where
the sets of agents and goods are metric spaces. In addition, each
agent has a unique initial indivisible good to be used for trading.
We present two models. The �rst one introduces an economy
where the concept of allocation is a measurable function, which
assigns to each type of agent one type of good. The second model
introduces an economy where the concept of allocation is a prob-
ability distribution, which assigns a mass of agents to a mass of
goods. We show that the �rst model is contained in the second
model. Finally, we establish general conditions for the no empti-
ness of the core for both models, and see the relation between
them.
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1. Introduction

An economy can be described as a situation where we have a set
of agents and a set of commodities. In addition, each agent has
a preference relation on the set of all commodities and an initial
commodity to be used for trading. The purpose of the model is to
explain when the agents have incentives to carry out an exchange,
and how this exchange a�ects their welfare. The manner in which
a commodity is assigned to an agent is called an allocation. The
core of an economy is a subset of allocations that can be described
as follows: if the allocation is in the core, then there is not a set
of agents with the possibility of improving their welfare when
they carry out an alternative exchange. If an allocation is not in
the core (and it is feasible), then there exists a set of agents with
the intention of performing an exchange due to the possibility of
improving their welfare.

In this paper we are interested in an economy in which each
agent has a unique initial indivisible good to be used for trading.
One of the �rst papers that studied these types of economies was
Shapley and Scarf [22] in 1974. In our paper we suppose that the
set of agents and goods are metric spaces and establish conditions
under which the core is not an empty set. The essential idea of this
hypothesis is that the economy has a very large number (maybe
uncountable) of agents and commodities.

In this paper the agents and commodities are classi�ed in types.
The number or mass of agents (and commodities) of a certain
type is measured by a probability distribution. We present two
models. The �rst one introduces an economy where the concept
of allocation is a function which assigns to each type of agent one
type of good. In this �rst model, we have a very large number of
types of agents, and each one has no in�uence on the economy. If
these two conditions are not satis�ed, the core may be an empty
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set. The second model introduces an economy where the concept
of allocation is a probability distribution which assigns a mass of
agents to a mass of goods. For this second model, we establish
general conditions for the existence of the core. Moreover, we
show that the �rst model is contained in the second model. The
second model includes another important classic model, the case
where the sets of agents and goods are �nite.

For models of an economy with indivisible goods where the
set of agents and goods are �nite, several authors have addressed
the problem of no emptiness of the core (see for instance, Shapley
and Scarf [22], Roth and Postlewaite [20], Wako [24], Ma [17],
Cantala and Pereyra [4]).

Economic models with a set of agents or a set of goods in
general measurable spaces are important because the results of
these models include other particular cases. Aumann [3] in 1964
proposed a model with a continuum of agents in an economywith
divisible goods. There are several models of an economy where
the set of agents or goods are continuous spaces, where authors
address the problem of no emptiness of the core and characterize
a competitive equilibrium: for example, Aumann [3], Mas-Colell
and Zame [18], Anderson [2], Accinelli [1], Covarrubias [8]. In
these models, goods are divisible, while in our cases, the goods
are indivisible. Inoue [14] proposes an economy with indivisible
goods (in a �nite space) and a continuum of agents, and where,
unlike us, each agent can consume more than one good.

In our model, we use concepts and results from the Theory
of Mass Transportation Problem (or Optimal Transport Problem)
which is a branch of a probability theory with several applica-
tions to economic theory (see Carlier [5] and Galichon [10]). The
economies with indivisible goods form part of the research on the
matching theory. In the matching theory, the theory of mass trans-
portation problem has several contributions for models where
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the set of agents or goods are continuous spaces (for example see,
Gretsky et al. [11], Gretsky et al. [12], Ekeland [9] Chiappori et al.
[7]).

2. A first model

In this section, we consider a �rst approach for an economy in
which each agent has a unique indivisible good. Moreover, the
economy has a continuum of indivisible goods. In this case, we
may assume that we have a population of goods and a population
of agents (who act as both sellers and buyers) and the problem
is to �nd an agent-good assignment such that no coalitions exist
where agents want to exchange their goods.

2.1. The economy

Consider an economy which has a population of agents and a
population of indivisible goods. Each indivisible good is labeled
according to its characteristics as a single type of indivisible good
g in a set G of types of indivisible goods. Also, each agent is
labeled according to his preferences, as a single type of agent a
in a set A of types of agents, i.e., a particular type of agent a in A
represents a preference relation ≾a over G. Assume that A and
G are compact metric spaces, and let G, in addition, be separable.
For the preference relations {≾a}a∈A, we assume that

H1 rationality: for each a in A, ≾a is a complete and transitive
order relation;

H2 continuity in the goods: for each a in A and g′ in G, the sets
{g ∈ G : g′ ≾a g} and {g ∈ G : g ≾a g

′} are closed;
H3 continuity in the agents: for any g′, g ∈ G, the set {a ∈ A :

g′ ≾a g} is closed.



VI. AN ECONOMY WITH INDIVISIBLE GOODS 117

Let B(A) and B(G) be the Borel σ-algebras of A and G, re-
spectively. Probability measures η and ν assign a population dis-
tribution over the sets A and G, severally. Finally, we denote the
population of agents and the population of indivisible goods by

A := (A, B(A), η) and (2.1)

G := (G, B(G), ν), (2.2)

respectively.

Theorem 2.1. Let A be the set of types of agents, and G be the set
of types of indivisible goods. Assume as in (2.1) and (2.2) that A and
G are compact metric spaces, and let G, in addition, be separable.
Suppose that the preference relations {≾a}a∈A satisfy H1, H2 and
H3. Then there exists a continuous function u : A × G → [0, 1]
such that

∀a ∈ A, g ≾a g
′ ⇐⇒ u(a, g) ≤ u(a, g′). (2.3)

Proof. See Rachev and Rüschendorf [19] Theorem 5.5.18 page
337.

An economy is a quadruple E := (A,G, u, µ0, ), where A is a
population of agents as in (2.1), G is a population of indivisible
goods as in (2.2), u is a continuous function, which satis�es (2.3),
and �nally,µ0 is ameasurable functionµ0 : A→ G,which assigns
for each type of agent a in A, the agent’s initial endowment µ0(a)
in G and satis�es that for all E in B(G), η(µ−1

0 (E)) = ν(E). The
function µ0 is called the initial endowment.

An allocation for the economy E is a measurable function
µ : A→ G. An allocation µ for E is feasible if for each set of types
of indivisible goods E in B(G), the amount ν(E) of indivisible
goods is proportional to the amount η(µ−1(E)) of agents. In other
words, an allocation µ for E is feasible if

η(µ−1(E)) = ν(E), ∀E ∈ B(G). (2.4)
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A coalition is a set S ∈ B(A). An allocation µS is feasible for
a coalition S if µS(S) is in B(G) and

η(µ−1
S (E)) = ν(E), ∀E ∈ B(G) ∩ µS(S). (2.5)

The following are two examples of economies and allocations:

Example 2.2. Consider an economy E where A and G are �nite
sets with the same cardinality n, and the function u in (2.3) is
represented as a square matrix [u(a, g)]{a∈A,g∈G} of rank n. Let η
and ν be uniform probability distributions over the sets A and G,
respectively: that is, η(a) = ν(b) = 1

n
for all a ∈ A and g ∈ G. In

this case, any bijective function µ : A→ G is a feasible allocation.
The economy in this case is equivalent to the one of Shapley and
Scarf [22].

Example 2.3. Consider an economy E where A and G are both
the interval [0, 1], and the function u in (2.3) is u(a, g) = a2 + g2.
Let η and ν be a uniform probability distribution over the sets A
and G, respectively, that is, dη(a) = dν(b) = 1 for all a ∈ A and
g ∈ G. In this case, the functions µ1(a) = a and µ2(a) = 1 − a
are feasible allocations E .

We say that a coalition S ∈ B(A) can improve upon the allo-
cation µ if η(S) > 0 and there exists a feasible allocation γS for
S such that u(a, µ(a)) < u(a, γS(a)) for all a in S.

De�nition 2.4. The core C(E) of a economy E , is the set of all
feasible allocations of E that no coalition in B(A) can improve
upon.
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2.2. The social planner’s problem

In this section we consider a decision-maker who searches for
an assignment that maximizes the social welfare function. This
decision-maker is known as the social planner. Let L be the set
of all feasible allocations, i.e.,

L :=
{
µ : A→ G : η(µ−1(E)) = ν(E), ∀E ∈ B(G)

}
. (2.6)

Consider the social planner’s problem

max
µ∈L

∫

A

u(a, µ(a))η(da) (2.7)

with L as in 2.6.

The following proposition establishes the relation between
the core of the economy C(E) and the social planner’s problem
(2.7).

Proposition 2.5. Suppose that µ∗ is a solution of the social plan-
ner’s problem (2.7), then µ∗ is in C(E).

Proof. Suppose that µ∗ maximizes (2.7) and it is not inC(E). Then
there exists S ∈ B(A) with η(S) > 0 and a feasible allocation γ
for S such that u(a, γ(a)) > u(a, µ(a)) for all a in S.

Consider the allocation

µ(a) =

{
µ∗(a) if a /∈ S
γ(a) if a ∈ S .
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Let E ∈ B(G), then

η(µ−1(E)) =η(µ−1(E ∩ γ(S))) + η(µ−1(E ∩ (G− γ(S))))
=η(γ−1(E ∩ γ(S))) + η(µ∗−1(E ∩ (G− γ(S))))
=η(γ−1(E ∩ γ(S))) + η(µ∗−1(E − E ∩ γ(S))))
=η(γ−1(E ∩ γ(S))) + η(µ∗−1(E)− µ∗−1(E ∩ γ(S)))
=η(γ−1(E ∩ γ(S))) + η(µ∗−1(E))− η(µ∗−1(E ∩ γ(S)))
=ν(E ∩ γ(S)) + ν(E)− ν(E ∩ γ(S))
=ν(E).

Then µ is a feasible allocation for E and satis�es

∫
A
v(a, µ∗(a))η(da)=

∫
A−S

u(a, µ∗(a))η(da) +
∫
S
u(a, µ∗(a))η(da)

<
∫
A−S

u(a, µ∗(a))η(da) +
∫
S
u(a, γ(a))η(da)

=
∫
A−S

u(a, µ(a))η(da) +
∫
S
u(a, µ(a))η(da)

=
∫
A
u(a, µ(a))η(da).

Therefore,µ∗ is not optimal for (2.7),which it is a contradiction.

Example 2.6. Consider an economy E as in Example 2.2. In this
case, L [as in (2.6)] is the set of all bijective functions µ : A→ G.
The social planner’s problem is given by the optimization problem:

max
µ∈L

1

n

∑

a∈A

u(a, µ(a)).

2.3. The core and feasible allocations

Consider an economy E . If µ∗ is a solution to the problem (2.7),
then by Proposition 2.5, µ∗ is in C(E) and therefore, the core of
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E is not empty. But the set of feasible allocations L in (2.6) is
not necessarily compact or convex; moreover, it may be empty
(as in the example 2.7). In any case, (2.7) may have no solution.
The following example provides a case where the set of feasible
allocations L is empty.

Example 2.7. Consider a population of agentsA := (A, B(A), δa)
and a population of goods G := (G, B(G), ν), where δa is Dirac
probability measure at a ∈ A and ν is de�ned by

ν(E) :=
1

2
δg1(E) +

1

2
δg2(E) ∀E ∈ B(G)

where δg1 and δg2 are Dirac probability measures on G with g1 ̸=
g2. This example describes a situation in which we only have two
types of goods and one type of agent. In this case L = ∅.

3. A continuum economy

Since the set of feasible allocations L in (2.6) may be empty, we
cannot de�ne the concept of an economy for arbitrary popula-
tions A and G (as (2.1) and (2.2), respectively). We work with a
di�erent concept of allocation, which ensures that the set of fea-
sible allocations is not empty. Moreover, with this new de�nition,
the social planner’s problem always has a solution.

3.1. A continuum economy

As in Section 2.1, we consider a population of agents A as in
(2.1), and a population of indivisible goods, as in (2.2). Finally, we
assume that the preference relations {≾a}a∈A satisfyH1,H3 and
H3.

An economy with a continuum of indivisible goods, or a con-
tinuum economy, is a quadruple EΠ := (A,G, u, π0), where u is
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a continuous function which satis�es (2.3), and π0 is a probability
measure on A×G, which for each set of types of agents E (for E
in B(G)) assigns the proportion π(D × E) of types of agents in
D (for D in B(A)). Moreover, π0 satis�es that for all D in B(A)
and E in B(G), π0(D ×G) = η(D) and π0(A× E) = ν(E).

A continuum allocation for an economy EΠ is a probability
measure π on A×G. A continuum allocation π for EΠ is feasible
if for all D in B(A) and E in B(G),

π(A× E) = ν(E) and π(D ×G) = η(D). (3.8)

Next is an example of a continuum economy.

Example 3.1. Let EΠ be an economy whereA,G, and u are as
in Example 2.7. The set of continuum allocations Π for EΠ is not
empty because it contains at least the product measure π = δa×µ
de�ned by

π(E) :=
1

2
δ(a,g1)(E) +

1

2
δ(a,g2)(E) ∀E ∈ B(A×G).

A coalition is a set S in B(A). A continuum allocation πS
is feasible for a coalition S in a set H ∈ B(G) if for any E in
B(G)∩H , πS(A×E) = ν(E) and for allD in B(A)∩S, πS(D×
G) = η(D).

A coalition S can improve upon the continuum allocation π in
a set H ∈ (G) if η(S) > 0, ν(H) > 0, and there exists a feasible
allocation measure πS for S that satis�es the following conditions:

i) for each E in B(G) ∩H , πS(S × E) = π(S × E);
ii) for each D in B(A) ∩ S, πS(D ×H) = π(D ×H);

iii) for eachD in B(A)∩S andE in B(G)∩H , with η(D) > 0
and ν(E) > 0

∫

D×E

u(a, g)π(da, dg) <

∫

D×E

u(a, g)πS(da, dg).
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De�nition 3.2. The core C(EΠ) of a continuum economy EΠ
is the set of all continuum allocations of EΠ that no coalition in
B(A) can improve upon.

3.2. Allocations in E and EΠ
In this section we compare the de�nitions of allocations for the
economies E and EΠ. Let µ be an allocation of an economy E . We
can rewrite µ as a continuum allocation πµ for an economy EΠ as
follows: for any K ∈ B(A× B) let

πµ(K) := η(Ka) with Ka := {a ∈ A : (a, µ(a)) ∈ K}. (3.9)

The following examples illustrate how an assignment µ can
be rewritten as a continuum allocation πµ.

Example 3.3. Let EΠ be an economy where A, G, η, ν and u are
as in Example 2.2. Then for any bijective function µ : A → G,
the probability measure πµ de�ned by

πµ(a, g) =

{
1
n

if g = µ(a)
0 otherwise

is a feasible continuum allocation for the economy EΠ.

Note that if µ is a feasible allocation for E , then πµ in (2.9)
satis�es (2.8), i.e., πµ is a feasible continuum allocation of EΠ.
Furthermore, if µS is feasible for a coalition S in economy E , then
πµS

is a feasible continuum allocation for a coalition S in a set
HS = µS(S) ∈ B(G), because for any E in B(G) ∩HS andD in
B(A) ∩ S, we have that

πµS
(A× E) = η(µ−1

S (E)) = ν(E),

πµS
(D ×G) = η(D ∩ µ−1

S (µS(D))) = η(D).
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Proposition 3.4. Suppose that a coalition S can improve upon the
allocation µ for an economy E through the feasible allocation µS

for S. Then S can improve upon the continuum allocation πµ for
an economy EΠ through the feasible continuum allocation πµS

for
S in a set HS = µS(S).

Proof. Note that HS = µS(S) is in B(G) and

ν(HS) = η(µ−1
S (µS(S)) ≥ η(S) > 0.

Moreover, by (2.9), for any feasible allocation φS ,E in B(G)∩HS ,
and D in B(A) ∩ S, we have that

πφS
(D ×HS) = η(D ∩ φ−1

S (HS)) = η(D)

and

πφS
(S × E) = η(S ∩ φ−1

S (E)) = η(φ−1
S (E)) = ν(E).

Therefore, if E is in B(G) ∩ HS , and D is in B(A) ∩ S, then
πµS

(D ×HS) = πµ(D ×HS) and πµS
(S × E) = πµ(S × E).

On the other hand, note that for any allocation φ of E , E in
B(G), and D in B(A), we have that
∫

D×E

u(a, g)πφ(da, dg) =

∫

D∩φ−1(E)

u(a, φ(a))η(da). (3.10)

Since u(a, µ(a)) < u(a, µS(a)) for all a ∈ S and (2.10), if E is in
B(G) ∩HS , andD is in B(A) ∩ S, with η(E) > 0 and ν(E) > 0,
then

∫

D×E

u(a, g)πµ(da, dg) <

∫

D×E

u(a, g)πµS
(da, dg)

and we �nish the proof.
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3.3. The social planner’s problem

Consider (2.9), and let L be as in (2.6). We de�ne the set

ΠL := {π ∈ P(A×G) : π = πµ, µ ∈ L}, (3.11)

where P(A×G) is the set of probability measures on A×G.
In this case, we can rewrite problem (2.7) as

max
π∈ΠL

∫

A×G

u(a, g)π(da, dg). (3.12)

The set of feasible allocations (2.11) is not necessarily convex
or compact; moreover, it may be empty (as in the example 2.7). In
any case, (2.12) may have no solution. For solving this situation,
we expand the set of feasible allocations (2.6)-(2.11) by the convex
set of Π, which is the set of all feasible continuum allocations, i.e.,

Π := {π ∈ P(A×G) : π satisfies (2.6)} . (3.13)

As in Section 2.2, we consider a social planner who searches
an assignment that maximizes the social welfare function. The
social planner’s problem for a continuum economy EΠ is

max
π∈Π

∫

A

u(a, g)π(da, dg) (3.14)

with Π as in 2.13.
This approach generalizes the following two examples found

in the literature.

Example 3.5. Consider an economy EΠ as in Example 3.3. Then
the set of continuum allocations Π is given by the set of probabil-
ities π that satis�es

∑

a∈A

π(a, g) = 1/n,
∑

g∈G

π(a, g) = 1/n.
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Hence, the social planner’s problem for this economy is

max
π∈Π

∑

a∈A

∑

a∈G

u(a, g)π(a, g).

The equivalence between the social planner’s problem for an econ-
omy E in Examples 2.2 and 2.6, and the social planner’s problem
for an economy Eπ can be seen in Koopmans and Beckmann [16].

The following proposition establishes the relation between
the coreC(EΠ) of a continuum economy and the social planner’s
problem (2.14).

Proposition 3.6. Suppose that π∗ is solution to the social planner’s
problem (2.14); then π∗ is in C(EΠ).

Proof. Suppose thatπ∗ maximizes (2.14) and is not inC(EΠ). Then
there exists a coalition S that can improve upon the continuum
allocation π∗ in a set H ∈ B(G) (with η(S) > 0 and ν(H) > 0)
through a feasible allocation πS for S.

Consider the continuum allocation π de�ned by

π(H) = π∗(H∩(A×G))−π∗(H∩(S×H))+πS(H∩(S×H))

for all H in B(A×G). Let D be in B(A) and E in B(G), then

π(D ×G) =π∗((D ×G) ∩ (A×G))− π∗((D ×G) ∩ (S ×H))

+ πS((D ×G) ∩ (S ×H))

=π∗(D ×G)− π∗((D ∩ S)×H) + πS((D ∩ S)×H)

=π∗(D ×G)
=µ(D).
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π(A× E) =π∗((A× E) ∩ (A×G))− π∗((A× E) ∩ (S ×H))

+ πS((A× E) ∩ (S ×H))

=π∗(A× E)− π∗(S × (E ∩H)) + πS(S × (E ∩H))

=π∗(A× E)
=µ(E).

Then π is a feasible allocation measure and satis�es
∫

A×G

u(a, g)π∗(da, dg) <

∫

A×G

u(a, g)π∗(da, dg)

−
∫

S×H

u(a, g)π∗(da, dg)

+

∫

S×H

u(a, g)πS(da, dg)

=

∫

A×G

u(a, g)π(da, dg).

Therefore, π∗ is not an optimal for problem (2.14), which is a
contradiction.

4. The core of a continuum economy

In this section, we establish conditions that are su�cient for the
core of an economy E not to be empty. Also, we establish impor-
tant results about the relation between cores of economies E and
EΠ.

The optimization problem (2.7) is among the oldest and most
well known problems in probability theory. It was introduced
by Gaspar Monge in 1728, but it was posed as a mathematical
linear problem (2.12) by L.V. Kantorovich in 1942. The solvability
of (2.14) has been studied under a wide variety of hypotheses
on the underlying spaces A and G, and/or the function u. For
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instance, see Hernández–Lerma and Gabriel [13], Jiménez-Guerra
and Rodríguez-Salinas [15]. A classical reference to this topic is
Villani [23].

Proposition 4.1. Consider the economy EΠ. Then there exists a
solution to (2.14), i.e., there exists a continuum allocation π∗ ∈ Π
(with Π as in (2.12)) such that

∫

A

u(a, g)π∗(da, dg) = max
π∈Π

∫

A

u(a, g)π(da, dg). (4.15)

Proof. See Santambrogio [21] pages 4-5, Theorem 1.4.

The next theorem establishes conditions that are su�cient for
the core of a continuum economy not to be empty.

Theorem 4.2. Consider the hypothesis endowed to economy EΠ;
the core C(EΠ) is not empty.

Proof. Consider the hypotheses on the economy EΠ. Then by
Proposition 4.1, there exists π∗ ∈ Π that satis�es (4.15), i.e., π∗

is a solution to (2.14). By Proposition 3.6, π∗ is in C(EΠ), and so
Theorem 4.2 is satis�ed.

5. Comments

In this paper we introduce two economies with indivisible goods
where agents and commodities are classi�ed in types, and the
sets of types of agents and types of goods are metric spaces. The
number or mass of agents (and commodities) of a certain type is
measured by a probability distribution. In addition, each agent
has no use for more than one indivisible good.

In the �rst economy, the concept of allocation is a measurable
function which assigns to each type of agent one type of good. In
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the second economy, (which is called continuum economy), the
concept of allocation is a probability distribution which assigns
a mass of agents to a mass of goods. For each economy, we as-
sociated a social planner’s problem and established the relation
between the core of the economy and the social planner’s prob-
lem (see Propositions 2.5 and 3.6). We showed that the �rst model
is contained in the second model (see Section 3.2). Finally, we
established general conditions for the no emptiness of the core
(see Theorem 4.2). In addition, a continuum economy model can
be reduced, of course, to the particular case where sets of agents
and goods are �nite sets.

There are many questions, however, that remain open. For
example, for the particular case where the set of agents and goods
are �nite, Shapley and Scarf [22] prove that the TTC algorithm
induces an allocation which is in the core. Is there a “continuum”
TTC algorithm for a continuum economy? In that case, what
are the relations between the social planner’s problem and the
“continuum” TTC’s algorithm?
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Abstract

Theory predicts that larger markets could accommodate more
products; however, when consumers have heterogeneous pref-
erences and products are di�erentiated, the market may remain
concentrated even in the presence of numerous consumers. More-
over, when the quality of products comes, mainly, through �xed
costs, �rms in larger markets would require a higher market share
to receive positive pro�ts. In this chapter, we explore these hy-
potheses in the context of Mexico. We �nd that larger municipali-
ties have more radio stations and daily newspapers. While both
relationships are positive, the elasticity of the number of stations
with respect to population is 0.8, and the elasticity of the number
of newspapers is 0.2.
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1. Introduction

Theory predicts that as market size increases, the number of �rms
increases as well. As demand expands, the market could accommo-
date more �rms; however, the intensity of this positive relation-
ship depends on the magnitude of sunk costs and the competition
between the �rms operating in that market (Sutton [10]; Asplund
and Sandin [2]).

Asplund and Sandin [2] explain that when new �rms enter as
a market expands, assuming low or null barriers to entry, variable
pro�ts per �rm diminish, and the market share of �rms should
be higher to cover �xed costs. Moreover, if �rms lower prices in
the presence of more competitors due to broader market size, net
pro�t per �rm falls, as well.

Shaked and Sutton [8] state that under certain assumptions, as
the size of the market increases,1 the level of concentration may
remain una�ected. In this way, even when the number of �rms
in the industry becomes arbitrarily large, at least one �rm may
keep a positive market share and many products that otherwise
would disappear, remain in the market.2

In this chapter, we examine descriptive data on the relation-
ship between market size and entry of media products, where the
observations are cross-sections of Mexico’s market areas (mostly
municipalities).

In particular, we study the association between the number of
radio stations/newspapers and the size of the population within a
municipality in Mexico, excluding Mexico City.3 We would expect

1Total number of consumers.
2For instance, multi-product �rms which are common in di�erentiated

markets.
3We exclude Mexico City because we do not have disaggregated informa-
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to see a positive relationship where large populations accommo-
date more radio stations and newspapers.4

It is worth noting that, although the market size in media
outlets can be de�ned from the advertisers’ point of view or pop-
ulation served, we concentrate on the population that could po-
tentially listen, or read papers, in a speci�c geographical area.
However, we are aware that the total population in an area may
not be all media outlet consumers. This analysis is a �rst approach
to study some stylized facts related to the entry of radio stations
and newspapers in Mexico.

Our chapter contributes to the literature that documents the
relationship between market size and entry (Berry and Waldfogel
[4]; Berry and Waldfogel [5]). To our best knowledge, this is the
�rst attempt to provide evidence in this area for Mexico.

2. Industry background

Media outlets share the characteristic that their cost structure
is mainly �xed costs, which are usually high,5 and the availabil-
ity of media products relies on many consumers wanting them
(Anderson and Waldfogel [1]).

Media products cater to di�erent consumers’ preferences. For
instance, the US radio broadcasting industry divides its formats
into around 30 station types (Anderson and Waldfogel [1]). These

tion at the municipality-level for radio stations, and since we want to compare
the radio and newspaper industries, this allows us to make the samples as
comparable as possible.

4We would assume that a large population implicitly means a large market
with a large number of potential radio listeners and newspapers readers.

5Fixed costs in daily newspapers are large relative to the market size
(George and Waldfogel [6].
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formats cater to di�erent demographic, religious, or political back-
grounds.6

Henceforth, in markets with substantial �xed costs and het-
erogeneous preferences, such as media outlets, as market size
increases, the number of products available increases, as well
(Waldfogel [11]). Also, the set of available products is determined,
at least in part, by the size of populations wanting them (Berry
et al. [3]).

Large markets do not mean “fragmentation” when products
are di�erentiated and costs to achieve better quality rely on the
�xed costs (Shaked and Sutton [9]). Radio stations and newspapers
are both horizontally and vertically di�erentiated (Waldfogel [11]):
horizontally because they di�er in their content, and vertically,
because they di�er in quality.

Moreover, there exists an upper bound to the number of �rms
that could make positive pro�ts when consumers always prefer
a better quality product, and in equilibrium, even products with
low quality may not survive at a price equal to zero (Shaked and
Sutton [8]).

Waldfogel [11] coins the term “preference externalities" to
explain the phenomenon where agents consume goods that they
�nd attractive as long as others share their preferences. To ex-
emplify the latter, consider the following: consider a two-type
population with non-overlapping preferences, where each listens
only to its own-type of radio format and each radio station chooses
only one format. Without loss of generality, assume that Type 1
only listens to News, and Type 2, only to Pop music. In that case,
cross-group preferences are zero, and only the growth of each
type gives rise to more stations with News or Pop music formats,

6Waldfogel [11] �nds that across 247 US radio markets, there exist sharp
radio formatting preference di�erences between Hispanics and non-Hispanics.
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respectively.

Now, assume that Type 2 are the minority and that some
proportion listens to News stations. The fact that Type 2 has a
second-choice format initially attracts more News (Type 1 �rst-
choice) radio stations to enter; however, as the size of Type 2
increases, �rms �nd it pro�table to enter as Pop music stations
(Type 2 �rst-choice) and, at some point, the number of News sta-
tions may fall.

George and Waldfogel [6] present evidence about the US mar-
ket for printed newspaper consumption. They document the e�ect
of the size of a population, race and Hispanic status on the prod-
uct variety within MSA. The authors �nd positive own-race (or
Hispanic) externalities, where, for instance, additional white con-
sumers only bring more white-targeted newspapers to the MSA.

In this chapter, we consider both radio stations and newspa-
pers that are physically present in a constrained geographical
area (municipalities); nevertheless, when technology decreases
the cost of distribution in media outlets, the link between local
preferences and local products may fade, and local consumers
may favor outside options that better cater to their preferences
(George and Waldfogel [7]).

Although we concentrate on the relationship between the
size of the market and the number of products, it is important to
discuss that quality in media outlets and �xed costs also play an
essential role in the number and type of products.

Since consumers have heterogeneous preferences and decide
which product to choose according to their tastes and/or their
willingness to pay for quality, one fundamental relationship that
de�nes the number of �rms present in the market is the con-
sumer’s willingness to pay for quality, and whether this improve-
ment comes through �xed or variable costs (Shaked and Sutton
[9]).
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It is worth noting that when variable pro�t covers �xed costs,
product proliferation arises, and, in equilibrium, every segment of
the quality line eventually contains at least some product (Berry
and Waldfogel [5]). Thus, in a large market, we would expect to
see, on average, more products of all quality types.

However, this positive relationship may be weakened, and the
entrance of new �rms/products may be slower in much larger
markets. For instance, in large cities: i) the cost of living is more
expensive and, ii) radio stations may have the incentive to spend
more than is proportional to increase their quality (Anderson and
Waldfogel [1]).

To illustrate an enhancement in a media outlet, consider that
the owner of a radio station or newspaper wishes to improve
the quality of a format, or at least to be perceived as enhancing
quality. To do that, it would require a better-paid sta� of reporters,
producers andwell-known personalities, regardless of the number
of readers or listeners.

Thus, the enrichment of quality inmedia outlets comes,mainly,
through �xed costs and an almost negligible increase in variable
costs. Moreover, an entrant may be required to pay an entry cost
such as a radio concession or certi�cation to legally print and
circulate a written issue, as is the case in Mexico.

3. Market size and number of firms

In this section, we present a simple model to illustrate why we
would expect that when the market size is large, we should see
more media outlets present in it. Following Anderson and Wald-
fogel [1], consider a logit model and the following assumptions:

• One product is targeting one single type of consumers.

• Products are symmetrically di�erentiated.
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• All products have equal market shares.

• Each product has an entry cost, F .

• The economic mass,M , is de�ned as Number of consumers
x Economic value to advertisers. ConsiderM as the market
size.

The share of population consuming product i is given by:

Pi =
es

1 + nes
(3.1)

where n is the number of products entering the market, and s is
the attractiveness of listening/reading.

Note from Eq. 3.1 that under free entry:7

F =M ∗ Pi =
M

n+ e−s
. (3.2)

Thus, using Eq. 3.1 and Eq. 3.2, the number of products 8 in
equilibrium is:

n =
M

F
− e−s. (3.3)

The number of products increases in the following cases:

1. When the economic mass (M ) increases. It may be because
the number of consumers increases, or because their eco-
nomic value increases, or both.

2. When the attractiveness to listen/read (s) increases.

7Firms will enter until pro�ts equal zero.
8The number of products, n, is an integer.
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3. When the entry cost (F ) decreases.

Thus, the direct empirical implication of this model is that
we might expect to see more radio stations and newspapers in
larger markets (with a higherM ), where the size of the market is
proxied by the municipality’s population in our empirical setting,
keeping constant the entry cost and attractiveness to consume.
Ideally, in our analysis, we would want to control for F and s.
However, due to data limitations in the empirical section, we have
not been able to do this.

4. Data sources and legal framework in

Mexico

The dataset for this chapter is a set of cross sections of product
availability at the municipal level9 in the daily newspaper and
radio broadcasting industries for municipalities with populations
equal to or greater than 50,000. Demographic characteristics of the
municipalities, such as population, median income, the fraction
of people with college educations, master’s degrees or PhDs, the
fraction of people younger than 25 years old, or 65 years old or
older, etc. come from the 2015 Intercensal Survey published by
the National Institute of Statistics and Geography (INEGI).

9There exist 2,457 municipalities in Mexico.



VII. RADIO AND NEWSPAPER MARKETS IN MEXICO 141

4.1. Radio stations

On July 14, 2014, the New Federal Telecommunications and Broad-
casting Law (“Law") was published in the O�cial Federal Gazette
of Mexico. According to the Law, the Federal Telecommunications
Institute (“IFT" for its acronym in Spanish) is an autonomous and
independent public agency responsible for regulating and pro-
moting competition in the telecommunications markets within
Mexico.

In Mexico, the law establishes that the radio spectrum is the
sole property of the Nation, and the State is responsible for holding
and managing it. Also, it establishes four types of radio broad-
casting concessions according to its purposes: i) Commercial, ii)
Public, iii) Private and iv) Social.

The IFT is responsible for implementing the bidding scheme
(public auctions for commercial use) to allocate the radio spectrum
frequency bands. Also, the IFT provides data on the total number
of commercial radio stations at the local level updated in February
of 2019.

Since a radio station operates in an area around the size of a
municipality,10 we assign a radio station operating in locality l in
municipalitym to municipalitym, no matter where it is located.

Table VII.1 reports means, standard deviations, minima, and
maxima of the municipality-level variables for the 258 municipali-
ties included in the estimates. The population of themunicipalities
in the sample ranges from 50,377, to over 1.6 million. The number
of commercial radio stations varies from 1 to 27, with an average
of 5.3. The average of the median head of household income in the
municipalities of the sample is $4,291 (219 USD) and the average
fraction having college or higher than college is 12%.

10According to our talks with people at the IFT.
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Table VII.1: Sample Characteristics: Radio Industry

Variable Mean Std. Dev. Min Max
Radio (Obs. 258)

Number of stations 5.3 5.5 1.0 27.0
Population (thousands) 253.63 303.38 50.38 1641.57
Median Income 4,290.53 917.22 2,143.00 6,800.00
Fraction with college or higher 0.12 0.06 0.03 0.29
% younger than 25 years old 0.46 0.03 0.36 0.56
% 65 years or older 0.07 0.02 0.02 0.12
% of women 0.51 0.01 0.48 0.55

4.2. Newspapers

The Ministry of the Interior (“SEGOB" for its acronym in Spanish)
is responsible for certifying the legal circulation of print media
in Mexico, including newspapers. Our data on daily newspapers
comes from the National Registry of Print Media, subordinated to
SEGOB, which provides an exhaustive list of print media through-
out the Mexican territory.

The Registry contains detailed certi�ed information about
printed media. Speci�cally:

• Circulation: average number of copies according to publi-
cation frequency.

• Geographical coverage: states and municipalities where it
is distributed.

For newspapers, we consider two datasets: full and restricted.
Our full dataset includes all national and state level newspapers
that are recorded as circulating in a given state(s) without de-
tailing the circulation per municipality; when this happens, we
impute that newspaper to all the municipalities of that state(s).
Our restricted dataset includes only those newspapers that have
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information on circulation per municipality; in this case, we are
sure that a newspaper is, indeed, present.

From the circulation �gures, we compute the market share of
the largest �rm.11 Our data are at the level of the municipality for
municipalities with a population greater than 50,000.

In Table V II.2 we present summary statistics of the newspa-
per industry where, as described above, the mean of the number
of products in a municipality is much higher in the full sample
(34.2) than in the restricted one (5.7). As expected, we observe
that other characteristics of the municipalities in both datasets
are similar (population and median income) or equal.

5. Empirical Results on Market Size

As discussed in previous sections, we expect to see: i) more radio
stations and newspapers in large markets, and ii) there is frag-
mentation in the newspaper industry; thus, there is no positive
correlation between population and largest market share.

We show in Figure VII.2 the municipal population and number
of radio stations (top) and the number of newspapers (bottom).
Both show a positive relationship, but the linearity is more evident
for stations than for newspapers.

There are several small municipalities with numerous news-
papers, in number, much higher than their corresponding number
of radio stations in the full sample. One possible explanation for
this is that we impute a national or state level newspaper12 to all
municipalities within the state, regardless of its circulation.

11When calculating this measure, we exclude newspapers whose circulation
is not disaggregated at the municipal level.

12There are no state or national radio stations because each one has a
limited radio frequency.
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Table VII.2: Sample Characteristics: Newspaper Industry

Variable Mean Std. Dev. Min. Max.
Panel A Newspapers - Full sample (Obs. 409)
Number of newspapers 34.2 11.4 2.0 58.0
Population (thousands) 203.02 262.69 50.38 1677.68
Median Income 4,102.82 1,110.53 0.00 8,571.00
Fraction with college or higher 0.10 0.06 0.00 0.41
% younger than 25 years old 0.47 0.04 0.36 0.63
% 65 years or older 0.07 0.02 0.02 0.12
% of women 0.51 0.01 0.48 0.55
Share of Largest Newspaper 0.5 0.2 0.2 1.0
Panel B Newspapers - Restricted sample (Obs. 377)
Number of newspapers 5.7 3.1 1.0 24.0
Population (thousands) 202.17 251.81 50.38 1641.57
Median Income 4,118.49 1,092.46 0.00 8,571.00
Fraction with college or higher 0.10 0.06 0.01 0.41
% younger than 25 years old 0.47 0.04 0.36 0.62
% 65 years or older 0.07 0.02 0.02 0.12
% of women 0.51 0.01 0.48 0.55
Share of Largest Newspaper 0.5 0.2 0.2 1.0

Figure VII.2 shows that the number of radio stations and the
number of newspapers increase with market size, but the increase
is faster for radio stations compared to both the full and restricted
sample of newspapers.

Moreover, there is a positive association between market size
and the number of newspapers, independent of the sample used
in the analysis.

Our �ndings are in line with previous studies. For instance,
Berry and Waldfogel [5] study the number of newspapers present
in a Metropolitan Statistical Area in the US and �nd a positive
relationship between the log number of outlets and market size
proxied by log population. But while in the restaurant industry,
this relationship is proportional (close to 1), in the newspaper
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industry it is 0.5. Their explanation for this di�erence relies on
the �xed cost structures of media outlets.

Figure VII.1 shows the market share of the largest newspaper
per municipal population, where the lower bound is at around
0.2.13

Figure VII.1:Market Size and Share of Largest Paper

.2
.4

.6
.8

1
M

ar
ke

t S
ha

re
 o

f L
ar

ge
st

 P
ap

er

0 500 1000 1500 2000
Municipality Population ( 000 )

Notes. The �gure shows the largest newspaper’s market share among readers
across municipalities.

We can think of the “maximum share of the largest newspaper”
as a proxy of the concentration of the industry. As the market
grows larger, we would expect to see a more fragmented market.
However, in markets with high �xed costs, di�erentiated products
and consumers with heterogeneous preferences, the market may
remain concentrated even in the presence of many consumers
(Sutton [10]). Moreover, as discussed before, in media outlets we

13Berry and Waldfogel [5] �nd a lower bound of 0.2, as well.
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expect to see a lower bound of market share for all �rms to operate
with positive pro�ts in large markets.

We do not observe a systematic decline of the maximum mar-
ket share as the population grows. Moreover, there are small
municipalities with highly concentrated markets or highly frag-
mented ones (Figure VII.1).

Table VII.3 shows regressions of the numbers of newspapers
or radio stations on market size, both in the log form of the raw
numbers. The coe�cients on log population (market size) are
much smaller in newspapers than in radio stations, with and
without controls, but are positive and signi�cant.

The numbers of both newspapers and radio stations increase
in market size, but the increase is much slower for newspapers
(for both the full and restricted datasets). Without controls, the
elasticity of population and market size is 0.84 for radio stations
and 0.1 for newspapers in the full data, and 0.2 for the restricted.

The coe�cients do no change drastically when we add con-
trols on population characteristics: for radio stations and the
restricted data of newspapers, these decrease to 0.75 and 0.15,
respectively, and for newspapers in the full data, this remains
almost the same.

6. Concluding Discussion

In this chapter, we analyze the relationship between the number
of radio stations and newspapers and the size of the market in
Mexico. As discussed, in markets in the presence of consumers
with heterogeneous preferences (e.g., religion, political views or
gender), or with di�erentiated goods and high �xed costs, such
as media outlets, we would expect to see that fragmentation of
the market does not increase as the size of the market increases.

We found a positive relationship in both markets between
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market size, and the number of products, with a higher elasticity
existing in the number of radio stations with respect to population,
than in the elasticity of newspapers. Moreover, when considering
market concentration, we �nd that the market share of the largest
newspaper in each municipality does not systematically decrease
as the population grows.

As explored by Berry and Waldfogel [4], the free entry con-
dition could lead to excessive entry in media markets compared
to what is socially optimal. Further research could investigate, in
the context of Mexico, what the socially optimal number of radio
stations and newspapers should be. In this way, policymakers
could potentially �nd another tool to set the rules of bidding to al-
locate the radio spectrum, or to promote more/fewer newspapers
in some areas of the country.

Moreover, the duplicity problem in media outlets is also a
well-known phenomenon which could be investigated for the
case of Mexico to understand whether this represents a loss in
welfare.

This chapter is a �rst attempt to provide stylized facts re-
lated to the current state of the radio and newspapers markets in
Mexico.
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Figure VII.2: Number of Products and Market Size
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Abstract

This paper relates to the debate and formalization of some essen-
tial aspects of the “Big Push” (Rosenstein-Rodan [8]). We propose
two economic models: static and dynamic. The static model is a
simpli�ed version of the Murphy et al. [6] model. In the dynamic
model, we establish three possible steady states (SSs). In the �rst
SS, all �rms produce based on a traditional technology and both
wages and aggregate income (AI) are low. In the second SS, all
�rms produce using a modern technology and both wages and AI
are high. These two SSs are stable. The third SS is unstable and
has characteristics of the �rst and second SSs. Firms choose the
SS through an evolutionary dynamic, which explains the inter-
relation with the economic system. Finally, we establish general
conditions under which �rms select the best SS.
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1. Introduction

This paper relates to the debate and formalization of some essen-
tial aspects of the “Big Push” (Rosenstein-Rodan [8]),1 an idea
revised byMurphy et al. [6], Krugman [5] and others. In particular,
our concern is which economic dynamics allow some countries,
but not others, to successfully and rapidly increase their produc-
tivity and living standards, and how government intervention can
accelerate this process. This paper proposes a simpli�ed version of
the Murphy et al. [6] and Basu [1] models, with two formulations;
static and dynamic. The static model is presented in Section 2, and
the dynamic model is explained in Section 3. From here, critical
points of economic evolution and coordination are incorporated
in Section 4, and Section 5 presents our �nal remarks.

This �rst static model is based on the Murphy et al. [6] model
and is similar to the version of Basu [1]. In Section 2.3 we aggre-
gate a dynamics to explain the evolution of the industrialization
process, which moves an economic system (see Equations (3.21)-
(3.25)).

1As Krugman [5] considered, the Big Push, proposed by Rosenstein-Rodan
[8], has inspired many interesting interpretations and formalizations. Two
of the closest formalizations to this proposal are the models of Murphy et
al. [6], and Krugman [5], himself. The central idea is that the simultaneous
industrialization of many interlinked sectors of the economy can be pro�table
even if none of them can be industrialized e�ectively by themselves. This idea
is analyzed in the context of positive external economies.



VIII. INDUSTRIALIZATION PROCESS 155

2. A static economy model

This is a simpli�ed version of the Murphy et al. [6] model and
is similar to Basu [1]. Like these two models, here we assume a
closed economy, producing N types of commodities, where there
existN types of economic sectors. More details about the aggregate
demand, technology and aggregate income are given as follows:

2.1. The aggregate demand

Consider an inelastic supply of L units of labor. The consumers
have the same preferences. The utility consumer’s function is
given by

u = x1x2 · · · xN . (2.1)

Let y be the aggregate incomewhichwill be de�ned in equation
(2.11), and for i = 1, ..., N , let pi be the price of the good i. Then the
consumer problem is to maximize utility function (2.1) subject
to the budget constraint

p1x1 + ...+ pNxN = y.

Hence, the demand function for the good i is

xi :=
y

Npi
. (2.2)

2.2. Market structure and technology

Firms select their technology to produce a commodity, either
a traditional, or a modern technology. This de�nes two broad
types of industry (traditional and modern). Firms also decide their
commodity price. We assume that each sector i is represented by
a decision making �rm that decides the type of technology used.
That is, each sector produces using only one type of technology.
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Traditional �rms

If the �rm produces its commodity using a traditional technology,
it is called a traditional �rm. Like Murphy et al. [6] and Basu
[1], we assume a perfect competition market for traditional �rms.
They transform one unit of labor l into one unit of output xi. If a
traditional �rm in sector i pays a wage wT , then its pro�t is given
by

πT
i = pixi − wT l. (2.3)

If the economic sectors have a competitive market, then given
a demand xi, we have two equilibrium market conditions for a
traditional �rm in sector i

xi = l, (2.4)

pi = wT . (2.5)

Modern �rms

Modern �rms are those that choose a modern technology for their
production. In this case, we assume economies of scale at the
�rm level (as Murphy et al. [6] and Basu [1]), but no economies of
scope nor economies of multi-sectoral operations. The technology
is the same for all modern �rms in the market for each type of
commodity produced, involving a �xed input of F and marginal
input requirement c ∈ (0, 1). Thus, assuming for the moment
that the only input is labor, the production of a quantity xi of a
modern �rm in sector i requires labor input given by

l = F + cxi. (2.6)

A modern �rm does not have complete control over the price
of its product, and it produces with economies of scale, using a
�xed input of F of labor. That is, the modern �rm is in a monop-
olistic competition market, so it may incur positive or negative
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pro�ts. We assume that a modern �rm in sector i pays a wage
wM > wT . Then, with a mill price pi and a demand xi, its pro�t
is given by

πi
M = pixi − wM(F + cxi). (2.7)

The process of industrialization is a transition from a tradi-
tional to a modern industry. If the representative �rm of the sector
i is a modern �rm, we say that sector i has been industrialized.
From Equations (2.2), (2.5) if a sector i is industrialized, then the
pro�t of a modern �rm is

πM(y) = πM
i =

(
1− wM

wT

c

)
y

N
− wMF. (2.8)

Note that we need the following condition:

wM

wT

<
1

c
, (2.9)

for a possible πM(y) ≥ 0. The expression, 1
c
> 1 represents the

number of units of output by a unit of labor after incurring a �xed
cost of F units of labor.

Let πM(n, y) be the sum of pro�ts of n representative �rms
that choose a modern technology. Using Equation (2.8), we have
that

πM(y, n) = nπM(y)

= n

[(
1− wM

wT

c

)
y

N
− wMF

]
. (2.10)
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2.3. The aggregate income

All traditional �rms in a given market use y
NWT

units of labor.
Hence, if n of these representative �rms are industrialized, then
by Equation (2.2), and Conditions (2.4) and (2.5), the economy uses
(N − n) y

NwT
units of labor in the traditional productive sector,

and L− (N −n) y
NwT

units of labor in the modern sector (already
expanded by the new entrants). Moreover, the aggregate income
when n sectors are industrialized is

y(n) = πM(y, n) + πT (y, n) + wT

[
(N − n) y

NwT

]

+wM

[
L− (N − n) y

NwT

]

=
(

wT−wM c
wT

)
yn
N
−
(

wM−wT

wT

)
(N − n) y

N

+[L− nF ]wM

(2.11)

where πT (n, y) is the sum of pro�ts of N − n industries (or
representative �rms) that are not industrialized which satis�es
πT (n, y) = 0 by Equation (2.3), and Conditions (2.4) and (2.5).
If each y in Equation (2.11) depended implicitly on n, that is
y = y(n), then we would have that

y(n) =
[L− nF ]NwT

N − n(1− c) . (2.12)

Note that if no productive sector is industrialized, then

y(0) = πT (0, y) + wTL,

with πT (0, y) = 0.
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2.4. The pro�t of a modern �rm

If n productive sectors are industrialized, then by Equation (2.12)
the pro�t of a representative modern �rm πM in Equation (2.8) is

πM(n) =
F [(wT − wMc)((L/F )− n)− wM(N − n(1− c))]

[N − n(1− c)] .

(2.13)
Let λM := n

N
be the proportion of representative �rms that

choose a modern technology; then Equation (2.13) can be rewrit-
ten in terms of λT as

πM(λM) = F [(wT−wM c)((L/NF )−λM )−wM (1−λM (1−c))]
[1−λM (1−c)]

.
(2.14)

If all the representative �rms are industrialized, then the economy
must supply at least NF labor units, and this condition is

L

NF
> 1. (2.15)

Since 0 < c < 1, if condition (2.5) is satis�ed, then the sign of
πM(λT ) is the same as

(wT − wMc)((L/NF )− λM)− wM(1− λM(1− c)), (2.16)

and the sign of πM(λT ) depends directly on the magnitude of λM .

3. A dynamic economy model

Let us make this model more dynamic to study the evolution
of an industrialization process. First, we introduce an imitative-
evolutionary dynamics to explain how the proportions of both
modern and traditional �rms are changing over time. Then we
explain how this imitative-dynamics moves key variables of the
economic system in Equations (3.21) to (3.25).
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3.1. The industrialization process

We assume that �rms choose a technology every time t, either a
traditional or modern technology. The proportion of �rms select-
ing a modern technology in time t is described by λM(t) := n(t)

N
,

and the proportion of �rms choosing a traditional technology is
described by λT (t) := 1− λM(t).

An imitative-evolutionary dynamics explains how the propor-
tions of both groups of �rms (those using modern technology and
those with traditional technology) are changing over the time.
Then, with this dynamic view, �rms choose a technology through
imitation, i.e., each �rm selects a technology if its use is pro�table.
So, in this way, �rms follow an imitative evolutionary dynamics
known as replicator dynamics, which has interesting properties
such as a simple mathematical form. It has a natural interpretation
and describes imitation behaviors (see Hofbauer and Sigmund [3],
Hofbauer and Sigmund [4], and Webb [9]). Moreover, it can be de-
rived from models of interactive learning processes, (as Gale et al.
[2]). The evolution of λM(t) and λT (t) is described by replicator
dynamics as follows:

λ̇T (t) = µ[πT (λ(t))− π̄(λ(t))]λT (t) (3.17)

λ̇M(t) = µ[πM(λ(t))− π̄(λ(t))]λM(t) (3.18)

1 = λM(t) + λT (t), (3.19)

where γ > 0 is a real number that explains the speed of imitation;
πT (t) is the pro�t of a traditional �rm and satis�es πT (t) = 0
in any time t; πM(t) is the pro�t of a modern �rm described by
Equation (2.14); and �nally,

π̄(λ(t)) := λM(t)πM(λ(t)) + λT (t)πM(λ(t))

= λM(t)πM(λ(t)). (3.20)
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3.2. The economy and technological change

By Equation (3.19), λ̇T (t) = −λ̇M(t) for all t. Hence, we can sim-
plify the system of Equations (3.17) to (3.19), substituting Equation
(3.20) in Equation (4.18), and usingλ(t) = λM(t), 1−λ(t) = λT (t),
to obtain the technological change equation (3.21), which explains
the technological change process. The evolution of technological
change directly a�ects the economy as follows:

Technological change equation

λ̇(t) = µπM(λ(t))λ(t)[1− λ(t)], (3.21)

Aggregate income

y(λ(t)) =
[L/N − λ(t)F ]NwT

1− λ(t)(1− c) . (3.22)

Demand of good i

xi(λ(t)) =
y(λ(t))

NwM

. (3.23)

Aggregate welfare function

u(λ(t)) = x1(λ(t))x2(λ(t)) · · · xN(λ(t)), (3.24)

Bene�t of a modern �rm

πM(λ(t)) =
F

[
[wT−wM c][(L/NF )−λ(t)]−wM [1−λ(t)[1−c]]

]

1−λ(t)[1−c]
.

(3.25)
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4. Economic evolution,

industrialization process and

coordination

4.1. The steady states

Our Technological change equation (3.21) is a source of the dy-
namic process driving the economic system, as formulated by
Equations (3.22) to (3.25). This equation has three critical points
or steady states, i.e., values of λ where

µπM(λ)λ[1− λ] = 0.

The three critical points of Equation (3.21) are:

λ∗ = 0, (4.26)

λ∗ = 1, (4.27)

λ∗ =
wM

wM − wT

− wT − wMc

wM − wT

L

NF
, (4.28)

where Equation (4.26) refers to the case when all the �rms use
traditional technology, Equation (4.27) refers to the case when all
the �rms use modern technology, and Equation (4.28) refers to
the case when π(λ∗) = 0 (for πM(·), as in Equation (2.14)).

A steady state λ∗ of Equation (3.21), is called

• asymptotically stable state (ASS) if for any small ϵ > 0, there
exists δ > 0 such that if |λ(0)−λ∗| < δ, then |λ(t)−λ∗| < ϵ
for all t > 0, and limt→0 λ(t) = λ∗.

• repulsive state (RS) if for any ϵ > 0, there exists tϵ > 0 such
that |λ(t)− λ∗| > ϵ for all t > tϵ > 0.
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Theorem 4.1. Consider Conditions (2.9), (3.15) and

wM

wT

>

(
1− wMc

wT

)(
L

NF

)
> 1. (4.29)

Then for the Technological change equation (3.21) we have that

i) State (4.26) is an ASS, and in this state, all �rms use traditional
technology;

ii) State (4.27) is an ASS, and in this state, all �rms use modern
technology; and

iii) State (4.28) it is a RS, and in this state, all �rms decide to use
traditional or modern technology (that is πT = πM(λ∗) = 0).

Proof. Let G(λ) := µπM(λ)λ[1 − λ], then System (3.21) can be
rewritten as λ̇ = G(λ). Hence,

• if dG
dλ
(λ∗) < 0, λ∗ is an asymptotically stable state;

• if dG
dλ
(λ∗) > 0, λ∗ is a repulsive state.

See, for example, Perko [7]. Now,

dG

dλ
= µ[πM(λ)[1− 2λ] + λ(1− λ)π′

M(λ)]

where

π′
M(λ) =

F [(wM − wT )− πM(λ)]

[1− λ(1− c)] .

Under Conditions (2.9) and (3.15), we have that πM(0) < 0, see
Appendix 6.1. Then, for the steady state λ∗ = 0, we have that

dG

dλ
(0) = µπM(0) < 0,
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which proves i).
Under Conditions (2.9), (3.15) and (3.25),we have thatπM(1) >

0, see Appendix 6.2. Then for the steady state λ∗ = 1, we have
that

dG

dλ
(1) = −µπM(1) < 0,

which proves ii). Consider the steady state λ∗ de�ned in Equa-
tion (3.24). For this steady state πM(λ∗) = 0, and π′

M(λ∗) =
F [wM−wT ]
1−λ∗(1−c)

> 0. Then,

dG

dλ
(λ∗) = µλ∗[1− λ∗]π′

M(λ∗) > 0,

which proves iii).

4.2. Coordination e�ort

Consider the steady state λ∗ as in (4.28) and let λ0 = λ(0) be the
initial state of industrialization in the economy. Then, by Theorem
4.1 we have that

i) if λ0 < λ∗, then λ(t) is decreasing and lim
t→∞

λ(t) = 0, i.e.,

the evolution of industrialization process is decreasing;

ii) if λ0 > λ∗, then λ(t) is increasing and lim
t→∞

λ(t) = 1, i.e.,

the evolution of industrialization process is increasing.

For all of the above arguments, the steady state λ∗, as in Equation
(4.28), is called the state of critical coordination e�ort.

The value of the state of critical coordination e�ortλ∗ is impor-
tant because λ∗ [as in Equation (4.28)] is the minimum proportion
of �rms that must be coordinated in an industrial policy to obtain
an e�ective process of industrialization. For this, we are interested
in variables that a�ect this value of λ∗.



VIII. INDUSTRIALIZATION PROCESS 165

Fixed and marginal costs

Consider Equation (4.28), then by Conditions (2.9) and (3.15), we
have that

dλ∗

dF
=

wT − wMc

wM − wT

L

NF 2
> 0, (4.30)

dλ∗

dc
=

wM

wM − wT

L

NF
> 0, (4.31)

which means that if there is a high �xed input cost F or a high
marginal input cost c (for example, a value of c close to 1), then
the state of critical coordination e�ort λ∗ is also high.

The number of �rms in the market and units of labor

Consider Equation (4.28), then, by Conditions (2.9) and (3.15) we
have that

dλ∗

dN
=

wT − wMc

wM − wT

L

N2F
> 0, (4.32)

dλ∗

dL
= −wT − wMc

wM − wT

1

NF
< 0. (4.33)

By the sign of Equation (4.32), we can a�rm that the partici-
pation of new �rms in the market implies a higher value in the
critical minimum e�ort of coordination λ∗. Contrary to the e�ect
of increments in N , the sign of Equation (4.33) means that if the
quantity of laborL increases, then the state of critical coordination
e�ort λ∗ decreases.
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The wages of modern �rms wM

Consider Equation (4.28), then, by Conditions (2.9) and (3.15), we
have that

dλ∗

dwM

=
(wT − wMc)L

(wM − wT )2NF
+

NF + cL

(wM − wT )NF
− wM

wM − wT

=
wT (L(1− c)−NF )
(wM − wT )2NF

. (4.34)

An increment in wages of modern �rmswM has two opposing
e�ects: the �rst e�ect is that the aggregated demand can increase,
which implies a negative e�ect in λ∗; the second e�ect is that the
cost of the �rm can increase, which implies a positive e�ect on
λ∗.

If all sectors are industrialized, then we need at least

L ≥ NF

1− c (4.35)

units of labor. If Condition (4.35) is satis�ed, then dλ∗

dwM
≥ 0. This

means that if we have increments inWM , then we have a higher
value in the state of critical coordination e�ort λ∗.

5. Final Remarks

Concerning the issue of Big Push, this paper formulates a sim-
pli�ed version of the Murphy et al. [6] and Basu [1] models, and
incorporates replicator dynamics to consider imitative behavior
of producers choosing their technology. There are three outcomes
given by an evolutionary dynamic interrelation between the tradi-
tional and the modern sectors. First, traditional �rms can continue
choosing traditional technology, with low wages and low output.
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Second, they can choose modern technology, with high wages
and high output. Third, some of them choose modern technol-
ogy and others choose traditional technology. These outcomes
bring three possible equilibria, like the Murphy et al. [6] model:
a) The economy tends to high industrialization; b) it tends to
never industrialize, being mostly traditional; c) it remains in an
intermediate situation, partially traditional (this third equilibrium
is unstable). In the �rst of these three equilibria, the economy as
a whole tends towards the best equilibrium (the most productive
one) under some general conditions, in particular, a critical coor-
dination e�ort by the government through an industrial policy.
Just as Murphy et al. [6] and Krugman [5] conclude, we have a
multi-equilibrium outcome, with three possible equilibria (one of
them is unstable), but with the di�erence that our model incorpo-
rates both dynamism and government coordination to accelerate
industrialization.

6. Appendix

6.1. The pro�t πM(0) < 0

Using Equation (2.14), we have that

πM(0) = F [(wT − wMc)(L/NF )− wM ].

By Condition (4.29)

(4.29) ⇒ (wT − wMc)L

wTNF
<
wM

wT

⇒ (wT − wMc)(L/(NF ))− wM < 0

⇒ πM(0) < 0.
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6.2. The pro�t πM(1) > 0

Using Equation (2.14), we have that

πM(1) =
F [(wT − wMc)((L/(NF ))− 1)− wMc]

c
.

By Condition (4.29)

(4.29) ⇒ (wT − wMc)L

wTNF
> 1

⇒ (wT − wMc)(L/(NF ))− wT > 0

⇒ (wT − wMc)(L/(NF ))− (wT − wMc)− wMc > 0

⇒ (wT − wMc)((L/(NF ))− 1)− wMc > 0

⇒ πM(1) > 0.
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IX. COLLECTIVE AGREEMENT ON
FOREST RESOURCES POLICY: AN
EVOLUTIONARY DYNAMIC
APPROACH

Alfredo Omar Palafox-Roca, Saul Mendoza-Palacios and Onésimo
Hernández-Lerma

Abstract

Collective agreement on forestry resources is the activity per-
formed by a rural forest community considering a cooperative
agreement, without government intervention. In this paper, we
study the collective agreement in a population that is divided in
three types of mutually exclusive sub-populations: cooperators,
defectors and enforcers. In this model, we incorporate a forest
resource dynamics similar to the golden rule in economic growth.
By means of the replicator dynamics, we analyze the interaction
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between sub-populations and forest resources. Finally, the sta-
bility of the dynamic system is studied in order to determine
the public policies to be followed by this community to achieve
sustainability.

1. Introduction

According to the 2015 Global Forest Resources Assessments FAO
[3] elaborated by the Food and Agriculture Organization (FAO) of
the United Nations during the period of 1990 to 2015, the world’s
forest area has decreased by approximately 3.1%, making safe-
guarding of natural resources one of the main global goals all
over the world. However, there exists evidence that some coun-
tries have not always taken the right decisions in this matter.
Sometimes, economical reasons underlie these decisions, and in
other cases, it is just because of the impossibility of a total super-
vision by governmental authorities Ostrom [9]. For a description
of con�icts around the world see Temper et al. [14].

In this paper our goal is to study the evolution of a forest
community and the forest resource. We de�ne collective agree-
ment on forestry resources as the activity performed by a rural
forest community considering a cooperative agreement, without
government intervention. An evolutionary dynamics explains
how the structure of the population in the community is modi�ed
in terms of strategies, which are determined by their sustainable
behavior with respect to the forest resource by means of changes
in the stock through time. As a result, some conditions are given
in order to determine the stability of each critical point.

There exists evidence of a successful process of sustainable
exploitation applying collective agreements in some forest com-
munities: for instance, Cherán’s community in Mexico. Unless
some conditions are met, there is no way to assure that the entire
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population will take care of the environment. In this scenario, we
may expect a framework similar to Shahi and Kant [11], where
members of the community could play di�erent roles in this so-
ciety, namely, cooperators, defectors and enforcers, all of them
with a rate of exploitation of the resource assigned according to
their behavioral strategy. In this setting the model describes the
process of exploitation of the forest by the population of a given
forest community, considering that only they have access to the
forest resources in order to exploit them.

In Section 2, we provide a brief overview of the related lit-
erature about renewable resources, collective management and
sustainability. In Section 3, we introduce our model. In Section
4, we highlight some results derived from the model in terms of
sustainability. In Section 5, we explain the main critical points of
the system. In Section 6, we discuss the stability of the system.
Finally, we present our conclusions.

2. The model

In order to protect natural resources, many management pro-
grams have been proposed. For instance, the Joint Forest Manage-
ment Regime (JFM), a program developed in India, consists of an
agreement among forest communities, represented by a Forest
Protection Committee and government to safeguard the resource
in exchange for a share of the revenue from the sale of timber
products and other non timber products. Moreover, in Europe the
Sustainable Forest Management program was launched, which
tries to balance human needs and the survival of the forests.

In this paper, we propose a Collective agreement describing a
forest community which survives by the exploitation of available
natural resources, like a subsistence economy. This does not mean
that individuals cannot access other jobs in order to get a wage,
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but if they do, this wage represents a small proportion of their
total income. So, we focus on the part of the income explained
by the exploitation of the forest resource. We assume that there
exists a community agreement to exploit the resource at a given
rate, without the intervention of government or any other kind of
authority. This agreement is a product of a collective consensus
that looks for a sustainable use of the forest. It is important to
mention that although some authors have previously worked on
the sustainable management problem in Mexico, we do not try
to explain the community as a forestry enterprise (see Bray et
al. [1]) nor the production of timber, nor any other product (see
Torres-Rojo et al. [15]). We describe the possible paths that a rural
forest community might reach when a self-management program
is applied to preclude overusing the forest resources.

2.1. Population

We are interested in the dynamics of the renewable resource and
the dynamics of the population. Based on their behavioral strate-
gies, the community is divided in three types of sub-populations:
cooperators (c), defectors (d) and enforcers (e). Each individual be-
longs only to one type of sub-population.

The total number of members in the community is n, which
is �xed at every moment in time. Each sub-population consists of
nk individuals, for k = c, d, e, and

n = nc + nd + ne.

In the community, there exists a stock of renewable resource, r.
This resource is consumed with di�erent rates of exploitation.
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Cooperators

Cooperators are those who are dedicated to caring for the forest.
The entire community needs to consume a part of the resource.
Both sub-populations, cooperators and enforcers consume a pro-
portion λ of the resource, which is called the collective agreement
rate of exploitation of the resource, and λ ∈ (0, 1). The total of
cooperators’ payo�s, πc, is

πc =

[
λr

nc + ne

]
nc. (2.1)

In words, Equation (2.1) states that the payo� for cooperators
is the fraction of the resource exploited under the collective agree-
ment, over the total number of individuals that respect it, times
the number of cooperators.

Defectors

Defectors are those who are notwilling tomaintain the agreement.
They take advantage and make some extra pro�t via a higher rate
of exploitation, δ in (λ, 1). Defectors have been assigned a payo�
that depends on the probability b ∈ [0, 1] of being caught for
exploiting the resource with a higher rate of exploitation δ.

The total defectors’ payo�, πd, is

πd = [(1− b)δr]nd. (2.2)

That is, the payo� for the defectors is equal to the probability of
not being caught, times the fraction of the resource overexploited,
times the number of defectors.
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Enforcers

Enforcers are the oneswith the authority to sanction any excessive
use of the resource and, in addition, to collect the money from the
fees paid by visitors. The fraction of the quantity recovered of the
forest resources from the captured defectors is represented by µ;
enforcers take into account a �xed cost for their activities, F . As
in Shahi and Kant [11], we consider a variable cost faced by the
enforcers in order to catch defectors, β, and S is the �xed salary
of the enforcer. By hypothesis, S > F > 0 and 1 ≥ µ ≥ β ≥ 0.

The sum of the enforcer’s payo�, πe, is

πe =

[
πc
nc

]
ne + (S − F )ne + δb(µ− β)rnd. (2.3)

Hence, the payo� of enforcers is the payo� of the cooperators
over the number of cooperators, times the number of enforcers,
plus a quantity that depends on the number of defectors who
have to pay a �ne, plus a �xed income which we separate as a
di�erence between a �xed salary and a �xed cost, to encourage a
possible policy to enhance the performance of enforcers.

2.2. Payo�s

In the next section, we introduce the replicator dynamics, so it
is necessary to replace the number of individuals belonging to
each group of strategies by the fraction of them; that is, si =

ni

n

for i = c, d, e. As a result, our payo� functions in (2.1) - (2.3) are
now given by:

i) cooperators

πc =

[
λr

sc + se

]
sc, (2.4)
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ii) defectors
πd = [(1− b)δr]nsd, (2.5)

iii) enforcers

πe =

[
πc
sc

]
se + (S − F )nse + δb(µ− β)rnsd. (2.6)

2.3. Evolutionary dynamics

An evolutionary dynamics describes the behavior and interaction
of strategies in a population. In our model, at each time t ≥ 0,
every member of the population selects a sub-population from the
options previously mentioned. Then, at each t ≥ 0, the proportion
of individuals in the population with a certain activity is chang-
ing. Let sc, se and sd be the proportions of individuals belonging
to the sub-populations of cooperators, enforcers and defectors,
respectively. An evolutionary dynamics explains how the propor-
tions of sub-populations are changing in time; in other words, it
explains how the individuals select their activities as a function
of time. In an imitative evolutionary-dynamics, the individuals
select a sub-population through imitation. Each individual selects
a subpopulation if he sees that the payo� in that sub-population is
better than the expected payo� of the population and eliminates
it (see Hofbauer and Sigmund [6]). Here, we select an imitative
evolutionary-dynamics known as the replicator dynamics. The
replicator dynamics has many interesting properties; in particular,
it has a simple mathematical form, has a natural interpretation,
describes imitation behaviors (see Hofbauer and Sigmund [6, 5]
andWebb [16]), and its local stability is similar to the local stability
of a family of evolutionary dynamics (Cressman [2]). Moreover,
it can be derived from models of interactive learning processes,
(as in Gale et al. [4]). In our case, the evolution of the population
is described by the replicator dynamics as follows:
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ṡc = sc(πc − π̄), (2.7)

ṡd = sd(πd − π̄), (2.8)

ṡe = se(πe − π̄), (2.9)

where

sc + sd + se = 1. (2.10)

Equation (2.10) indicates that the sum of the sub-populations adds
up to the entire population, and the number

π̄ := scπc + sdπd + seπe (2.11)

in (2.7) - (2.9) is the average payo� function.
Note that ṡk ≥ 0 if and only if πk−π̄ ≥ 0, for k = c, e, d. Then,

each sub-population grows if and only if the sub-population’s
payo� is better than the expected payo� of the population.

2.4. Resource dynamics

To complete the model, we introduce a dynamic model of the
biomass, that is, renewable forestry resource. Therefore, we are
no longer in an evolutionary game, but in a dynamic system. The
decisions of any person in the community are in�uenced by the
level of the renewable resource at any given time. Let’s assume
that the renewable resource has a natural growth function of the
form

f(r) = Arα, (2.12)

which, in economic terms, represents a production function. In
(2.12)A represents a constant friendly technology for the environ-
ment, and α ∈ (0, 1) is the weight of the production factor r. This
growth function behaves according to the �rst six assumptions of
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the model for conservation of renewable resources in Olson and
Roy [8], and so it has important properties such as monotonicity,
continuity, di�erentiability, bounded growth and others.

Moreover, A is the reforestation technology used by the com-
munity. In addition, the resource biomass evolves as

ṙ = Arα − δsdr − λ(sc + se)r. (2.13)

This expression is similar to the fundamental equation of
Solow-Swan (see Solow [12] and Swan [13]). However, in (2.13)
the depreciation comes from the exploitation, sustainable or not,
of the resource.

It is important to mention that the parameter λ does not guar-
antee sustainability, by itself, nor does δ mean non-sustainability.
These parameters are just rates of exploitation such that λ < δ.
Sustainability is expressed in terms of the stock of the resource.
Speci�cally, we assume that there exists r0 > 0, which is the
minimum level possible to reforest, and if

r0 ≤ rt for all t ≥ 0, (2.14)

then if (2.14) holds, the renewable resource is conserved and,
consequently, there is no loss in biodiversity.

3. Critical points

In view of (2.10), we may rewrite (2.7) - (2.9) and (2.13) as

ṡc = sc(πc − π̄), (3.15)

ṡd = sd(πd − π̄), (3.16)

ṙ = Arα − δsdr − λ(1− sd)r. (3.17)
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We will now determine the critical points of this system.
Cooperators. In the context of an economy of subsistence in

a forestry community like Cherán, the concept of cooperation
is highly developed; they share history and social values, which
makes it possible that the entire population behaves like a coop-
erator, that is, sc = 1. Hence, (3.15) - (3.17) yield

πc = π̄, r =

[
A

λ

] 1
1−α

.

Defectors. Culture and social customs play an important role
in the actions of the community members, so if they were caught
overexploiting the resource, they could be expelled or socially
rejected. In this case, we study the situation in which everybody
is a defector, that is, sd = 1. Therefore, from (3.15) - (3.17),

πd = π̄, r =

[
A

δ

] 1
1−α

.

Enforcers. An ideal model is when the whole community acts
as an enforcer, so sc + sd = 0. In this case, we obtain

πe = π̄, r =

[
A

λ

] 1
1−α

.

No defectors. Cherán’s community provides a remarkable
example of an economy of subsistence in which the social rules
are established by means of a self-management regime based
on collective action, and the population is divided in two sub-
populations: cooperators and enforcers. Therefore, sd = 0, sc ̸=
0, 1− sc ̸= 0. Hence πc = π̄ = πe, r =

[
A
λ

] 1
1−α ,

sc = 1−
[

λr

2λr + (S − F )n

]
.
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4. Stability

The criterion for stability is given in terms of the determinant
which is computed in Section 9 below.

0 = |J − ξI| =

∣∣∣∣∣∣

∂ṡc
∂sc
− ξ1 ∂ṡc

∂sd

∂ṡc
∂r

∂ṡd
∂sc

∂ṡd
∂sd
− ξ2 ∂ṡd

∂r
∂ṙ
∂sc

∂ṙ
∂sd

∂ṙ
∂r
− ξ3

∣∣∣∣∣∣
. (4.18)

Cooperators. To determine the stability of this system, which
consists only of cooperators, we have to analyze the eigenvalues
of the determinant (4.18). From Section 9, these eigenvalues are
given by

ξ1 = ξ2 = −λ
[
A

λ

] 1
1−α

< 0,

ξ3 = −λ(1− α) < 0.

Since one value is repeated, then this point is degenerate.
However, all the eigenvalues are negative, so it is also an attractor.
This result is very interesting, since we �nd the possibility to
describe an unconditioned public policy, that is, we do not need
to add any other conditions on the parameters.

Defectors. To determine the conditions to create a public pol-
icy avoiding the possibility of defector behavior, we study the
case where

ξ1 = −(1− b)δn
[
A

δ

] 1
1−α

< 0,

ξ2 = −δ(1− α) < 0,

ξ3 = δn[b(µ− β)− (1− b)]
[
A

δ

] 1
1−α

.
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The �rst two eigenvalues are always negative. If the third
eigenvalue is positive, which is when 1 + µ − β > 1

b
, then the

critical point is nondegenerate and repulsive. The latter condi-
tion highlights the importance of self-management in forestry
communities populated by natives. The parameter b when the
government is in charge is too low, almost zero. However, when
the forestry management is developed by the community follow-
ing collective action, then this parameter is high because of the
social relevance of being excluded by the entire community. The
social impact in the day-to-day life of a defector is not as simple
as a �ne; there is an implicit social stigma for him and his family.

Enforcers. Once again, the eigenvalues are obtained through-
out the product of the diagonal:

ξ1 = ξ2 = −
(
[λ

[
A

λ

] 1
1−α

] + (S − F )n
)
< 0,

ξ3 = −λ(1− α) < 0.

As in the cooperators’ case, one value is repeated, and so this
critical point is degenerate. Also, all the eigenvalues are negative,
so it is an attractor. The di�erence between the �xed salary S and
the �xed cost F must be positive; on the other hand, there is no
incentive for a community member to act as an enforcer.

No defectors. In this case,

ξ1 = −[λr(1− 6sc(1− sc) + (S − F )n(1− sc)(1− 3sc)],

ξ2 = −[λrs2c + (1− sc)2(λr + (S − F )n],
ξ3 = −[λ(1− α)].

The eigenvalues are di�erent from zero and among them, so it
is a non degenerate critical point. Besides, the last two eigenvalues
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are always negatives such that the repulsion or attraction depends
on the �rst eigenvalue. If the sum inside the brackets is positive,
then it is an attractor, which is a good public policy to follow.

5. Collective agreement regime in

forestry communities

Native communities live mainly in forestry areas. Historically,
these communities have defended their resources. For instance, in
1543 in Taxco, now in the state of Guerrero, natives complained
of mining activities because forests were running out. As far as
we know, the number of incidents of this kind increased through
time Madrigal González [7]. This increment was possible, and,
in fact, it is also today because of overexploitation practices of
�rms and the lack of enforcement of laws. This contradicts some
of Hardin’s postulates.

Under these circumstances, forestry communities face extor-
tion, kidnapping and the murder of their leaders. Eventually,many
communities have decided to take actions such as the substitution
of their police corps (usually associated with organized crime),
their mayors (who cooperate with the criminal cartels) and the
laws, which did not provide enough protection to the communi-
ties, themselves, and the natural resources. These factors create
conditions in the population to behave as conditional cooperators
and willing punishers as in Ostrom [10].
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6. Discussion

In this paper, we analyze the interaction between a population
which is divided into three sub-populations according to the be-
havioral strategies of the community members, and a renewable
resource, in general terms, a forest. In our model, the native rural
community takes care of the renewable resource by means of a
collective agreement regime. This proposal has the advantage
that it minimizes the desire of any individual for being a defector
since the entire population might discard him or her from the
decision making process. Taking this into account, our stability
analysis shows the conditions to attain trajectories in order to
achieve sustainability as long as r ≥ r0. This is a remarkable fact
because it shows how it is possible to solve the overexploitation
problem without the interference of governmental authorities,
which usually exhibit a high propensity for acting corruptly.

A collective agreement regime is not the solution to all the
problems in forest communities; however, it sheds light on con-
sidering other solutions. So far, we only are worried about the
dynamics of the renewable resource and the dynamics of the pop-
ulation, but we are aware that in many communities, there is no
total participation of the population, since by “uses and costumes,”
women and the young do not participate in the process of decision
making about how to organize the community. This is a problem
with which we will work on later.
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7. Appendix

The criterion for stability is given by

0 = |J − ξI| =

∣∣∣∣∣∣

∂ṡc
∂sc
− ξ1 ∂ṡc

∂sd

∂ṡc
∂r

∂ṡd
∂sc

∂ṡd
∂sd
− ξ2 ∂ṡd

∂r
∂ṙ
∂sc

∂ṙ
∂sd

∂ṙ
∂r
− ξ3

∣∣∣∣∣∣
.

If sc = 1, then

|J − ξI| =

∣∣∣∣∣∣

−λr − ξ1 0 0
0 −λr − ξ2 0
0 −(δ − λ)r αAr−(1−α) − λ− ξ3

∣∣∣∣∣∣

= (λr − ξ1)(λr − ξ2)(αAr−(1−α) − λ− ξ3) = 0.

If sd = 1, then

|J − ξI| =

∣∣∣∣∣∣

−(1− b)δrn− ξ1 0 0
−δb(µ− β)rn −(1− b)δrn+ δb(µ− β)rn− ξ2 0

0 −(δ − λ)r αAr−(1−α) − δ − ξ3

∣∣∣∣∣∣

= (−(1− b)δrn− ξ1)(−(1− b)δrn+ δb(µ− β)rn− ξ2)(αAr−(1−α) − δ − ξ3) = 0.

If sc + sd = 0, then

|J − ξI| =

∣∣∣∣∣∣

−λr − (S − F )n− ξ1 0 0
0 −λr − (S − F )n− ξ2 0
0 −(δ − λ)r αAr−(1−α) − λ− ξ3

∣∣∣∣∣∣

= (λr−(S−F )nξ1)(λr−(S−F )n−ξ2)(αAr−(1−α)−λ−ξ3) = 0.
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If sd = 0, then let

a11 = −λr(1− 6sc(1− sc))− (S − F )n(1− sc)(1− 3sc)− ξ1,
a12 = λrs2c − sc(2λrs2c − λr − 2(S − F )n(1− sc) + δb(µ− β)rn(1− sc)),

a13 = λs2c − λs3c − λsc(1− sc)2,
a21 = 0,

a22 = −λrs2c − λr(1− sc)2 − (S − F )n(1− sc)2 − ξ2,
a23 = 0,

a31 = 0,

a32 = −(δ − λ)r,
a33 = αAr−(1−α) − λ− ξ3,

then

|J − ξI| =

∣∣∣∣∣∣

a11 − ξ1 a12 a13
a21 a22 − ξ2 a23
a31 a32 a33 − ξ3

∣∣∣∣∣∣
= (a11 − ξ1)(a22 − ξ2)(a33 − ξ3) = 0.
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X. AN OPTIMAL CONTROL PROBLEM IN
FOREST MANAGEMENT

Leonardo R. Laura-Guarachi

Abstract

In this work the Mitra-Wan forestry model is studied as a discrete-
time optimal control problem. We consider a pro�t function de-
pending on timber production and the forest maintenance cost.
The optimal rotational age is determined in terms of the average
timber production and the average cost of forest maintenance.
On the other hand, to study the non stationary optimal control
policies, we consider the average optimality, good policy and bias
optimality. The set of average optimality policies contains strictly
the good policies, and in turn, the set of good policies contains
the bias optimal policies. Moreover, the good policies converge
to the optimal stationary policy (turnpike property).

1. Introduction

A forest manager has a unit of land that is completely covered by
trees of the same species but, possibly, of di�erent ages. The forest
con�guration evolves according to the time. Then, one of the main
forest management problems is to establish a harvest plan that
maximizes the accumulated revenue along some determined time
horizon.
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e-mail: llguarachi@gmail.com
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The literature on forest economics can be traced back at least
to Faustman’s (in 1849) and Pressler’s (in 1860) studies on the exis-
tence of optimal rotation age, that is, the “right” age at which the
trees should be harvested. In more recent years, among other ef-
forts to solve the problem,Mitra andWan [12, 13] have introduced
a discrete time dynamical model to study the forest structure and
behavior. They have found that the solutions evolve according to
the so called “turnpike property”, that is, when the time horizon
is �nite, the solution approaches to some stationary state, stays
close to it, and at the end, exists in order to reach the �nal state;
when the horizon is in�nite, the solutions converge to the sta-
tionary state. This analysis was extended by Salo and Tahvonen
[14]. Further advances were made recently by Khan and Piazza [9,
8] establishing turnpike properties for a broader class of utility
functions.

On the other hand, the turnpike properties have been studied
since Dorfman et al. [5], if not earlier. Recent works – for example,
Damm et al. [3], Zaslavski [19], Trélat and Zuazua [16] – show
that the turnpike properties are part of a wide class of optimal
control problems in discrete time horizon, as well as in continuous
time.

In this work, we will study the Mitra-Wan forestry model as
an in�nite horizon discrete time optimal control problem Laura-
Guarachi and Hernández-Lerma [10]. Regardless, in addition to
previous works on this topic, where the utility function depends
only on the amount of timber harvested and no plantation costs
are considered, we assume that the forest plantation (or mainte-
nance) has some cost, for example, the limited disposal of water
could have some price; or, for optimal growth of the trees, the
land could need some amount of nutrients (fertilizers). This con-
sideration could re�ne the determination of optimal stationary
forest con�guration, as it is shown in Lemma 3.9, Corollary 3.10,
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Theorem 4.2, and Example 5.1. Based on the optimal stationary
state, the following ergodic optimality criteria are de�ned: av-
erage optimality, good policy and bias optimality. We review the
relations among these criteria and their properties.

The next sections are organized as follows: The Mitra-Wan
forestry model is presented in Section 1.2; Optimal stationary
states are studied in Section 1.3; Section 1.4 is about the average
optimality, good policy and bias optimality. Finally, Section 1.5
treats some numerical examples that illustrate the theoretical
results.

2. The Mitra-Wan Forestry Model

We consider the so called, Mitra-Wan Forestry Model, introduced
originally by Mitra and Wan [12, 13]. This model considers a unit
of land which is completely occupied by trees of a certain species,
with ages ranging from 1 to n. The age n is supposed to be the
age after which a tree dies or loses its economic value.

Forest state. Let t = 0, 1, · · · , T − 1 be the period of time.
Suppose that the surface proportion occupied by trees of age
i = 1, 2, · · · , n at period t is given by xi(t) ≥ 0. Then, the state
of the forest at period t can be represented by a vector x(t) =
(x1(t), x2(t), · · · , xn(t)) that satis�es

x1(t)+x2(t)+ · · ·+xn(t) = 1, for all t = 0, 1, · · · , T−1. (2.1)

So, a forest con�guration can be represented as some point of the
simplex space

∆ := {x ∈ R
n : x1 + x2 + · · ·+ xn = 1, xi ≥ 1, i = 1, ..., n}.
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Figure X.1: Forest con�guration.

x1 x2 · · · xn

Harvest plan. Given a forest con�guration x(t) at the end of
period t, we must decide how much land to harvest of every age
class. Say

u(t) = (u1(t), u2(t), · · · , un(t)) with 0 ≤ ui(t) ≤ xi(t). (2.2)

Because a tree has no value after age n, the proportion occupied by
trees of age n will be completely harvested, that is, un(t) = xn(t)
for all t = 0, 1, · · · , T − 1.

The total harvested area at the end of period t will be
u1(t) + · · · + un(t) and, at the beginning of the following pe-
riod, it will be covered by trees of age 1, that is

x1(t+ 1) = u1(t) + · · ·+ un(t). (2.3)

The proportion of area occupied by (i+1)-aged trees in the period
t+ 1 will be xi(t)− ui(t), which is

xi+1(t+ 1) = xi(t)− ui(t) for i = 1, · · · , n− 1. (2.4)

Thus, given a forest con�guration x ∈ ∆, the feasible control
(harvest plan) set at the state x is U(x) := {u ∈ R

n : ui ≤
xi, un = xn, i = 1, ..., n}, and the set of feasible state-control
pairs is de�ned by K := {(x, u) : x ∈ ∆, u ∈ U(x)}.
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Control system. From (2.3) and (2.4), at the beginning of the
period t+ 1, the state of the forest is given by

x(t+ 1) =

(
n∑

i=1

ui(t), x1(t)− u1(t), ..., xn−1(t)− un−1(t)

)
,

which can be written in compact form as a discrete-time linear
control system

x(t+1) = f(x, u) := Ax(t)+Bu(t), for t = 0, 1, · · · , T −1,
(2.5)

where

A :=




0 0 . 0 0
1 0 . 0 0
0 1 . 0 0
. . . . .
0 0 . 1 0



, and B :=




1 1 . 1 1
−1 0 . 0 0
0 −1 . 0 0
. . . . .
0 0 . −1 0




(2.6)
Given an initial forest state x(0) = x ∈ ∆, a feasible control

policy for the system (2.5) is a sequence u := {u(t)}T−1
t=0 of con-

trols u(t) ∈ U(x(t)) for all t = 0, 1, · · · , T −1. The set of feasible
control policies is denoted by U(x).

Income function. Suppose the timber production per unit of
area is related to the age of trees through a biomass vector ξ =
(ξ1, ξ2, · · · , ξn) ∈ R

n, ξi ≥ 0, i = 1, 2, ..., n, where ξi represents
the amount of timber produced by i-aged trees occupying a unit
of land. Hence, the total amount of timber collected at the end of
period t is

⟨ξ, u(t)⟩ = ξ1u1(t) + · · ·+ ξnun(t).

Now, consider an income function p : [0,∞)→ [0,∞); which,
as usual, is assumed to be concave. Therefore, given a harvesting
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plan u, the income obtained for the amount of timber ⟨ξ, u⟩ is
p(⟨ξ, u⟩).

Cost function. Here, we assume that the plantation has some
costs: in order to sustain a forest con�guration, some resource
is required (for example water or fertilizer) depending on the
tree age. This information will be captured by a vector γ =
(γ1, γ2, · · · , γn) ∈ R

n, γi ≥ 0, i = 1, 2, ..., n, where γi denotes
the amount of resource needed to maintain a unit of land covered
by i-aged trees. Then, the total quantity of resource needed to
sustain the forest con�guration x(t) in the period t is given by

⟨γ, x(t)⟩ = γ1x1(t) + · · ·+ γnxn(t).

Similarly, consider a cost function c : [0,∞)→ [0,∞), which
is supposed to be convex. Thus, given a forest state x, the cost of
the resource ⟨γ, x⟩ is c(⟨γ, x⟩).

Pro�t function. Finally, let us de�ne the pro�t (or gain) func-
tion
r : K→ R given by

r(x, u) := p(⟨ξ, u⟩)− c(⟨γ, x⟩). (2.7)

Taking into account that p is concave and c is convex, then r
is a concave function.

Under the assumption of concavity of the pro�t function, the
analysis of the optimal solution can be made in two cases: when
the felicity function is linear (in this case the optimal policy is
periodic), or if it is strictly concave (the optimal policy converges
to the maximal sustainable stationary forest con�guration). Here
we assume that the pro�t function is strictly concave at the maxi-
mum sustained yield. For more details and examples on periodic
solutions, see Mitra and Wan [13] and Salo and Tahvonen [14].
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3. Optimal stationary policies

In this section, we restrict our attention to the search for an opti-
mal forest con�guration in the set of stationary ones: that is, to
�nd an optimal forest con�guration that does not change over
time.

De�nition 3.1. A pair (x, u) ∈ K is said to be a stationary state-
control if

Ax+Bu = x. (3.8)

From (2.6), notice that the matrices I − A and B are non
singular and they satisfy the equality B−1(I − A) = I − A⊤.
Here A⊤ denotes the matrix A transpose and I is the identity
n× n matrix.

Thus, from (3.8), we have u = (I−A⊤)x. This property allows
us to characterize the set of stationary states and controls.

Proposition 3.2. A forest state x ∈ ∆ is stationary if and only if
xi ≥ xi+1 for all i = 1, · · · , n − 1. Given a stationary state x, it
has a unique stationary control given by u = (x1−x2, · · · , xn−1−
xn, xn).

Proposition 3.2 says the stationary forest con�gurations are
those where the portion of land occupied by trees decreases by age,
whereas, the stationary controls are harvesting plans in which the
di�erences between adjacent periods are cut in order to maintain
the same proportions as in the previous period.

Example 3.3. There is a special class of stationary states: for a
given age i, the forest state xi := (1/i, ..., 1/i, 0, ..., 0), where
the �rst i-coordinates are all equal to 1/i and the remaining
are equal to 0, is stationary and its stationary control is ui :=
(0, ..., 0, 1/i, 0, ..., 0), where 1/i is in the i-coordinate. The pair
(xi, ui) is known as uniform stationary state-control.
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Remark 3.4. Notice that the amount of timber collected with
a uniform stationary control ui is ⟨ξ, ui⟩ = ξi/i, which, on the
other hand, represents the average timber production in a unit area
covered by i-aged trees. In its counterpart, the resource needed
to sustain a uniform stationary forest con�guration xi is given
by ⟨γ, xi⟩ = (γ1 + γ2 + · · ·+ γi)/i, which, in addition, gives the
average resource invested in order to grow trees covering a unit
area until i years old.

Now, within the set of stationary state-control pairs, we select
those that maximize the pro�t function according to the following
de�nition:

De�nition 3.5. A pair (x∗, u∗) ∈ K is said to be an optimal
stationary state-control pair if

r(x∗, u∗) = max{r(x, u) : (x, u) ∈ K, Ax+Bu = x}. (3.9)

In the literature on optimal economic growth, an optimal sta-
tionary state is known as a golden rule, von Neumann point, or
maximum sustained yield. More discussion on sustainable devel-
opments can be found in Amacher et al. [1], Kant and Berry [7]
and Samuelson [15].

Assumption 3.6. Let us denote by k the age for which the reward
function is maximized in the set of uniform stationary states
described in the Example 3.3 and Remark 3.4, that is

r(xk, uk) = max
{
p
(
⟨ξ, ui⟩

)
− c

(
⟨γ, xi⟩

)
: i = 1, 2, · · · , n

}
.

(3.10)
Following the classical Brock-Mitra-Wan uniqueness condition
Brock [2] and Mitra and Wan [13], we require that (3.10) has a
unique solution. In order to have this property, we assume that r
is strictly concave at (xk, uk).
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Lemma 3.9. For any (x, u) ∈ K, the following inequality is satis-
�ed

r(x, u)− r(xk, uk) ≤ ⟨V, x− f(x, u)⟩ (3.12)

where V := (α⟨ξ, uk⟩ − β⟨γ, xk⟩)(1, · · · , n)− β(I − A⊤)−1γ.

Proof. From Lemmas 3.7 and 3.8 we have

r(x, u)− r(xk, uk) ≤ α⟨ξ, u− uk⟩ − β⟨γ, x− xk⟩
= ⟨αξ, u− uk⟩ − ⟨βγ, (I − A⊤)−1(u− uk)⟩
− ⟨βγ, (I − A)−1(x− f(x, u))⟩

= ⟨αξ − β(I − A)−1γ, u− uk⟩
− ⟨β(I − A⊤)−1γ, x− f(x, u)⟩
≤ (α⟨ξ, uk⟩ − β⟨γ, xk⟩)⟨(1, · · · , n), u− uk⟩
− ⟨β(I − A⊤)−1γ, x− f(x, u)⟩

= (α⟨ξ, uk⟩ − β⟨γ, xk⟩)⟨(1, · · · , n), x− f(x, u)⟩
− ⟨β(I − A⊤)−1γ, x− f(x, u)⟩

= ⟨V, x− f(x, u)⟩.

Corollary 3.10. The unique optimal stationary state-control is the
uniform stationary pair (xk, uk).

Proof. This comes from Assumption 3.6 and Lemma 3.9.

According to Remark 3.4, Assumption 3.6 and Corollary 3.10,
the computation of the optimal stationary forest state is reduced
to determine the optimal uniform stationary state; that is, the age
for which the maximum pro�t is obtained when comparing the
average timber production and the average resource invested to
grow trees until that age, see Figure X.2. The age k is known as
an optimal rotational age.
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Given the optimal rotational age k and the vector V de�ned
in Lemma 3.9, the value loss function δ : K→ R can be de�ned as

δ(x, u) := r(xk, uk)− r(x, u) + ⟨V, x− f(x, u)⟩. (3.13)

From Lemma 3.9, it can be concluded that δ(x, u) ≥ 0 for all
(x, u) ∈ K. The value loss function was originally introduced in
McKenzie [11] and is also known as the rotated stage function, see
Diehl et al. [4].

Theorem 3.11. There exists λ ∈ R and a function h : ∆ → R

such that

λ+ h(x) ≥ max
u∈U(x)

{r(x, u) + h(f(x, u))} ∀x ∈ ∆. (3.14)

Proof. This result follows from Lemma 3.9 taking λ := r(xk, uk)
and the function h(x) := ⟨V, x⟩.

The inequality (3.14) is called Average-Reward Optimality In-
equality (AROI) and the pair (λ, h) is known as a solution to the
AROI. In this case, for every τ ∈ R, the pair (λ, h + τ) is also a
solution.

4. Optimal ergodic policies

In this section, we study optimal forest con�gurations that can
change through time; we focus our attention on the in�nite hori-
zon and no discounted optimization problem. In other words,
given a initial forest state x(0) = x and a feasible control policy
u = {u(t)}T−1

t=0 , we are interested in the behavior of the accumu-
lated bene�t (performance index),

JT (x,u) :=
T−1∑

t=0

r(x(t), u(t)) (4.15)

when T →∞.



200 GAMES AND EVOLUTIONARY DYNAMICS

4.1. Average optimality

First of all, let us consider one of the most widely used criteria
for in�nite horizon undiscounted optimal control problems: the
long-run average optimality. For this criterion, the performance
index is de�ned by

J(x,u) := lim inf
T→∞

1

T
JT (x,u). (4.16)

De�nition 4.1. Given an initial forest con�guration x ∈ ∆, the
long-run-average value function is:

J∗(x) := sup{J(x,u) : u ∈ U(x)}. (4.17)

A control policy u∗ ∈ U(x) is said to be average optimal if
J(x,u∗) = J∗(x).

The following theorem shows that there are average optimal
policies, and the average optimal value coincides with the value
of the stationary optimization problem (3.9).

Theorem4.2. Given a forest state x ∈ ∆, a control policyu ∈ U(x)
is average optimal if, and only if

J(x,u) = p

(
ξk
k

)
− c

(
γ1 + · · ·+ γk

k

)
(4.18)

where k is the age de�ned in Assumption 3.6.

Proof. We prove that J∗(x) = r(xk, uk). It is not di�cult to
construct a control policy û ∈ U(x) such that x̂(0) = x and
(x̂(t), û(t)) = (xk, uk) for all t ≥ n. Then, the control policy û is
such that J(x, û) = r(xk, uk). Therefore
r(xk, uk) ≤ J∗(x).
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Conversely, from Lemma 3.9,

JT (x,u) ≤
T−1∑

t=0

[r(xk, uk) + ⟨V, x(t)− x(t+ 1)⟩]

= Tr(xk, uk) +
T−1∑

t=0

⟨V, x(t)− x(t+ 1)⟩

= Tr(xk, uk) + ⟨V, x(0)− x(T )⟩.

Thus
JT (x,u) ≤ Tr(xk, uk) + ⟨V, x− x(T )⟩. (4.19)

Because∆ is a compact space, the term ⟨V, x− x(T )⟩ is bounded.
Multiplying the inequality (4.19) by 1/T and taking limits, we ob-
tain
J(x,u) ≤ r(xk, uk) for all u ∈ U(x), and so J∗(x) ≤ r(xk, uk).

4.2. Bias optimality

Now, given a forest state x ∈ ∆ and a policy u ∈ U(x), let us
consider the so called bias function (Veinott Veinott [17])

BT (x,u) :=
T−1∑

t=0

[r(x(t), u(t))− J∗(x)], (4.20)

and the accumulated value loss function

δT (x,u) :=
T−1∑

t=0

δ(x(t), u(t)). (4.21)

Recalling (3.13), notice that the sequence {δT (x,u)}∞T=1 is
non-negative and increasing. Moreover, the following equation is
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satis�ed:

BT (x,u) = JT (x,u)− TJ∗(x) = −δT (x,u) + ⟨V, x− x(T )⟩.
(4.22)

Combining (4.19) and (4.22), we have: either the sequence a)
{BT (x,u)}∞T=1 is bounded or b) lim infT→∞BT (x,u) = −∞.
From (4.22) we can see that the sequence {BT (x,u)}∞T=1 is bound-
ed if and only if {δT (x,u)}∞T=1 is bounded. A policy for which
these sequences are bounded is called good policy (Gale [6]).

From (4.19), any good policy is average optimal and satis�es
a turnpike property.

Theorem 4.3. Given x ∈ ∆ and r is strictly concave in (xk, uk),
if u ∈ U(x) is a good control policy, then limt→∞(x(t), u(t)) =
(xk, uk).

Proof. De�ne the function ϕ : K→ R as

ϕ(x, u) := r(x, u)− ⟨V, x− x(T )⟩.

Then ϕ(x, u) = −δ(x, u)+r(xk, uk). Suppose thatu = {u(t)}∞t=0

is a good control policy. Hence δ(x(t), u(t)) → 0 when t →
∞, which implies that ϕ(x(t), u(t)) → r(xk, uk) = ϕ(xk, uk). If
(x∗, u∗) is a cluster point of {(x(t), u(t))}∞t=0, then ϕ(x

∗, u∗) =
ϕ(xk, uk). On the other hand, ϕ(x, u) ≤ r(xk, uk) for all (x, u) ∈
K. Moreover, since r is strictly concave at (xk, uk), then so is ϕ
and it has a unique maximizer. Therefore, (x∗, u∗) = (xk, uk).

By (4.19), for a given forest state x ∈ ∆ and any good control
policy u ∈ U(x), the following functions are well de�ned:

B(x,u) :=
∞∑

t=0

[r(x(t), u(t))−J∗(x)], δ(x,u) :=
∞∑

t=0

δ(x(t), u(t)).

(4.23)
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Moreover, from (4.22), both satisfy

B(x,u) + δ(x,u) = ⟨V, x− xk⟩. (4.24)

De�nition 4.4. Let x ∈ ∆ be a given initial condition. The bias
value function is:

B∗(x) := sup{B(x,u) : u ∈ U(x)}. (4.25)

A control policyu∗ ∈ U(x) is said to be bias optimal ifB(x,u∗) =
B∗(x).

Given an initial state x ∈ ∆, and a bias optimal policy u∗ ∈
U(x), then for every good policy, u ∈ U(x),

JT (x,u)− JT (x,u∗) = BT (x,u)− BT (x,u
∗) ≤ 0, (4.26)

therefore,

lim sup
T→∞

[JT (x,u)− JT (x,u∗)] ≤ 0 for all u ∈ U(x). (4.27)

We can see that the converse is also true. Hence, (4.25) and (4.27)
are equivalent. The policies that satisfy (4.27) are called overtak-
ing optimal; this criterion was introduced by Gale [6] and von
Weizsäcker [18].

5. Numerical examples

In this section, we illustrate the theoretical results from the previ-
ous sections by two examples.

Example 5.1. Assume that we are interested in the forest man-
agement of a certain species of trees that lose their economic
value after they are 5 years old. Suppose that the biomass vec-
tor is given by ξ = (0, 4, 9, 11, 11) and the investment vector by
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γ = (4, 3.5, 3, 2.5, 2.5), that is, a unit area completely covered by
1 year old trees produces 0 units of timber, and needs 4 units of
water to maintain; a unit area completely covered by 2 years old
trees produces 4 units of timber, and needs 3.5 units of water to
maintain, and so on.

The average timber production by age is ξ1 = 0, ξ2/2 =
2, ξ3/3 = 3, ξ4/4 = 2.75, ξ5/5 = 2.2. For its counterpart, the
average volume of water consumed until each age is γ1 = 4,
(γ1 + γ2)/2 = 3.75, (γ1 + γ2 + γ3)/3 = 3.5, (γ1 + γ2 + · · · +
γ4)/4 = 3.25, (γ1+γ2+· · ·+γ5)/5 = 3.1. Notice that the average
timber production reaches its maximum at age 3; meanwhile, the
minimum average resource invested takes place at age 4.

Now, let us suppose the income function for the timber pro-
duction is p(τ) = 10τ 1/2 and the cost function for the water
resource is c(τ) = τ 2, τ ≥ 0. Then, as in Assumption 3.6, the
optimal rotational age is k = 4, see Table X.1. Therefore, from
Corollary 3.10, the optimal stationary forest con�guration is x4 =
(1/4, 1/4, 1/4, 1/4, 0), with its control u4 = (0, 0, 0, 1/4, 0), and
the optimal stationary value is r(x4, u4) = 6.02. Thus, the in-
equality (3.12) from Lemma 3.9 becomes

r(x, u) ≤ ⟨V, x− f(x, u)⟩+ 6.02 for all (x, u) ∈ K,

where V = (−113.58,−100.41,−90.50,−83.83,−80.41).

Table X.1

1 2 3 4 5
p
(
ξi
i

)
0 14.14 17.32 16.58 14.83

c
(
γ1+···+γi

i

)
16 14.06 12.25 10.56 9.61

r(xi, ui) −16 0.07 5.07 6.02 5.22
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Remark. In case we do not take into account the cost func-
tion c from Table X.1, we follow that the optimal stationary
state is no longer reached at age 4 but, instead, it takes place
at age 3. Hence, in that case, the optimal stationary forest state
would be x3 = (1/3, 1/3, 1/3, 0, 0), with the harvesting plan
u3 = (0, 0, 1/3, 0, 0).

Now, let us consider two non stationary forest con�gurations
determined for the following initial state and control policies:

1. x = (1, 0, 0, 0, 0), u1 = {u(t)}∞t=0

x(0) = x u(0) = (0, 0, 0, 0, 0)
x(1) = (0, 1, 0, 0, 0) u(1) = (0, 1/4, 0, 0, 0)
x(2) = (1/4, 0, 3/4, 0, 0) u(2) = (0, 0, 2/4, 0, 0)
x(3) = (2/4, 1/4, 0, 1/4, 0) u(3) = (0, 0, 0, 1/4, 0)
x(4) = (1/4, 2/4, 1/4, 0, 0) u(4) = (0, 1/4, 0, 0, 0)
x(t) = x4 u(t) = u4 for all t ≥ 5.

2. x = (1, 0, 0, 0, 0), u2 = {u(t)}∞t=0

x(0) = x u(0) = (0, 0, 0, 0, 0)
x(1) = (0, 1, 0, 0, 0) u(1) = (0, 1/4, 0, 0, 0)
x(2) = (1/4, 0, 3/4, 0, 0) u(2) = (0, 0, 1/4, 0, 0)
x(3) = (1/4, 1/4, 0, 2/4, 0) u(3) = (0, 0, 0, 1/4, 0)
x(4) = (1/4, 1/4, 1/4, 0, 1/4) u(4) = (0, 0, 0, 0, 1/4)
x(t) = x4 u(t) = u4 for all t ≥ 5.

Both of these policies are good, and in consequence, average
optimal and J(x,u1) = J(x,u2) = J∗(x) = 6.02. Nonethe-
less, they have di�erent bias values: B(x,u1) = −35.61 and
B(x,u2) = −31.07. Since ⟨V, x− x4⟩ = −16.49, recalling (4.24),
the accumulated value losses are δ(x,u1) = 19.11, and δ(x,u2) =
14.58.
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Example 5.2. In this example,we show an average optimal policy
that converges to the optimal stationary state, but it is not a good
policy. Suppose that (xk, uk) is an optimal stationary state-control.
For t ≥ k, consider the following forest con�guration and its
harvest plan

x(t) =

(
1

k
+

k−2∑

i=0

1

t+ i
,
1

k
− 1

t+ k − 2
, ...,

1

k
− 1

t
, 0, ..., 0

)
,

u(t) =

(
k−1∑

i=0

1

t+ i
, 0, ..., 0,

1

k
− 1

t
, 0, ..., 0

)
.

We can see that (x(t), u(t)) → (xk, uk) as t → ∞. So, since r
is a continuous function, we have that limt→∞ r(x(t), u(t)) =
r(xk, uk), which means that the policy is average optimal. On the
other hand, from Lemma 3.7, for all t ≥ k we have

r(x(t), u(t))− r(xk, uk) ≤ α⟨ξ, u(t)− uk⟩ − β⟨γ, x(t)− xk⟩
≤ −αξk

t
+ α

∑k−1
i=0

ξ1
t+i
− β∑k−2

i=0
γ1−γk−i

t+i
.

Now, for simplicity,we can assume that ξ1 = 0, ξk > 0 and γ1 ≥ γi
for all i = 1, ..., n. Hence, r(x(t), u(t))− r(x̄, ū) ≤ −αξk

t
for all

t ≥ k. Thus,
∑∞

t=0 r(x(t), u(t))− r(x̄, ū) = −∞, and the policy
is not good.

6. Concluding remarks

In this work, the Mitra-Wan forestry model is studied as a discrete-
time optimal control problem and, in contrast to previous works
on this topic, we consider a pro�t function depending on the
timber production and forest maintenance cost. This considera-
tion gives us a more precise value of the optimal rotational age
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(optimal stationary policy): from Lemma 3.9 and Corollary 3.10,
this age is the year where the di�erence between average timber
production and average cost of forest maintenance is maximum.
On the other hand, for the non stationary optimal control policies,
three optimality criteria were studied: average optimality, good
policy and bias optimality. The average optimal value coincides
with optimal stationary value (Theorem 4.2). The set of average
optimality policies includes the good policies, and the set of good
policies includes bias optimal policies. Moreover, the good poli-
cies converge to the optimal stationary policy (turnpike property),
Theorem 4.3.
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We survey some theoretical results about a family of optimal
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the so-called forward-backward-sweep method in Python to �nd
approximate optimal control policies via the Pontryagin maxi-
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1. Introduction

By the end of the Middle Ages, smallpox cut down the population
in centers of Europe and Asia—three of every ten died by small-
pox—perhaps that gave it its alias, “speckled monster”. Although
experts did not understand the mechanism of transmission of this
“monster” until the early 20 century, it represents the �rst docu-
mented disease Bernoulli [3], Bradley et al. [6], and Foppa [14]
against which a speci�c control intervention was available: the
inoculation. This process relied on putting material from small-
pox sores into healthy people, usually scratching material over
an armor or inhaling it through the nose. People developed the
symptoms associated with smallpox—fever and a rash. However,
the death rate due to inoculation was considerably lower than
naturally acquired smallpox.

Then Bernoulli formulated a question in the following man-
ner: What would happen if everybody were inoculated? Here,
we address the question: How to inoculate in an optimal way?
Throughout the following pages, we try to answer and illustrate
the implications of this question.

Optimal control theory is a way to deal with the above ques-
tion. In the �fties, Pontryagin and Bellman proposed generaliza-
tions of the calculus of variations of broader applicability: the
Maximum Principle and the method of Dynamic Programming,
respectively. Now, these results have applications in the biological
sciences and, in particular, in the optimal control of infectious
diseases (see Yu et al. [42], Lahrouz et al. [25], Junyoung et al.
[21], and Cai et al. [9] for recent literature).

Our approach in this work relies on Pontryagin’s Maximum
Principle, Pontryagin et al. [30] and follows the same method-
ology of Lenhart and Workman [27]. Lenhart’s work makes an
accessible optimal control device to describe common epidemic in-



XI. OPTIMAL POLICIES IN A FAMILY OF EPIDEMIC MODELS 213

terventions, like vaccination, treatment, quarantine, and isolation
among others. Our intention in this work is illustrating the men-
tioned strategies throughout recent literature and stating results
for the existence and characterization of optimal controls for a
particular family of epidemic models. Likewise, we present some
goals and issues that appear within the theory and numerical
approximations.

The paper is organized as follows: we start in Section 2 by
introducing a rather simple, but seminal, dynamical system from
which most of the epidemic models are derived. In Section 3, we
describe four epidemic models, as well as some control policies.
In Section 4, we provide the main theoretical results for a fam-
ily of optimal control problems (OCPs); such a family includes
the models in Section 3. Our proofs are based on well known
results—stated, for completeness, in the Appendix of Section 8—
from optimal control theory. Some numerical methods to solve
OCPs are given in Section 5; in particular, we provide the Python
implementation code of the forward-backward-sweep method in
repository Díaz-Infante et al. [11]. The reader is free to comment,
use, improve or do whatever he/she wants about this repository.
In Section 6, we run several numerical experiments based on
Díaz-Infante et al. [11] for the models described in Section 3. We
conclude with some remarks in Section 7.

2. The uncontrolled SIR model

Infectious diseases have struck civilizations in di�erent periods
of human history. HIV AIDS, Spanish in�uenza and Black Death
have been the most devastating pandemics; they have killed more
than 100 million people. Therefore, understanding the mechanism
of spread and control of diseases of this kind is essential. In this
line, the SIR structure is a convenient option to model its spread.
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The SIR model is a compartmental structure. Primarily, the
model consists of three compartments: susceptible S, infected
I , and recovered R and transitions functions between compart-
ments.

Practically, all the existing epidemic models are variants of
this structure. The variants emerge to describe particular charac-
teristics of a disease, its mechanism of transmission, population
dynamics, among others. To �x ideas, consider the classic model
of Kermack and Mckendrick [23]

dS

dt
= −κSI

dI

dt
= κSI − λI

dR

dt
= λI,

(2.1)

with the transition from the susceptible S to the infected class I
occurring with a constant rate κ, and from the infected class I to
the recovered, happening with rate λ.

In next sections, we provide the main ideas to modify this
basic structure with control policies.

3. Control policies in epidemics

Here we present several control models that we consider to be
good examples. Before talking about these good examples, we
give the core of optimal policy modeling (see, for example, the
survey of Wickwire [38], for more details).

First, we require a model to describe the spreading of an un-
controlled disease whose transitions generate a cost. Then, we
add a continuous control action to modify the changes from one
state to another, but in such a way that the mentioned cost is
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optimized. A rule that prescribes which control operation to use
at each time is a control policy. A control policy which applies
only information from the current state of the controlled system
to prescribe control actions is a closed-loop or feedback control. If
the current state is not observable, or the control function only
depends on the time, we have an open-loop policy, the type of
policies that we consider in this work.

Here, we consider control policies that a�ect the bounded
rates at which a population moves from one class (e.g., infected)
to another (e.g., recovered). In all these problems, the control
function is linear in the relevant dynamic. Next, we specify a
cost function which assigns the total cost of the control policy
implementation. Then, the problem is to determine a policy that
optimizes the considered cost strategy.

Now, we present the previously mentioned good examples. In
what follows, X denotes a vector with all concerned populations:
for example, according to SIR model (2.1), X = (S, I, R)⊤ .

3.1. Culling

Pathogens that are transmitted between wildlife, livestock, and
humans present major challenges for the protection of human
and animal health: the economic sustainability of agriculture and
the conservation of wildlife. Mycobacterium bovis, the aetiologi-
cal agent of bovine tuberculosis (TB) is one such pathogen. For
example, according to Donnelly et al. [12], the incidence of TB
in cattle has increased substantially in parts of Great Britain in
the past two decades, adversely a�ecting the livelihoods of cattle
farmers and potentially increasing the risks of human exposure.
The control of bovine TB in Great Britain is complicated by the
involvement of wildlife, particularly badgers, which appear to
sustain endemic infection and can transmit TB to cattle. Between
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1975 and 1997, over 20 000 badgers were culled as part of British
TB control policy, generating con�ict between conservation and
farming interest groups.

3.2. Badger bovine tuberculosis

Bolzoni et al. [4] report a controlled model to describe an outbreak
of badger bovine tuberculosis. According to this model,

min
u(t)∈U

∫ T

0

I(t) + P [u(t)]θ, θ ∈ {1, 2}, P = B/A

subject to:

dS

dt
= rS

(
1− S + I

K

)
− βSI − u(t)S

dI

dt
= βSI − (α + µ+ u(t))I.

(3.2)

Here, the susceptible class follows a logistic dynamics with net
growth rate r = ν − µ and carrying capacity K (see Table XI.1
for more details). According to the approach of Driessche [13],
the basic reproductive number results:

R0 =
βK

α + µ
.

Our intention with this model is to illustrate the di�erence be-
tween the optimal policies for linear and quadratic costs, though
the corresponding infected populations are quite similar. Then, as
we can see in Section 6.1 below, the resulting controlled paths de-
pend on the form of the functional cost and the basic reproductive
number.
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3.3. Vaccination

Usually, public health organizations consider vaccination as a pri-
marily preventive action against infectious diseases, but it incurs a
cost. Due to the limited resources associated with vaccination pro-
grams, it is imperative to optimize the use of available resources.
Using optimal control theory, we formulate a vaccination sched-
ule. The goal is to minimize the number of infected persons and
the cost of vaccinating during a �xed time. For this example, we
optimize the functional

∫ T

0

AI(t) + u2(t).

Here u is the vaccination control and denotes the fraction of sus-
ceptible individuals to vaccinate per unit of time. Since managing
an infected population implies resource consumption, A repre-
sents the cost per individual. We also need a spread dynamics. So,
let S(t), E(t), I(t), R(t), respectively, be the number of suscep-
tible, exposed, infectious and recovered (immune) individuals at
time t. Since the vaccination of the entire susceptible population is
impractical, the model considers 0 ≤ u(t) ≤ 0.9. Then the whole
population N is given by N(t) = S(t) +E(t) + I(t) +R(t), and
obeys Ṅ(t) = (b−d)N(t)−aI(t). Since b is the recruitment rate
and d is the natural death, the term b− d denotes the growth of
the entire population. Then, the optimal control problem reads

min
u

∫ T

0

AI(t) + u2(t)dt,

subject to

Ṡ(t) = bN(t)− dS(t)− cS(t)I(t)− u(t)S(t), S(0) = S0 ≥ 0,

Ė(t) = cS(t)I(t)− (e+ d)E(t), E(0) = E0 ≥ 0,

İ(t) = eE(t)− (g + a+ d)I(t), I(0) = I0 ≥ 0,
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Ṙ(t) = gI(t)− dR(t) + u(t)S(t), R(0) = R0 ≥ 0,

Ṅ(t) = (b− d)N(t)− aI(t), N(0) = S0 + E0 + I0 +R0.
(3.3)

See Table XI.2 for a description of the parameters.

3.4. Case �nding and case control

Two-strains of Tuberculosis. Seeking to reduce the latent and
infectious groups with the resistant-strain of tuberculosis, in
Lenhart et al. [26] the authors use control theory to describe
optimal strategies in a tuberculosis model which considers the
e�ect of treatment in two kinds of strains. The controlled version
reads:

dS

dt
= Λ− β1S

I1
N
− β3S

I2
N
µS,

L1

dt
= β1S

I1
N
− (µ+ k1)L1 − u1(t)r1L1 + (1− u2(t))pr2I1

+ β2T
I1
N
− β3L1

I2
N
,

I1
dt

= k1L1 − (µ+ d1)I1 − r2I1,
L2

dt
= (1− u2(t))qr2I1 − (µ+ k2)L2 + β3(S + L1 + T )

I2
N
,

I2
dt

= k2L2 − (µ+ d2)I2,

dT

dt
= u1(t)r1L1 + (1− (1− u2(t))(p+ q))r2I1 − βT

I1
N

− β3T
I2
N
− µT.

(3.4)
Lenhart, Jung, and Feng Lenhart et al. [26] consider time de-

pendent optimal control strategies associated with case holding
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and case �nding. They incorporate the case �nding control by
adding a term which identi�es and cures a fraction of the latent
individuals. Case �nding, therefore, reduces the rate of disease
development by latent individuals. The authors include case hold-
ing by adding a term which may decrease the treatment failure
rate of individuals with sensitive TB, so this control reduces the
incidence of drug resistant TB. In model (3.4), u1 denotes the frac-
tion of typical TB latent individuals that are identi�ed and put
under treatment —case �nding control—and 1−u2 represents the
e�ort that prevents the typical TB treatment failure in infectious
individuals.

The controls u1 and u2 reduce the latent and infected groups
with resistant TB. However, the case holding and the case �nding
strategies produce a cost modeled as

∫ tf

0

[
L2(t) + I2(t) +

B1

2
[u1(t)]

2 +
B2

2
[u2(t)]

2

]
dt. (3.5)

3.5. Isolation and quarantine

SARS. If an emergent disease lacks a rapid diagnostic test, therapy,
or vaccine, then isolation and quarantine of individuals exposed to
the disease seem obvious control policies. For example,Gumel et al.
[17] model strategies of this kind for the severe acute respiratory
syndrome (SARS). SARSwas a highly contagious viral disease that
emerged in China late in 2002 and quickly spread to 32 countries
and regions, causing more than 774 deaths and 8098 infections
worldwide.

Based on the work of Gumel et al. [17], Yan and Zou report
in Yan and Zou [40] a control epidemic model for SARS. They
use quarantine and isolation as mitigation controls. The authors
also propose sub-optimal control policies and perform numerical
simulations with genetic algorithms. The controlled version used
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in the cited reference reads:

dS

dt
= Λ− S (βI + EEβE + EQβQ+ EJβJ)

N
− µS,

dE

dt
= p+

βS (βI + EEβE + EQβQ+ EJβJ)
N

− (u1(t) + k1 + µ)E,

dQ

dt
= u1(t)E − (k2 + µ)Q,

dI

dt
= k1E − (u2(t) + d1 + σ1 + µ)I,

dJ

dt
= u2(t)I + k2Q− (d2 + σ2 + µ)J,

dR

dt
= σ1I + σ2J − µR.

(3.6)

The control variable u1 denotes the proportion of people in quar-
antine who had contact with an infected person inside of a quar-
antine program or educational campaign. Control u2 models the
proportion of symptomatic population which is in an isolation
program. The authors consider the following epidemiological
classes.

S: Susceptible individuals
E: Asymptomatic individuals who have been

exposed to the virus but have not yet developed
clinical symptoms of SARS

Q: Quarantined individuals
I : Symptomatic
J : Isolated
R: Recovered

N = S + E +Q+ I + J +R.
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We enclose a description of the model parameters in Appendix
Table XI.4. So, giving the disease dynamics in (3.6), the problem
is to minimize the functional cost

∫ tf
0

[
B1E(t) + B2Q(t) + B3I(t) + B4J(t) +

C1

2
u21(t) +

C2

2
u22(t)

]
dt.

(3.7)
Here, parameter Bi denotes the linear cost of the infected class,
and C1, C2 are the costs for isolation and quarantine controls,
respectively. Table XI.4 displays a description of the included
parameters.

A common practice to deal with the above control problems
follows in the next steps:

(i) Prove that there exists an optimal policy.

(ii) Find necessary conditions for the optimality of a policy.

(iii) From the necessary conditions, determine qualitative prop-
erties of the optimal policies and the corresponding state
paths.

Usually, these kinds of problems are non linear, and �nding a
solution is extremely di�cult. Therefore, choosing a convenient
numerical scheme is very important. In this work, we implement
the forward-backward-sweep method Lenhart andWorkman [27].
The next sections provide a technique to transform a given opti-
mization problem into solving an ordinary di�erential equation
with boundary values coupled with an optimization problem.
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4. Existence and characterization of

optimal policies

4.1. Notation

Each element x inRn is written as a column vector and x⊤ denotes
the transpose. We write the gradient of g : Rn → R as a row
vector

gx = (∂g/∂x1, . . . , ∂g/∂xn).

If λ : R→ R
n is di�erentiable, the derivative is denoted as λ̇ =

(dλ1/dt, . . . , dλn/dt)⊤. The Jacobianmatrix of f = (f 1, . . . , fn)⊤ :
R

n → R
n is

fx =




f 1
x

f 2
x
...
fn
x


 .

Given a matrix A, the j-th row of A is denoted as rj(A).
The non controlled epidemic models described above are of

the form

Ẋ = AX +



X⊤B(1)

...
X⊤B(n)


X + k

=


A+ [X⊤ · · ·X⊤]



B(1)

...
B(n)





X + k

where the matrix A represents the linear part of the system, each
matrix B(j), j = 1, . . . , n, gives the interaction part as a quadratic
form, and k is a constant vector.
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Thus, the j-th row of the above system takes the form

Ẋj = rj(A)X +X⊤B(j)X + kj.

In this section, we consider control policies in both the linear
and the interaction parts of the latter system. This family of con-
trol systems with a corresponding cost functional includes the
above epidemic models.

For such a family of optimal control problems, we state and
prove three main results. First, given any control policy, we es-
tablish the existence and uniqueness of the associated state path.
Second, the existence of an optimal control policy is proven. Fi-
nally, by means of the Maximum Principle, su�cient conditions
of a control policy and the corresponding state path are also given.
Our proofs are based on general and well-known results in op-
timal control theory which, for completeness, are stated in the
Appendix at the end of the paper.

4.2. A family of control systems

Let X ⊆ R
n and U ⊆ R

m be nonempty and compact sets. The
setsX andU are, respectively, called the state space and the control
space. The vectors in X have non-negative entries; in particular,
we assume that 0 ∈ X . The control set U is convex. We consider
the following control system, for j = 1, . . . , n,

Ẋj = [rj(A) + u⊤C(j)]X +X⊤



r1(B

(j)) + u⊤D(j1)

...
rn(B

(j)) + u⊤D(jn)


X + kj

(4.8)
where A ∈ R

n×n, B(j) ∈ R
n×n, C(j) ∈ R

m×n, and D(jl) ∈ R
m×n

for l = 1, . . . , n.
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The proof of the following theorem slightly di�ers from that
given in Yong [41, Sect. 2.1] since we consider a weighted norm.
This improvement allows us to give a global solution, instead of a
local one.

Theorem 4.1. For each measurable function u : [0, T ]→ U and
each initial condition x0 ∈ X , there exists a unique absolutely
continuous functionXu : [0, T ]→ R

n that satis�es the system (4.8)
almost everywhere.

Proof. Let u : [0, T ]→ U be a measurable function. The control
system (4.8) can be written as

Ẋ(t) = f(X(t), u(t)), X(0) = x0, 0 ≤ t ≤ T,

where f : X×U→ R
n. Since f is of class C1 on the compact set

X×U, there exists a constant L > 0 such that

∥f(x, u)− f(x1, u)∥ ≤ L∥x− x1∥ (4.9)

∥f(0, u)∥ ≤ L (4.10)

for every x, x1 ∈ X and u ∈ U.
Consider the linear space

X = {X : [0, T ]→ R
n | X is continuous}

with the norm

∥X∥w := sup
t∈[0,T ]

∥X(t)∥
w(t)

,

where w(t) := eLt for each t ∈ [0, T ]. It can be shown, with slight
modi�cations in [36, Section 2.1], that the pair (X, ∥ · ∥w) is a
Banach space. De�ne the operator K : X→ X by

K[X](t) := x0 +

∫ t

0

f(X(s), u(s))ds.
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By (4.9) and (4.10), any (x, u) satis�es

∥f(x, u)∥ ≤ L(1 + ∥x∥); (4.11)

thus, f(X(·), u(·)) is Lebesgue integrable andK[X] is absolutely
continuous. We claim that K is a contraction with contraction
constant 1− e−LT . Indeed,

∥K[X]−K[Y ]∥w

= sup
t∈[0,T ]

|
∫ t

0
[f(X(s), u(s))− f(Y (s), u(s))]ds|

w(t)

≤ sup
t∈[0,T ]

L
∫ t

0
w(s)[w(s)]−1|X(s)− Y (s)|ds

w(t)

≤ L∥X − Y ∥w sup
t∈[0,T ]

∫ t

0
w(s)ds

w(t)

= L∥X − Y ∥w sup
t∈[0,T ]

[eLt − 1]/L

eLt

= (1− e−LT )∥X − Y ∥w.
Then, by Banach’s �xed point theorem [36, Theorem 2.1], there
exists a unique X ∈ X satisfying

X(t) = x0 +

∫ t

0

f(X(s), u(s))ds.

Therefore, (4.8) holds almost everywhere [28, Corollary 5.4.1].

4.3. Existence of optimal policies

Consider the cost functional of an admissible control u, given the
initial state x0,

V (u, x0) :=

∫ T

0

g(X(t), u(t)) , dt, (4.12)
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where g : X×U→ R is continuous. The optimal control problem
(OCP) consists of �nding an admissible control u∗ such that

V (u∗, x0) = inf{V (u, x0) | u ∈ UB}.

If there exists such a controlu∗, then it is called an optimal policy or
optimal control. The pair (u∗, X∗), whereX∗ is given by Theorem
4.1, is called an optimal pair.

Theorem 4.2. Suppose the function g is continuous, and, for each
x, the function g(x, ·) is convex, i.e.,

αg(x, u1) + (1− α)g(x, u2) ≥ g(x, αu1 + (1− α)u2)

for all u1, u2 ∈ U, α ∈ [0, 1]. Then, there exists an optimal pair
that minimizes (4.12) subject to (4.8).

Proof. Let us write the control system (4.8) as Ẋ = f(X, u). By
Filippov’s Theorem 8.2, it is enough to show that each set

{(z, y) ∈ R×R
n | z ≥ g(x, u), y = f(x, u), u ∈ U}, x ∈ X,

is convex. Fix x ∈ X . Let z1, z2 ∈ R and y1, y2 ∈ R
n such that

zj ≥ g(x, uj), j = 1, 2, (4.13)

and
yj = f(x, uj), j = 1, 2, (4.14)

for some u1, u2 ∈ U . We need to show that for any α ∈ [0, 1],
there exists u′ ∈ U such that

αz1 + (1− α)z2 ≥ g(x, u′) (4.15)

and
αy1 + (1− α)y2 = f(x, u′). (4.16)
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Let u′ := αu1 + (1 − α)u2. Then (4.15) follows from (4.13) and
the convexity of g(x, ·). On the other hand, (4.16) holds because
f(x, ·) is a�ne, i.e.,

f(x, αu1 + (1− α)u2) = αf(x, u1) + (1− α)f(x, u2).

4.4. Su�cient conditions for optimality

Consider the HamiltonianH : X×U× R
n → R, de�ned as

H(x, u, λ) := g(x, u) + λ⊤f(x, u),

and
H∗(x, λ) := inf

u∈U
H(x, u, λ),

where g determines the cost functional (4.12) and f is given by
the right-hand side of the control system (4.8). The function λ :
[0, T ] → R

n and the admissible pair (u,X) are said to satisfy
the necessary conditions of the Maximum Principle (MP) if they
satisfy the adjoint equation

λ̇(t) = −Hx(X(t), u(t), λ(t))⊤, λ(T ) = 0, (4.17)

and the optimality condition

H∗(X(t), λ(t)) = H(X(t), u(t), λ(t)). (4.18)

De�nition 4.3. The function w from [0, T ] to some Euclidean
space is piecewise continuous if

(a) w is continuous on [0, T ] except at a �nite number of points,
and
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(b) if w is discontinuous at t, then

lim
s→t−

w(s) and lim
s→t+

w(s)

are �nite.

Theorem 4.4. Let λ : [0, T ]→ R
n be a continuous function and

let (u∗, X∗) be an admissible pair such that

(a) u∗ is piecewise continuous,

(b) Ẋ∗ exists and is piecewise continuous,

(c) (λ, u∗, X∗) satis�es the optimality condition (4.18) and,

(d) except at the points of discontinuity of u∗, the adjoint equation
(4.17) holds.

If, for each t, the functionH∗(·, λ(t)) is convex onX, then (u∗, X∗)
is an optimal pair.

Proof. The conclusion follows from Theorem 8.8 whenever As-
sumptions 8.6 and 8.7 hold. If u∗ is piecewise continuous, then
X∗ is absolutely continuous by Theorem 4.1, and so continuous.
Thus, Assumption 8.7 holds. Assumption 8.6 also holds sinceH
andHx are clearly continuous. This completes the proof.

Remark 4.5. In general, the convexity of H∗(·, λ(t)) does not
hold for the whole family (4.8) even if g is convex. However, the
above models meet this assumption.

5. Numerical analysis

5.1. Direct and indirect methods

Since we can transform the problem of optimal control into a
two-point boundary ODE problem, the methods designed for this
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sort of problem are applicable; see Keller [22], Ascher et al. [1],
and Stoer et al. [34] for classic references. In this line, Caetano
and Yoneyama [8] and Yan and Zou [40] use multiple shooting
methods to solve the resulting extended two-value boundary
ODE.

Multiple shooting method. Consider the controlled dynamics
and corresponding adjoint equations given by

ẋ(t) = f(x(t), u(t)), x(0) = x0

λ̇(t) = −Hx(x(t), u(t), λ(t))
⊤, λ(T ) = 0.

(5.19)

Roughly speaking, the multiple shooting method follows the next
algorithm. Given a partition of the interval [0, T ] with uniform
step h,

τnh := {tk = kh, k = 0, . . . n}.
The multi shooting method is described in Algorithm 1.

However, the forward-backward-sweep method is the most
popular method in works on optimal control epidemic models,
perhaps for its simple implementation and acceptable conver-
gence. All simulations presented in this work runwith this scheme.
Hackbusch [18] proposes this numerical scheme to solve a class of
optimal problems that encloses the models of Section 3. Lenhart
and Workman [27] provide MATLAB code for much of their work
in biological models.

5.2. Evolutionary algorithms

Evolutionary algorithms are kinds of heuristic algorithms well
suited for global optimization. Such algorithms emulate natural
evolution introducing operators for mutation (M), crossover (C)
and selection (S). One of the earliest works on evolutionary meth-
ods was developed by George E. P. Box Box [5]. Nevertheless,
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it can be said that the �rst evolutionary algorithm, at least as
they are known today, was the so-called Genetic Algorithm (GA)
introduced by Holland [20]. Many variations of evolutionary al-
gorithms have been developed with Di�erential Evolution (DE),
introduced by Storn and Price [35], being one of the simplest, yet
e�cient and e�ective, optimization algorithms.

Algorithm 3 shows the general form of Evolutionary Algo-
rithms for optimizing the objective function fob. There, an initial
population Y of size Np, generated in the search space V by the
operator Y0, is subject to the evolutionary process until a cer-
tain stopping criterion is met. Then the best individual (ybest),
i.e., the individual who optimizes fob, is selected by introducing
the operator Best. In Algorithm 3 the variableM stores a mu-
tated population; the variable C stores the results of the crossover
operator. The selection operator selects from C and Y the indi-
viduals which will form the new generation of individuals of Y .
This selection is based in some criteria usually dictated by the
objective function. For instance, if y is an element of Y and c an
element of C , a common criterion for minimization is to select y
if fob(y) < fob(c).

A detailed explanation for constructing the main operators
M, C and S can be found in Bagchi [2] for GA and in Price et al.
[31] for the DE algorithm.

Regarding the optimal control policies problem, authors fre-
quently apply the evolutionary method by using piecewise con-
stant functions for the controllers uk,k = 1, 2, . . . , n. For instance,
the optimization of a quantity of the form

V (u, x0) =

∫ T

0

g(X(t), u(t))dt, (5.20)

can be conducted by discretizing the interval I = [0, T ] in disjoint
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subintervals Ij and choosing

uk(t) =

{
ujk if t ∈ Ij
0 otherwise.

(5.21)

Usually, the function X(t) under the sign of integral in Equation
(5.20) obeys a speci�c dynamical model which needs to be solved,
but in such a way that V is optimized. Now, the numbers ujk will
be part of an individual who will be subject to the evolutionary
process. Yan and Zou [40] and Junyoung et al. [21] follow this
approach for the GA and the DE algorithms, respectively.

5.3. Optimal Control Software

In addition to the implementation of the schemes discussed above,
we provide a list with useful software and some of its references.
We follow the list reported in Rodrigues et al. [32]; see this refer-
ence for code examples and more details.

OC-ODE The OC-ODE, Gerdts [16], Optimal Control of Ordinary-
Di�erential Equations, by Matthias Gerdts, is a collection of For-
tran 77 routines for optimal control problems subject to ordinary
di�erential equations. It uses an automatic direct discretization
method for the transformation of the OC problem into a �nite-
dimensional non linear problem. OC-ODE includes procedures
for numerical adjoint estimation and sensitivity analysis.

DOTcvp Hirmajer et al. [19], provide the MATLAB Toolbox
DOTcvp. Giving a piecewise solution for the control, the toolbox
uses the control vector parametrization approach for the calcula-
tion of the optimal control pro�les.
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Muscod-II MUSCOD-II is a robust and e�cient optimization
tool that allows one to quickly implement and solve very gen-
eral optimal control problems in di�erential-algebraic equations
(DAE). This package relies on the Multiple Shooting method for
the solution of mixed integer nonlinear ODE or DAE. The authors
provide the code and a reference manual, Kühl et al. [24].

Ipopt [37] provide the software package Ipopt (Interior Point
OPTimizer). Ipopt implements a primal-dual interior pointmethod
and uses a line search strategy based on �lter method and is
written in Fortran and C.

Knitro Byrd et al. [7] report Knitro 5.0, a C-package for non-
linear optimization that combines complementary approaches to
nonlinear optimization to achieve robust performance over a wide
range of application requirements. The package is designed for
solving large-scale, smooth nonlinear programming problems, and
it is also e�ective for the following special cases: unconstrained
optimization, nonlinear systems of equations, least squares, and
linear and quadratic programming. Various algorithmic options
are available, including two interior methods and an active-set
method.

6. Numerical experiments

6.1. Culling in badger bovine tuberculosis

In this numerical experiment, we go back to the culling control
model (3.2). Ourmain objective is to contrast two kinds of controls
that produce quite similar paths for the infected population under
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di�erent cost schemes. All simulations run with the forward-
backward-method and with the parameters enclosed in Table
XI.5.

6.2. Vaccination

Now, we come back to the vaccination control presented in model
(3.3). According to Table XI.6,we illustrate the e�ect of vaccination
control in Figure XI.4. The simulation shows that the optimal-
vaccination policy diminishes almost to zero the infected popula-
tion. We plot the state solution without control in black to stress
the impact of the optimal policy.

6.3. Case �nding and case control in a two strain
tuberculosis model

Figure XI.5 shows the e�ect of case �nding and case holding
controls. The combination of these strategies diminishes themulti-
drug resistant population. Table XI.7 compiles the parameters
and their values used to produce this �gure with N = 30 000,
β3 = 0.29. To minimize the resistant TB population, L2 + I2,
the simulation suggests that the case holding strategy u2 would
be at the upper bound during almost 4.3 years and then would
decrease to the lower bound. Meanwhile, case �nding is applied
over most of the simulated time, 5 years. The total number of
infected resistant TB L2+ I2 at the �nal time tf = 5years would
be 1123. This same number, but without control, results in 4176.
So this policy prevents 3053 cases of resistant TB.

According to Table XI.7 and taking di�erent values for the
parameter β3, in Figure XI.6 we display the e�ect of parameter β3
over controls. At the top, both controls experience small variations
at the beginning, but reach almost the same level after 5 years. The
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simulation suggests that lower values of β3 just delay the control
pro�le for few months. At the bottom, we enclose a zoom frame
to emphasize the small di�erence for case holding. Summarizing,
the simulation shows that parameter β3 modi�es the case �nding
control in a wider way.

Figure XI.7 illustrates case �nding and case holding strategies
with populations of di�erent sizes. The simulation suggests that
with relatively small populations, it is more important to prioritize
case �nding, while for relatively bigger populations, case holding
is the more important strategy.

All �gures run with forward-backward-sweep method,
see Díaz-Infante et al. [11] to check a Python implementation
code.

6.4. Isolation and quarantine for SARS

Since SARS lacked e�ective treatments or vaccines, measures to
control the spread of SARS had to take two major forms: isolating
symptomatic individuals and quarantining symptomatic individ-
uals under close observation WHO [39]. We return to model (3.6)
and obtain, via the forward-backward-sweep method, the optimal
policies. We use the value parameters listed in Table XI.8.

The left side of Figure XI.8 shows the simulations of total
infected populationsE+Q+I+J . Here we contrast the resulting
dynamics using a constant policy (solid green), û1 = 0.2, û2 = 0.2
with the optimal quarantine and isolation control (dash orange)
policies u1, and u2. At left, we see that in order to minimize the
number of total infected individuals, optimal control quarantine u1
is at its upper bound duringmore than 150 days, then u1 is steadily
decreased to the lower bound. Optimal control isolation u2 stays
at its upper bound about 70 days and then steadily decreases to
the lower bound over the rest simulated time.
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Figure XI.9 contrasts the evolution of the dynamics controlled
with the optimal policy, a constant policy û1 = û2 = 0.2 and the
lower bound policy, ū1 = ū2 = 0.05.

7. Concluding remarks

We end by mentioning some points that should be kept in mind
when dealing with OCPs in epidemics.

Uniqueness of optimal policy The proof of the uniqueness of the
state path Xu, given a policy u, is fairly standard (Theorem 4.1).
However, the uniqueness of an optimal policy is not trivial and
it can be established in a su�ciently short time interval; see, for
instance, Ga� and Schaefer [15] and the references therein.

Numerical Issues According to the forward-backward-sweep
and multi shooting methods, both schemes need an ODE solver
for one of its steps. However, sometimes this solver generates
spurious solutions as a result of numeric instability. We see an
opportunity to apply nonstandard numerical schemes which are
consistent with the underlying conservation laws (see for example
the work of Mickens [29]).

Regarding the application of genetic algorithms, it would be
interesting to address the problem considering controls as general
functions, and not only restricted to piecewise constant functions
in the interval I . As far as we know, there is no work addressing
the optimal control policies problem in this manner, and thus, this
paragraph intends to motivate further research in this direction.
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Maximum principle vs. Dynamic programming The same ap-
proach is followed in almost all the related literature on optimal
control of epidemics/diseases. As an alternative, the so-called Dy-
namic programming approach can be used to analyze these kinds
of problems. With the Maximum principle, we need to solve a
system of ordinary di�erential equations (ODEs), whereas in Dy-
namic programming, a partial di�erential equation (PDE) arises.
In addition, both approaches involve an optimization problem.
The Maximum principle is mostly used because there are plenty
of methods to numerically solve ODEs.

By following the DP approach, the optimal policies are ob-
tained in feedback (or Markov) form; i.e., the control policy is a
function of the state of the system. Thus DP is a natural approach
to solve stochastic models.

8. Appendix: Deterministic OCPs in

continuous time

Consider the following control system

Ẋ(t) = f(t,X(t), u(t)), X(0) = x0, 0 ≤ t ≤ T, (8.22)

where f : [0, T ] ×X ×U → R
n and u : [0, T ] → U . For each

u, it is assumed that there exists a unique solution Xu to (8.22)
(ensured, for instance, by Theorem 4.1). In some applications the
terminal state Xu(T ) is constrained to belonging to a given set
B. Then the set of admissible controls is de�ned as

UB := {u : [0, T ]→ U | u is measurable and Xu(T ) ∈ B}
(8.23)

and UB is also assumed to be nonempty. A pair (u,Xu), where
u ∈ UB, is called an admissible pair. To simplify notation, we
write (u,X).
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The following performance index is said to be in the Bolza
form

V (u, x0) :=

∫ T

0

g(t,X(t), u(t))dt+ h(X(T )), (8.24)

where g : [0, T ]×X×U→ R and h : X→ R are measurable.
When g = 0 and h ̸= 0, it is said to be in theMayer form. Another
form occurs when h = 0 and g ̸= 0; in such a case (8.24) is said
to be in the Lagrange form. These three forms are equivalent; see,
for instance, Cesari [10, Sect. 1.9].

In Section 3 we consideredminimization problems; in contrast,
in this appendix, we consider maximization problems. The reason
is due to the name, Maximum principle, which appears in (8.28).
Then the OCP consists of �nding an admissible control u∗ such
that

V (u, x0) = sup{V (u, x0) | u ∈ UB}.
The elements of the OCP can be given in the following seven-

tuple
(X,U,B, f, g, h, T ). (8.25)

Assumption 8.1. The setsX,U, and B are compact. The func-
tions f , g, and h are continuous.

A proof of the following theorem can be found, for instance,
in Cesari [10, Sect. 9.3.] or Yong [41, Theorem 2.2.1].

Theorem 8.2 (Filippov). Assume the OCP (8.25) satis�es Assump-
tions 1. If for almost every t in [0, T ], each set

F (t, x) := {(α, y) ∈ R× R
n | α ≤ g(t, x, u), y = f(t, x, u), u ∈ U},

(8.26)
with x ∈ X is convex, then there exists an optimal pair (u∗, X∗).
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We de�ne the Hamiltonian, for each (t, x, u, λ0, λ) in [0, T ]×
X×U× R× R

n, as

H(t, x, u, λ0, λ) := λ0g(t, x, u) + λ⊤f(t, x, u).

Assumption 8.3. (a) The function h is of class C1.

(b) For every (t, u, λ0, λ), the function H(t, ·, u, λ0, λ) is of class
C1.

(c) For every (t, x, λ0, λ), the functions

H(t, x, ·, λ0, λ) and Hx(t, x, ·, λ0, λ)

are continuous.

The following theorem is proven in Yong [41, Theorem 2.3.1].

Theorem 8.4 (Maximum Principle). Suppose the OCP (8.25) satis-
�es Assumptions 8.1 and 8.3. Suppose also that the set B is convex.
Let (u∗, X∗) be an optimal pair. Then there exists a constant λ0 ≥ 0
and an absolutely continuous function λ : [0, T ]→ R

n, with

(λ0)
2 + ∥λ(T )− λ0hx(X∗(T ))⊤∥2 = 1, (8.27)

that satisfy

(a) the maximum condition, for almost every t ∈ [0, T ],

H(t,X∗(t), u∗(t), λ0, λ(t)) ≥ H(t,X∗(t), u, λ0, λ(t)) ∀u ∈ U,
(8.28)

(b) the adjoint equation, for almost every t ∈ [0, T ],

λ̇(t) = −Hx(t,X
∗(t), u∗(t), λ0, λ(t))

⊤, (8.29)
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(c) and the transversality condition

[λ(T )⊤ − λ0hx(X∗(T ))][y −X∗(T )] ≥ 0 ∀y ∈ B. (8.30)

Remark 8.5. As pointed out by Yong [41, p. 43], ifB = R
n, then

(8.30) implies
λ(T )− λ0hx(X∗(T ))⊤ = 0

and so λ0 = 1 by (8.27). In such a case, the Hamiltonian takes the
form

H(t, x, u, λ) := g(t, x, u) + λ⊤f(t, x, u) = H(t, x, u, 1, λ).

Then the form of the Hamiltonian used in Section XX is justi-
�ed. Further, when h = 0, the adjoint equation (8.29) and the
transversality condition (8.30) become

λ̇(t) = −gx(t,X∗(t), u∗(t))⊤ − [fx(t,X
∗(t), u∗(t))]⊤λ(t), λ(T ) = 0

as in (4.17).

Consider the OCP (8.25) with B = R
n and h ≡ 0. De�ne

H∗(t, x, λ) := sup
u∈U
H(t, x, u, λ)

= sup
u∈U
{g(t, x, u) + λ⊤f(t, x, u)}.

Assumption 8.6. The functionsH andHx are continuous.

Assumption 8.7. The functions u∗ : [0, T ] → U and X∗ :
[0, T ]→ X satisfy the following:

(a) u∗ is piecewise continuous on [0, T ],

(b) X∗ is continuous on [0, T ],
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(c) Ẋ∗ exists and it is piecewise continuous on [0, T ].

The following theorem is proven in Seierstad and Sydsæter
[33, Theorem 3].

Theorem 8.8. Suppose that Assumption 8.6 holds. Let (u∗, X∗) be
an admissible pair that satis�es Assumption 8.7. Suppose that there
exists a continuous function λ : [0, T ]→ R

n such that

H(t,X∗(t), u∗(t), λ(t)) ≥ H(t,X∗(t), u, λ(t)) ∀u ∈ U,
(8.31)

and, except at the points of discontinuity of u∗,

λ̇(t) = −Hx(t,X
∗(t), u∗(t), λ0, λ(t))

⊤, λ(T ) = 0. (8.32)

If the setX is convex and, for each t, the functionH∗(t, ·, λ(t)) is
concave onX, then (u∗, X∗) is an optimal pair.
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9. Appendix: Algorithms

Algorithm 1Multi shooting method
Input: t0, T, x0, h, tol, λf , nmax

Output: x∗, u∗, λ

procedure Multi_shooting(g, λfunction, u, x0, λf , h, nmax)
while ϵ > tol do

Choose yi := [x(ti), λ(ti)], i = 1, . . . , n.

Integrate (5.19) for each sub-interval [ti, ti+1) using yi
as the initial conditions

and obtain y(ti−1) = [x(ti−1), λ(ti−1)], i = 2, . . . , n.

Y ← [yi − y(ti)], i = 0, . . . , n
Actualize initial condition yi for next iteration using for

a example a
Newton’s method.
ϵ← |Y|

end while
end procedure
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Algorithm 2 Forward Backward Sweep
Input: t0, tf , x0, h, tol, λf
Output: x∗, u∗, λ

procedure Forward_backward_sweep(g, λfunction, u, x0, λf , h, nmax)
while ϵ > tol do

uold ← u
xold ← x
x← runge_kutta_forward(g, u, x0, h)
λold ← λ
λ← runge_kutta_backward(λfunction, x, λf , h)
u1 ← optimality_condition(u, x, λ)
u← αu1 + (1− α)uold, α ∈ [0, 1] ▷ convex

combination

ϵu ←
||u− uold||
||u||

ϵx ←
||x− xold||
||x|| ▷ relative error

ϵλ ←
||λ− λold||
||λ||

ϵ← max {ϵu, ϵx, ϵλ}
end while
return x∗, u∗, λ ▷ Optimal pair

end procedure
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Algorithm 3 Evolutionary Algorithms

Y ←Y0(Np,V)
while (the stopping criterion has not been met) do

M ←M(Y )
C ← C(Y, C)
Y ← S(Y, C, fob)

end while
ybest ← Best(Y, fob)
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10. Appendix: Tables

Table XI.1: Parameter description of the control model (3.2).

Parameter Description

ν Natural fertility rate
µ Natural mortality rate
K Carrying capacity
α Disease-induced mortality rate
R0 Basic reproductive number
β Transmission coe�cient
P Relative cost per unit culling e�ort

over the cost of a single infection

Table XI.2: Parameters and simulation values of the epidemic
model (3.3).

Parameter Description

b Recruitment rate
a, d Disease and natural death rates
c Incidence of disease
e Rate at which the exposed

individuals become infectious
g Recovering rate
A Vaccination cost
T Final time
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Table XI.4: Parameter description for the SARS model (3.6).

Parameter Description

β Transmission coe�cient
εE , εQ, εJ Modi�cation parameter for

exposed, quarantined and isolated classes
µ Natural death rate
Λ Constant recruitment rate
p Net in�ow of asymptomatic individuals
k1 Transfer rate from class

of asymptomatic to symptomatic
k2 Transfer rate from the quarantined

class to isolated

d1, d2 Per-capita disease induced death rates
for the symptomatic individuals and
isolated individuals

σ1, σ2 Per-capita recovery rates for the
symptomatic individuals and
isolated individuals

tf Final time
B1, B2, B3, B4 Cost for

E,Q,I ,J classes
C1, C2 Costs for Isolation and Quarantine

policies
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Table XI.5: Parameter values of model (3.2) to reproduce Figure
XI.1, XI.2, and XI.3.

Parameter values Initial Conditions

ν 0.6
µ 0.4 S(0) = K , I(0) = 1
K 0.4
α 0.05
R0 6.0, 3.5 Control bound

β
R0(α + µ)

K
umax = 0.1

P 70.0, 110.0

Table XI.6: Parameters and simulation values of the epidemic
model (3.3).

Parameter values Initial conditions

b 0.525 S(0) = 1000, E(0) = 100
a, d 0.2, 0.5 I(0) = 50, R(0) = 15
c 0.0001
e 0.5
g 0.1
A 0.1
T 20.0
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Table XI.7: Simulation values for the control problem (3.4).

Parameter values Initial Conditions

β1 13.0 β2 13.0 S(0) = (76/120)N
β3 0.0131, 0.0217, L1(0) = (36/120)N

0.029, 0.0436 L2(0) = (2/120)N
I1(0) = (4/120)N

µ 0.0143 I2(0) = (1/120)N
d1 0.0 d2 0.0 T (0) = (1/120)N
k1 0.5 k2 1.0
r1 2.0 r2 1.0
p 0.4 q 0.1
N 6000, 12 000, Λ µN

30 000 Control Bounds

Lower 0.05
Upper 0.95

tf 5.0 years
B1 50.0 B2 500.0
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11. Appendix: Figures

Figure XI.1: State solutions without control, under optimal
quadratic control and with linear (bang-bang) control.
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Figure XI.2: State solutions without control, under optimal
quadratic control and with linear (bang-bang) control.
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Figure XI.3: Costs for the linear and quadratic controls under two
scenarios. Upper P = 70, R0 = 6, bottom, P = 110, R0 = 3.5,
and the rest of parameters as in Table XI.5.
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Figure XI.4: Comparison between the controlled and uncon-
trolled infected population. On the left, we show the optimal
infected state against the dynamics without control. On the right,
we present the corresponding adjoint function λ and the optimal
control.
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Figure XI.5: Normalized infected population according to param-
eters of Table XI.7. Here, the black line represents the infected
population without control. As we see, combining case �nding
u1(t) and case holding u2(t), dramatically diminishes the density
of infection with resistant TB.
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Figure XI.6: At the top, case �nding and case holding controls
are shown with the parameters listed in Table XI.7 with di�erent
values for parameter β3. At the bottom, we capture a smaller
region to illustrate the variations regarding case holding. This
simulation suggests that case holding results have almost the
same pro�le, while case �nding delays these same results by only
a few months.
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Figure XI.7: The e�ect of di�erent sizes of population. For rel-
atively small populations, the case �nding strategy is more im-
portant than case holding, while for bigger populations, the case
holding plays a more important role. The rest of the parameters
are shown in Table XI.7.
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Figure XI.8: On the left, the simulations of the whole infected
populationwithout constant control and under the optimal control
policy.
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Figure XI.9: Susceptible and recovered populations under opti-
mal, constant and lower bound control policies.
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Figure XI.10: Cost of disease control for the optimal, constant
and lower bound policies, see Equation (3.7).
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XII. POLICE OBEDIENCE IN LOCAL
GOVERNMENTS: A NORMAL GAME
MODEL FROM PUBLIC POLICY
PERSPECTIVE

Mónica Naime and Itza Tlaloc Quetzalcoatl Curiel Cabral

Abstract

The forced disappearance of forty-three students in Ayotzinapa,
Guerrero in September 2014 brought international attention to
gross human rights violations in Mexico. Even if disappearances
committed by state agents are not new -notably the disappear-
ances during the dirty war from the 1960’s until the 1980’s - they
have been on the rise since 2007. Currently, disappearances do
not respond exclusively to a logic of elimination of political oppo-
sition, but no studies have been undertaken about the probable
causes of the rise.

The present work seeks to propose an explanation from a
public policy perspective, since more than 96% of disappearances
occur at the local level. Towards that end, we develop a normal
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game model using parameters to understand the interaction be-
tween municipal presidents and their policemen.

We �nd that the hierarchical structure of police o�cers sub-
servient tomunicipal presidents sets the stage for the development
of dominant strategies between each other. This creates a dom-
inant equilibrium: municipal presidents will seek their private
interests, and policemen will obey. Also, by themselves, police
salaries are insigni�cant. More relevant are the payo�s for cor-
ruption and obedience.

1. Introduction

The disappearance of forty-three students in Ayotzinapa, Guer-
rero in September 2014 gave rise to national and international
attention about human rights violations in Mexico. Since then,
forced disappearances—the disappearance of persons by agents of
the State—has been a relevant issue in the national public agenda.

Disappearances in Mexico are not novel: from the end of the
1960’s through the beginning of the 1980’s, hundreds of persons
were disappeared by agents of the State during the so-called dirty
war, UNHRC [29]. During this period, the police and military
forces undertook a policy of systematic repression of students,
peasants and social activists, amongst others. The causes of the
disappearances during the dirty war are well known: the govern-
ment adopted forced disappearance as a strategy to wipe out any
alleged member of the opposition.

This strategy was put into practice for the �rst time during
the national-socialist regime of the Third-Reich of Germany. In
December 1941, the Fuhrer issued a decree which instituted the
Night and Fog program. The decree established that most of the
prisoners of the occupied territories accused of o�enses against
the German State should be transferred to Germany without a
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trial. Only if the o�cers believed it was highly probable that
the o�ender would receive capital punishment, could she stay in
the occupied territory NND [18]. Likewise, it envisaged that if
anyone would ask for information about the prisoners taken to
Germany, o�cers would only say that they had been arrested,
but no more information should be disclosed. They were going
to be disappeared in the night and in the fog, this is, without
information.

These disappearances had a two-fold objective: on the one
hand, to prevent prisoners from asking for the protection of the
law and, on the other hand, to intimidate the rest of the family
and the population, due to the uncertainty of the whereabouts of
the prisoner, Finucane [6]. Forced disappearance was employed
as a hierarchical, systematic and intentional strategy of terror.

This same strategy was implemented by di�erent military
dictatorships in Latin America, notably in Brazil (1964-1979), Ar-
gentina (1976-1983) and Chile (1973-1990)1. In the Brazilian case, it
was possible to determine the intentionality and systematization
of the government in the more than 450 forced disappearances
because of the existence of a registry of their actions, Informe-
Brazil [13]. Those responsible haven’t been subjected to trial, due
to an amnesty.

Regarding Argentina, in the frame of the program “National
Reorganization Process”, acts of torture and forced disappearances
were undertaken systematically, under the argument of the �ght
against guerrilla groups. In 1983, Argentinian President Raul Al-
fonsin - on the �fth day of his presidency- created the National
Commission on the Disappearance of Persons. In its �nal report,

1Military dictatorships of Bolivia, El Salvador, Guatemala, Nicaragua, Peru
and Uruguay, during the 1960’s and 1980’s, present similar cases to those herein
described (Molina Theissen [17]).
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“Never More” CONADEP [4], this commission veri�ed the disap-
pearance of 8960 people, the appropriation of new born babies,
and proved the existence of a deliberate government plan to dis-
appear its citizens. Afterwards, in 1985, members of the Military
Juntas would be judged and sentenced for these crimes.

In Chile, during the military dictatorship of General Pinochet,
1192 people disappeared in the hands of the government, specif-
ically the Army, the carabineros and the National Intelligence
O�ce. In 1991, president Patricio Aylwin established the National
Commission for Truth and Reconciliation. In its �nal report, the
Rettig Report, the commission recognized the will to exterminate
certain categories of persons based on political reasons, Rettig-
Report [24]. Afterwards, several mechanisms were instituted to
compensate victims and their families. Like Brazil, an amnesty
has prevented judging those responsible.

It is no coincidence that Latin America, a region where the
implementation of forced disappearances in a planned and system-
atic way by repressive regimes was once common, is the region
that �rst proposed the adoption of a conventional instrument
in the matter: the Inter-American Convention on The Forced
Disappearance of Persons OAS [19].

Nonetheless, the forced disappearance of the students of Ay-
otzinapa does not �t well into the causal logic. Even worse, dis-
appearances in Mexico have been on the rise since 2007 without
anyone knowing why.2 Furthermore, victims of disappearances

2The number of direct victims of forced disappearances in Mexico is un-
known. The most important source of quantitative information is the National
Registry of Missing and Disappeared Persons (RNPED) which contains raw
data without distinguishing between categories of abandonment by migration,
natural disasters, forced disappearances, etc. This registry shows that in 2007,
0.5 people of every 100,000 inhabitants were disappeared, while in 2016, the
number rose to 4 of every 100,000. This represents a 800% rise. The National
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seem to no longer be those that make the government uncom-
fortable, but rather they have diversi�ed: now migrants, students,
architects, teenagers, etc., without any relation to any expression
of opposition to the government.

Even if some actions have been adopted in an e�ort to tackle
this crime—ranging from the passing of laws, to the creation of
commissions—no action will be e�ective unless the phenomenon
is understood from its roots. The lack of understanding implies
that the risk of any action taken being unfruitful arises, and thus,
forced disappearances continue to rise.

It is possible that some cases of forced disappearances are at-
tributable to individual causes. The theory of rotten apples could
explain that public o�cials, unilaterally, and departing from their
public duty, commit such crimes (Gri�n and Ruiz [10] and Zim-
bardo [32]). Also, it is possible that some forced disappearances
are committed by o�cials under threats by members of organized
crime. Nevertheless, these theories are not enough to explain
why countries like Italy or South Korea, with high presence of
criminal organizations (WEF [31]), do not face a similar prob-
lem. The explanation about the rise of forced disappearances has
to respond, additionally, to something other than the theories
previously exposed.

It is important to recognize individual studies that try to ex-
plain forced disappearances for speci�c events. Mastrogiovanni
[15] considers that forced disappearances in the north of Mexico
are part of a wider strategy by the State to allow transnational

Human Rights Commission, the United Nations and the Organization of Amer-
ican States have all pointed out the constant rise of forced disappearances in
their reports. Also, the General Prosecutors’ O�ce has declared a 60% increase
in the investigation of forced disappearances between October 2016 and March
2018 (Reforma [23]).
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companies to exploit natural resources, like shale gas or oil (p.
200). Illades [12] argues that the disappearances of Ayotzinapa
are explained by negligence, criminal control and generalized
violence (p. 14).

Nevertheless, evidence shows that the phenomenon of forced
disappearances is generalized United-Nations [30]3. This strongly
manifests the need tomove from individual explanations, to trying
to identify amore general causality thatmay give rise to the design
of a national public policy. Hence, to this day, there is no study at
the national level that explains why forced disappearances have
been on the rise since 2007.

Most of the literature on forced disappearances is from the
legal and anthropological perspective. From the legal perspective,
studies like the one from Anderson [3] and Genovese and Wilt
[8] analyze forced disappearances from the perspective of Inter-
national Law, pointing out the importance for States to regulate
this nationally. Ramos Koprivitza [22] analyzes di�erent legal
de�nitions of this concept in Mexico, shedding light on the diver-
sity in these regulations. Finally, there are more speci�c studies,
like the one from González Ramírez et al. [9] about its statute of
limitations.

From the anthropological perspective, studies center on the
viewpoint of the victims of forced disappearances and their fam-
ilies, and the e�ect on mourning Zorio [33], Hu�schmid [11],
and Palma [21], and also, on identity at the individual or fam-
ily level Gatti [7] and Alvis-Rizzo et al. [2], as well as on social
disintegration, Endo [5].

Nonetheless, literature on the causes of forced disappearances
is basically non-existent in Mexico, as well as in the rest of the

3It is possible that part of the rise may be related to the increase in report-
ing.
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world. There are two studies that analyze its e�ects: the �rst study
on forced disappearances is fromMeadowcroft et al. [16], in which
the authors analyze this type of violence in a transition period:
the change from a democracy to an autocracy during Pinochet’s
government in Chile. This study, rather than challenging or veri-
fying a hypothesis, o�ers a statistical description of gross human
rights violations between 1973 and 1989.

More recently, Osorio et al. [20] have done a second study
on forced disappearances. These authors analyze the long-term
consequences of forced disappearances in Mexico during the dirty
war, and its e�ects on the State’s consolidation. This is, forced
disappearance is the independent variable that tries to explain
e�ects on di�erent categories of State capacity, such as legal, �scal
and territorial.

The purpose of this work is to develop, using game theory, a
parametric model that explains why local police o�cers in Mexico
are the ones that most often commit forced disappearances - more
than 96% of disappearances occur at the local level. We hope
that this study allows us to understand the phenomenon from its
causes, leaving behind individual explanations that presuppose
corruption or some sort of evil from public o�cers. This would
allow the design and development of public policy strategies that
tackle forced disappearances e�ectively.

2. Description of the model and its

parameters

TheMexican State is a federal state. This means that it is composed
of di�erent units of government: the federal, state and municipal
levels. The Political Constitution of the United Mexican States
makes every level responsible for the provision of public security:
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“Public security is a function of the Federation, the
states and the municipalities, and it comprises crime
prevention, their investigation and prosecution, as
well as administrative sanctions (Article 21, paragraph
nine)...”

With this provision, municipalities are co-responsible for pub-
lic security tasks. Nonetheless, it is at this level that most forced
disappearances occur, RNPED [25].

The present study is focused on forced disappearances at the
local level. We do not reject that a similar study may be devel-
oped at the federal level, but that determination is left for future
research. In this manner, the model we propose comprises two
players (N = 2): a municipal president (MP ) and a police o�cer
(P ).

The action set of each player is speci�ed according to the
following: the municipal president, as a political agent, has been
elected to pursue public interest. Nonetheless, this municipal
president has a latent incentive to employ public institutions
for personal gain and to obtain personal bene�ts in the short-
run, given that reelection is impossible. According to this, such a
municipal president can either choose to pursue public interest
(PuI) or private interest (PrI).

Regarding the police o�cer, the National Constitution estab-
lishes that municipalities shall have their own police forces, and
each municipality will be responsible for its own regulation (Arti-
cle 115). The municipal president is in charge of this police force.
Hence, a police o�cer may chose between obeying (O) or not
obeying (nO) any speci�c instruction given by the municipal
president.

It is important to consider that the model proposed is a strate-
gic game in which information is perfect for both players. Also,
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it is a static game, played once, considering that each decision is
autonomous from the next one.4

2.1. Model speci�cations

The model has the following parameters:

Table XII.1:Model parameters

Municipal President Police o�cer
Salary Se Salary Sp

Corruption bene�t λSe Punishment for not obeying Os

Corruption cost Ce Prize for obeying Op

Reputation R Moral bonus M

The parameters assigned to the Municipal President are spec-
i�ed according to the following:

• Salary: the economic remuneration that they periodically
get in exchange for the performance of their functions

• Corruption bene�t: the economic payo� received for com-
mitting acts of corruption in pursuance of private interests.
It is speci�ed as a proportion of their salary

• Corruption cost: the expenses and risks they undertake
while committing acts of corruption

• Reputation: the prestige or status that the public o�cial has.
This parameter is relevant, even if reelection is prohibited,

4The Mexican constitution was reformed in 2014 to allow municipal presi-
dents to be reelected for a consecutive period. In this case, the game would be
repeated.
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since she can have an interest in running for any other
popular election post, in the legislative, as well as in the
executive branch.

The parameters assigned to the police o�cer are speci�ed
according to the following:

• Salary: the economic remuneration that they periodically
get in exchange for the performance of their functions

• Incentives for obeying or not obeying: given the reward
systemwhere loyalty is rewarded, police o�cerswill receive
a prize if they obey, and punishment if they do not

• Moral bonus: we presuppose a particular public service
motivation in the police o�cers when choosing their career,
wanting to contribute to society and to the prevention of
crimes, thus they get bene�ts for ful�lling their functions

The payment functions of the model are the following:

Table XII.2: Game’s bimatrix

P
O nO

MP
Pu I Se +R Sp+Op +M Se −R Sp −OS

Pr I Se + λSe − Cc Sp+Op Se − Cc Sp −OS +M

2.2. Hypothesis

Based on theoretical and empirical propositions, we propose three
hypothesis for the model. First, because of historical reasons,
mainly the Mexican Revolution that started in 1910 after the Mex-
ican President, Por�rio Díaz, remained in power for more than
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thirty years, Mexican executive authorities at every level of gov-
ernment have had a constitutional prohibition for reelection. At
the municipal level, this means that municipal presidents have
a once-in-a-lifetime opportunity to govern for three years. This
short period has been considered as too short to actually imple-
ment public policies (Albiter Gonzalez [1]), and thus, incentives
are only considered in the short-term.

Additionally, since 1995, Mexico has constantly been in the
lowest 25% of the Corruption Perception Index, TI [27]. This, in a
context of generalized impunity—the country fourth highest in
rate of impunity UDLAP [28]—implies that for municipal presi-
dents the social cost of their corruption is bigger than the bene�t
of their reputation. Hence, λSe − Cc > R.

Second, closely related to the previous hypothesis, impunity
reduces the cost of corruption—the risk of being caught and sanc-
tioned is close to zero—thus we can establish Cc < R.

Third, municipal police institutions, like many other Mexican
police institutions, have been characterized by loyalty to political
authorities, complicity, impunity and autonomy, (Lopez Portillo
Vargas [14]). Even if it is recognized that subjective elements
in�uence the decision to become a police o�cer, once part of the
institution, they are subjected to formal authority by the chain
of command and are obedient, Suarez de Garay [26]. This means
that the bene�ts for obedience become more important than the
subjective compensation of being a member of the police force.
Hence Op +Os > M .

In summary, the following three conditions are proposed:

λSe − Cc > R (2.1)

Cc < R (2.2)

Op +Os > M. (2.3)
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3. Game analysis

If we consider the three hypotheses previously explained, the
game has a dominant equilibrium, because the municipal presi-
dents, as well as the police, have dominant strategies: pursuing
private interests and obeying, respectively (see Appendix 5). This
explains that if municipal presidents believe it is convenient for
them to order the commission of forced disappearances, the police
will obey.

An interesting �nding is that salaries, by themselves, are not
important, either for the municipal president, or the police. More
relevant are the payo�s received for corruption and for obedience,
respectively.

Of course, the question becomes, how can we break this strat-
egy? To answer this, it is necessary to analyze each player’s strat-
egy and conditions.

For the municipal president, it would be necessary to create a
new condition for the model. Speci�cally, it would be necessary
that the net bene�t of corruption be lower than the one obtained
from reputation. This is, transforming hypothesis 1 into R >
λSe− Cc.

For the police o�cer, it would also be necessary to modify one
condition. Speci�cally the third one: invert the relationOp+Os >
M to Op + Os < M . This means that the sum of the payo� for
obeying and not obeying is lower than the bene�t of the moral
bonus.

With these transformations to the conditions, the model has
mixed equilibriums: when municipal presidents pursue public
interests, police will obey; and when they pursue private interests,
police will not obey.
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4. Conclusions

The parametric model we developed o�ers an explanation about
why forced disappearances happen inside police institutions in
Mexico at the municipal level. The hierarchical structure of police
departments, with police being subordinate to municipal presi-
dents, as well as incentives municipal presidents have to pursue
their private interests, set the stage for the development of domi-
nant strategies between each other.

The conclusions herein proposed can also be generalized to
other type of crimes committed by the interaction of these players,
like corruption or abuse of authority.

Future studies can analyze a dynamic model, this is, in the
long run. Notably, how are incentives located in a model that
allows reelection of local authorities? This would shine light on
what mechanisms contribute—or not—to more stability, and less
corruption, from local authorities.

5. Equilibrium

Let’s begin the analysis of the associated strategic game’s equilib-
rium by de�ning the expected utilities of both players for each of
their possible actions.

On one hand, for the Municipal President, we have:

E[PuI] = 2Rβ + Se −R,
E[PrI] = λSeβ + Se − Cc;

where β is the probability of the police o�cer obeying. On
the other hand, for the police o�cer we have

E[o] = αM + Sp +Op,

E[no] = −αM + SP −OS +M ;
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where α represents the probability that the Municipal Presi-
dent pursues public interest.

Given conditions (2.1) and (2.2) we have

E[PuI] ≺ E[PrI].

Thus, α = 0 and β < R−Cc

2R−λSe
. This is, the Municipal President

has a dominant strategy: he will always prefer to pursue private
interests over public interests.

Also, if it were the case that E[PuI] ⪰ E[PrI], then it must
be that 0 < β < 1; this is not true.

Aditionally, given (2.3) we have

E[o] ≻ E[no].

This means that β = 1 and α > M−OS−Op

2M
. This is, E[o] ⪯

E[no] is not feasible because α is a probability distribution: 0 <
α < 1. In short, the police o�cer has obedience as a dominant
strategy.
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XIII. ON THE OPTIMAL CONCESSION TO
KEEP A COUNTRY UNIFIED

Julen Berasaluce Iza

Abstract

Three di�erent �scal strategies are compared to prevent the forma-
tion of a majority in favor of independence in a region: changing
the common tax, �scal autonomy and a �scal premium. Fiscal
autonomy can always be combined with any of the other two
and reduces the sacri�ce that the median voter of the state needs
to make. In order for a �scal premium to dominate the common
tax strategy, the region must have a greater proportion of poor
citizens, and it must be relatively small.

1. Introduction

The formation of countries has been a topic of great importance
in the social sciences. Even when one country has already been
formed, there might be territories belonging to that country will-
ing to form new countries by themselves. Among the reasons that
may explain such divisions are cultural, historical, or economic
di�erences. Whatever the reasons to be considered, it is undeni-
able that the division of countries is an important phenomenon
when explaining the current political picture of the globe. Among
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the many historical examples, we have the former Yugoslavia,
Czechoslovakia, the Former Soviet Union, Timor, Sudan, etc., as
well as much tension in several regions of Spain, Italy and the
United Kingdom, among others.

Let us call a division of a former country a secession, although
the concept is formally used only in the case of federal unions. If
the secession of a region is an optimal result for both the region
and the rest of the former country, it is hard to argue against
it. However, many times con�icts arise over this issue, making
it obvious that secession may not be a desirable result for all
the parties involved. Most of the time, citizens of a region, or at
least one subset of them, favor secession, with the the rest of the
citizens of the country being opposed to it. This paper studies
this phenomena and what peaceful strategies can be adopted in
order to avoid the existence of such con�icts. In addition, those
strategies are compared in order to conclude which of them are
preferable.

The question that we want to analyze is of great importance
all over the world. Fearon [5] lists 708 minorities in 161 countries
conforming at least 1% of the population of the country. More
than 10% of them experienced some kind of violence as a strategy
of some subsets of those minorities, in order to obtain secession
or greater autonomy. The existence of such violence shows, at
least, that some subsets of the minorities are looking for a di�er-
ent political status and that the governments of the respective
countries are not willing to concede this.

In this paper, violence is not included as a tool or a threat. We
are going to consider a region which is part of a bigger country,
and we are going to describe when a majority of the citizens in
the region favors secession. In order for a majority to favor seces-
sion, such a majority must expect to obtain enough bene�ts to
compensate for the �xed cost of the creation of a new institutional
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apparatus. We assume that when such a majority exists, secession
automatically happens. However, a majority of the citizens not
belonging to the region may prefer to prevent it. In order to reach
that objective, we analyze di�erent strategies. Those strategies
would imply a change in the public provision of some private
good through proportional taxes.

The �rst strategy that we are going to consider is changing
taxation, and therefore, the public provision of the private good
to all the citizens of the country. We analyze how much, and
in which direction, taxes should be changed in order to avoid
secession. This �rst strategy is referred to as the strategy of the
common tax.

The second strategy, which is named �scal autonomy, consists
of allowing the government of the region to impose an extra tax
in order to �nance some extra provision of the public good for the
citizens of the region. Such extra provision of public good is made
through the existing institutional apparatus so that the creation
of a new regional apparatus is not needed. This is a simplifying
assumption, because it is obvious that some additional regional
institutional apparatus is needed, and that would imply some
�xed cost. However, if that cost is smaller than the one needed
to �nance the creation of a new institutional apparatus under
secession, the simpli�cation seems reasonable.

The third strategy is named �scal premium, and consists of
allowing the citizens of the region to pay a smaller tax rate for
the same public provision of the private good.

All three strategies can be combined. For instance, we can
allow �scal autonomy, but also change the common tax.

We compare the di�erent strategies according to how they
reduce the country’s median voter’s welfare. We �nd that �scal
autonomy can prevent secession without altering the welfare of
themedian voter of the country. Moreover, in case �scal autonomy
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is not enough, its combination with any of the other two strategies
reduces their negative impact on the welfare of such voters. We
also �nd that the common tax strategy can only be helpful to
prevent the formation ofmajorities in favor of secession in regions
with a small percentage of poor citizens. Finally, we show that in
order for the �scal premium strategy to dominate, the common
tax strategy, two necessary requirements must be ful�lled: the
region must be relatively poor and small. If not, changing the
common tax is less harmful for the median voter of the state than
conceding a �scal premium to the citizens of the region.

The study of the breakup and uni�cation of nations in polit-
ical economy was started by Casella and Feinstein [4], Wei [6]
and Alesina and Spolaore [1], which consider Hotteling’s spatial
model to analyze the heterogenous preferences of voters over the
provision of some public good.

Casella and Feinstein [4] describe nations who gain from inter-
national trade, but can also unite to reduce trading costs. However,
uni�cation also implies political costs, since the median voter of
the united nation may be located far from the ideal preferences
of certain groups of voters. These two e�ects, combined, result in
nations’ optimal intermediate sizes.

Wei [6] models the limitations of big nations through greater
ine�ciency costs when providing the public good. In Wei’s model,
contrary to that of Casella and Feinstein [4], political integration is
needed to make trade possible. Therefore, nations are only ready
to unite when they develop enough so as to enjoy the bene�ts
from trade.

Alesina and Spolaore [1] also develop a Hotelling location
model to explain how di�erent political institutions a�ect the
number of nations at equilibrium and compare it to a social opti-
mum. They �nd that with democratic institutions, the number of
optimal nations exceeds the optimum.



XIII. ON THE OPTIMAL CONCESSION 289

This model is closer to the one by Bolton and Roland [2], who
explain how di�erences in wealth, instead of location, itself, are
the origin of con�icts between regions. Unlike their assumptions,
no trade is included in this analysis, neither is it assumed that citi-
zens obtain higher income under integration. Instead, we assume
that any independent country must face �xed institutional costs.
Therefore, the bene�t from integration comes from sharing those
�xed costs between a greater number of citizens.

We do not consider two regions which are ex-ante identical
and are deciding about integrating or keeping separated. Instead,
we assume that a region within a country is deciding whether
or not to become independent. The benchmark at which we ana-
lyze such a decision is similar to the work by Bolton and Roland.
However, we focus on a di�erent topic. We compare di�erent
strategies that can prevent the formation of majorities in favor of
secession.

The rest of the paper is structured as follows. In Section 3, the
basic model is explained. In Section 4, we analyze which are the
optimal policies when the central government does not seek to
avoid secession, as well as the conditions for secession to arise.
In Sections 5, 6 and 7, we analyze, respectively, the common tax,
�scal autonomy and �scal premium strategies. We end up with
conclusions in Section 8.

2. The Model

Let us consider a country of size 1 and a region of size R, where
0 < R < 1, within that country. Every individual in the country,
whether or not they belong to the region, receives an income
w. A proportion α of the citizens of the region has its income
uniformly distributed over [0, 1], while a proportion (1 − α) of
the citizens of the region receives an income w̄R(α) which is
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calculated to keep the mean income of the region equal to 1, so
that the only di�erence that we consider is a distributional one.
Thus, w̄R = 2−α

2(1−α)
, and the total income of the region is equal to

its size R. Notice that it has to be the case that α < 1; otherwise,
all the citizens would have their income uniformly distributed
over [0, 1], their mean income being 1

2
.

Similarly, let us consider that the rent of those citizens not
belonging to the region follows a similar distribution, where a
proportion β of them receives an income uniformly distributed
over [0, 1], while a proportion (1− β) obtains w̄1−R(β). In order
to keep the mean rent equal among regions, w̄1−R = 2−β

2(1−β)
.

We will restrict ourselves to cases where the following two
conditions hold:

Condition 2.1.

α >
1

2
(2.1)

Condition 2.2.

β >
1

2
(2.2)

Conditions 2.1 and 2.2 are necessary and su�cient for the
mean income to be above the median, both in the region and
outside of it. These conditions hold for most of the income distri-
butions around the globe and are necessary for the median voter
to ask for positive redistribution.

We will consider di�erent institutional arrangements, such
as a government for the whole country, or independent ones.
These governments can impose a proportional tax t ∈ [0, 1] to
�nance a public good g, which is a perfect substitute for private
consumption. That is, tax policy is purely redistributive. Therefore,
given t and g, the utility function of an individual with income w
is given by

U(w, t, g) = (1− t)w + g. (2.3)
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The provision of the public good by any of the governments
considered implies a deadweight loss equal to t2

2
and public debt is

not allowed. Moreover, any independent country must pay some
�xed costs P in order to �nance its institutions. Since savings do
not yield any utility, and governments are not allowed to incur
debt, they exhaust their budget constraint. Therefore, if the central
government imposes a tax t, it is able to generate an amount of
public good equal to

gC = t− t2

2
− P. (2.4)

Notice that (2.4) is constructed for the government of the
whole country, which imposes taxes and distributes the public
good among a population of size 1. If the region became indepen-
dent, we would have two di�erent countries. Even if we keep the
marginal deadweight loss invariant, the two independent coun-
tries would each need to face a higher institutional cost per capita.
Therefore, the budget constraints of each of their governments
would, respectively, imply

gR = t− t2

2
− P

R
(2.5)

g1−R = t− t2

2
− P

1−R. (2.6)

Thus, we have two basic features that will explain the costs
and bene�ts of a secession. On the one side, due to the di�erence
in distribution, the citizens of a region may prefer a secession so
that they can select a distributional policy on their own. However,
in order to bene�t from it, they need to consider the greater insti-
tutional costs per capita, which accounts for the scale economies
of a bigger country.
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Having said that, let us �rst analyze which are the di�erent
possible equilibrium outcomes at which a majority of the citizens
of the region are willing to become independent.

3. The Benchmark

First of all, let us analyze a central government that does not
seek the integrity of the country. We will consider the individual
preferences of voters in that country. Therefore, let us obtain the
optimal tax rate for an individual with given income w. This is
calculated by solving the following problem:

max
t

(1− t)w + t− t2

2
. (3.7)

Since the preceding problem is clearly concave, we can obtain
the optimal tax rate for a citizen with income w, (t⋆(w)), from the
�rst order condition, which is

t⋆(w) = 1− w. (3.8)

That is, a citizen’s optimal tax rate is decreasing with its in-
come. Moreover, her preferences are single peaked with respect
to w. Therefore, let us focus on the tax rate that two identical
o�ce seeking parties would o�er at a Nash equilibrium, i.e., the
one preferred by the median voter. Notice that the income of the
median voter of the country (wme

C ) is equal to

wme
C =

1

2A
, (3.9)

where

A = Rα + (1−R)β. (3.10)
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Then, a central government that did not care about the integrity
of the country would impose a tax rate t⋆C equal to

t⋆C =
2A− 1

2
> 0. (3.11)

The preceding would be true as long as the referred tax rate
yielded enough income to the central government to cope with
the �xed institutional cost P . Otherwise, the government would
need to impose a large enough tax rate so that the selected tax
rate would actually be:

t⋆⋆C = max

{
2A− 1

2
, 1− (1− 2P )

1
2

}
. (3.12)

In order to analyze con�icts about the issue of secession, we
need to obtain which taxes would be imposed, both in the region
and outside of it, in case the region becomes independent, which
would automatically imply that the rest of the country becomes
independent, as well. As before, the single peaked preferences are
maintained, so let us focus on an independent government in the
region which seeks to maximize the welfare of its median voter.
The tax rate imposed by an independent region, t⋆⋆R , would be the
solution to the following problem:

max
tR

(1− tR)
(
1− 2α− 1

2

)
+ tR −

t2R
2
− P

R

s. t. tR −
t2R
2
≥ P

R
.

(3.13)

By solving (3.13), we obtain that

t⋆⋆R = max

{
2α− 1

2α
, 1− (1− 2PR)

1
2

}
. (3.14)
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Equivalently, in case the region becomes independent, the
citizens outside the region will enjoy a tax rate equal to

t⋆⋆1−R = max

{
2β − 1

2β
, 1− [1− 2P (1−R)] 12

}
. (3.15)

Although the tax rates for the country and for each of the
regions in case of independence, are, respectively, t⋆⋆C , t⋆⋆R and
t⋆⋆1−R, we will �rst focus on those cases in which the institutional
cost restriction is not active for the median citizen. Thus t⋆R and
t⋆1−R would be de�ned as t⋆C in Equation (3.11).

Then, we can calculate the induced utility of a citizen in
the region with income w in each of the two systems, that is
U(w, t⋆C , g(t

⋆
C)) and U(w, t

⋆
R, gR(t

⋆
R)). Therefore, if we calculate

the di�erence between these two terms, we can state when a
citizen from the region obtains a higher utility at independence,
rather than in a state that does not care about secession. If we
calculate the di�erence in the two utility functions, we obtain
that a citizen with income w prefers to have independence when

U(w, t⋆R, gR(t
⋆
R))− U(w, t⋆C , gC(t⋆C)) ≥ 0. (3.16)

We may ask how this inequality changes with respect to w.
Thus, we can conclude that:

Proposition 3.1. If α < β (resp. α > β), the greater w, the
greater (resp. smaller) the utility a citizen of the region obtains at
independence compared to the one it gets when the government is a
central one. If α = β, this di�erence does not change with respect to
w.

The preceding proposition is very useful to determine which
segment of the population of the region is going to support inde-
pendence. If β = α, the distribution in the region exactly repli-
cates that of the state. So, if one citizen favored independence,
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everyone in the regionwould. Ifα < β, the proportion of poor peo-
ple is smaller in the region than outside of it. Therefore, t⋆R < t⋆C ,
so if someone with income w favors independence, anyone with
income w′ ≥ w will do so. That is, the richer a citizen from the re-
gion is, the happier she is under secession. If α > β, the argument
works in the opposite direction.

By proposition 3.1, if the median voter of the region favors
independence, a majority of the citizens of the region also do. The
income of the median voter of the region is given by wme

R = 1
2α
,

so if we substitute wme
R at (3.16) and reorganize, we can conclude

the next proposition.

Proposition 3.2. A majority of citizens in the region favors seces-
sion if and only if

P ≤ R(1−R)(β − α)2
8α2A2

= P I
R. (3.17)

Notice that the existence of a majority in the region favoring
independence is not a problem by itself. Indeed, if a majority of
citizens outside the region favor independence, they will simply
realize they both prefer to be separated rather than in the same
country. As a result, we will have a happy divorce. Focusing on
Proposition 3.1, we notice that as long as the only di�erences
in income are distributional, the model predicts that if secession
is supported by a majority in both regions, it is favored by the
richest citizens of one of them, and the poorest of the other. This
is true in the model because the only political con�ict we assume
lies in the di�erences between the respective income distributions
so that being in the same country may represent a cost for the
median voter of the respective regions. Thus, if a happy divorce
occurs, this is enforced by two opposite political groups which
su�er the greatest political gap between them.
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By repeating the exercise for the median voter outside the
region, we can re-write Proposition 3.2 for those citizens outside
the region.

Proposition 3.3. A majority of citizens outside the region favors
secession if and only if

P ≤ R(1−R)(β − α)2
8β2A2

= P I
1−R. (3.18)

By contrasting Propositions 3.2 and 3.3, we can notice that
as long as there exist distributional di�erences (α ̸= β), if the
institutional cost is small enough, secession is optimal for a ma-
jority both in, and outside the region. Proposition 3.3 predicts
that diminishing institutional costs would increase the number
of secessions. An interesting issue is to examine, without loss of
generality, when a majority in the region favors secession, while
a majority outside of it does not. We would need (3.17) to hold,
while (3.18) did not. In order for some intermediate institutional
cost P that allows for that case to exist, it must be true that

α < β. (3.19)

That is, the only possibility in which a majority of the citizens
of a region want to become independent, while a majority of the
citizens outside the region prefer not to, is when the ones that
prefer it have a smaller proportion of poor people and, therefore,
are choosing a weaker distribution policy.

By doing some comparative statics on P I
R we �nd that

∂PR
I

∂R
=

(α− β)2[αR2 + β(1−R)2]
8α2A2

> 0, (3.20)

so that the larger a region is, the larger institutional costs allow
for secession, so that the easier secession would be supported by
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a majority. On the other hand, if we focus on the e�ect of α on
P I
R, we observe that:

∂PR
I

∂α
= R(1−R)

8

{
−2(β−α)α2A−(β−α)2[3α2R+β(1−R)]

α4

}
.

(3.21)
Although the sign of the previous equation depends on the re-

lation between α and β, since we mainly care about what happens
when a majority in the region favors secession and a majority out-
side of it does not, i.e., α < β, increasing α reduces PR

I , because
it reduces the di�erences between the preferred distributional
policies of each of the median citizens.

Finally, with respect to the e�ect of β on P I
R, we obtain that

∂PR
I

∂β
=
R(1−R)

8α2

{
2(β − α)A− (1−R)(β − α)2

A2

}
, (3.22)

which is clearly strictly positive when α < β, yielding the same
e�ect that we discussed above.

In the following sections, we restrict ourselves to cases in
which a majority in the region favors secession, while a major-
ity outside of it does not. In each of the sections, we examine a
di�erent �scal strategy that prevents secession.

4. Avoiding secession with a common tax

The �rst measure that we are going to analyze is assessing the
same tax on all citizens and making it so attractive to the median
voter of the region that he no longer favors independence. Such
a tax must be good enough for the median voter outside of the
region, so that she will not favor secession, either. In this case,
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the sacri�ce in the �scal policy is preferred to the splitting the
country. In case there exists more than one tax for which the
median voter of the region prefers not to favor independence,
let us select the one that minimizes the political cost of the me-
dian voter outside of the region. This would be a perfect nash
equilibrium of a three stage game. The third stage only occurs
if a majority favors secession in the region and corresponds to
the determination of �scal policies as the result of a competition
between two o�ce seeking parties. The second stage refers to
the independence referendum in the region. In the �rst stage, the
political competition refers to the whole country, but forward
looking voters may not vote for their preferred tax rate if that
prevents an undesired secession.

If the state imposes a tax t on all citizens of the state, the
median voter of the region will not favor independence if and
only if

U(w, t, gC(t))− U(w, t⋆R, gR(t⋆R)) ≥ 0. (4.23)

Rearranging the previous inequality, it becomes

− t2

2
+ t

2α− 1

2α
+ P

1−R
R
− (2α− 1)2

8α2
≥ 0. (4.24)

Notice that the LHS of Inequality (4.24) always has some root.
Therefore, there exist a pair of tax rates (t̂R− , t̂R+), such that ∀t ∈
[t̂R− , t̂R+ ] ∩ [0, 1] and the median voter of the region does not
favor independence. These are given by

t̂R− =
2α− 1

2α
−
√

2P (1−R)
R

, (4.25)

t̂R+ =
2α− 1

2α
+

√
2P (1−R)

R
. (4.26)

Notice that, by construction, if there exists a majority that
favors independence at t⋆C , then t

⋆ /∈ [t̂R− , t̂R+ ]. If that is the
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case, which, from all the taxes that avoid a majority in favor of
independence, is the one preferred by the median voter outside
of the region?

First of all, we should replicate the analysis of the common tax
made for the median voter of the region, with the median voter
outside of the region. Similarly, we can �nd a pair of tax rates
(t̂(1−R)− , t̂(1−R)+), such that ∀t ∈ [t̂1−R− , t̂1−R+ ] ∩ [0, 1], so the
median voter outside of the region prefers not to favor secession.
These are given by

t̂(1−R)− =
2β − 1

2β
−
√

2PR

1−R, (4.27)

t̂(1−R)+ =
2β − 1

2β
+

√
2PR

1−R. (4.28)

Having said that, we need to �nd if there is any common tax
that prevents secession. Let us focus on the only case in which
a majority in the region wants to become independent and a
majority outside of it prefers to prevent that situation; that is,
when α < β, which implies that α < A. Therefore, it follows that
t⋆R < t⋆C . So, if the median voter of the region favors indepen-
dence, we can conclude that

2A− 1

2A
>

2α− 1

2α
+

√
2P (1−R)

R
, (4.29)

which can be simpli�ed to

β − α
2Aα

>

√
2P

R(1−R) . (4.30)

Moreover, the maximum sacri�ce to be made by the median
voter outside of the region must be attractive enough for the
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median voter of the region to favor uni�cation. This implies that

2β − 1

2β
−
√

2PR

1−R ≤
2α− 1

2α
+

√
2PR

1−R, (4.31)

which becomes
β − α
2βα

≤
√

2P

R(1−R) . (4.32)

It is straightforward that the inequalities (4.30) and (4.32) may
be true at the same time. If that is the case, the median voter
outside of the region would be ready to reduce the common tax
up to t̂+R and prevent the formation of a majority that favors
secession.

Proposition 4.1. Changing the common tax prevents the formation
of a majority in a region when there is con�ict. In that case, the
formation of a majority can be avoided by reducing the common
tax to the most preferred one by the median voter of the country.

Notice that preventing a majority in favor of independence in
the region in the only case that matters to us implies the reduction
of the common tax in the whole country. So, the median citizen
would favor that strategy with the support of those citizens who
have a greater income than themselves. In fact, the reduction of
the common tax would lower the common tax to the ideal one of
the citizens whose income is greater than the median.

5. Avoiding secession through fiscal

autonomy

Let us consider a di�erent �scal regime and compare it to the one
with a common tax. With �scal autonomy, the central government
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sets a tax for all the citizens in the country, including those in the
region. With the revenues obtained with that tax, the institutional
�xed costs are covered, and some public good is o�ered to all
citizens. Then, given a tax t, the central government o�ers an
amount of public good equal to the one given in Equation (2.4).

However, after the central government states t, the citizens
of the region are allowed to impose an extra tax rate tR on them-
selves. This can be modelled by a four stage game, where the last
two stages are the same as before. In the �rst stage, voters in the
whole country would decide the common tax, while in the second,
voters in the region would decide tR. With the revenue obtained
from tR, no extra institutional �xed cost is paid, since it is assumed
that, without independence, there is no need to replicate the in-
stitutions. However, new taxes imply greater ine�ciency costs
given the convex deadweight loss function that is being assumed.
There can be di�erent considerations about how this deadweight
loss is shared between the central and regional institutions. Let
us consider the most restrictive case for the regional government;
that is the one in which the extra deadweight loss is applied to
the regional government. So, if the central government imposes a
tax t for all the population and tR for those citizens in the region,
the latter ones receive an extra amount of public good given by
g̃R(tR, t), where:

g̃R(tR, t) = (1− t)tR −
(t+ tR)

2

2
+
t2

2
. (5.33)

With such a �scal regime, when would a majority of citizens
of the region want an extra tax to obtain an extra amount of
public good? Each citizen of the region would decide her optimal
autonomic tax rate t̃R given the tax rate of the central government



302 GAMES AND EVOLUTIONARY DYNAMICS

tC , as a solution to the problem

max
tR∈[0,1]

(1− tC)(1− tR)w+ tR(1− tC)−
(tC + tR)

2

2
+
t2C
2
. (5.34)

As long as the solution is interior, the �rst order condition
of this concave optimization problem shows that citizens still
have single peaked preferences, so that we can focus on the most
preferred tax rate of the median voter. Let us name it t̃R, which is
given by:

t̃R(tC) = (t− tC)
2α− 1

2α
− tC . (5.35)

Since we are not allowing the regional government to impose
any negative tax rate, it must be the case that

(1− tC)
2α− 1

2α
> tC , (5.36)

which becomes
2α− 1

2α
>

tC
1− tC

. (5.37)

Since (1− tC) ∈ (0, 1), in order for Equation (5.37) to hold, it
must be true that:

2α− 1

2α
> tC . (5.38)

That is, �scal autonomy, considered as the possibility for the
citizens of the region to increase redistribution, is only a possibility
when the citizens of the region want to impose a higher tax rate
than the one of the country. Therefore,

Proposition 5.1. Whenever a majority in the region favors inde-
pendence while a majority outside of the region does not, a majority
of citizens in the region does not favor increasing redistribution
between them.
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Therefore, when the only di�erence between the citizens in
the region and those outside of it is distributional, �scal autonomy
does not work as a tool to avoid independence. However, �scal
autonomy may be considered with a di�erent set of variables that
induce a higher tax rate in the region. For instance, if the mean
income is higher in the region, citizens there may favor a greater
redistribution. Such an increase in income would be enough to
compensate the larger tax deadweight loss from a higher tax.
Equivalently, we may have a higher tax rate in the region if the
deadweight loss in the region is smaller as a result of, for instance,
a better administration. Thus, although �scal autonomy is not a
useful �scal tool to avoid secession when the only di�erence is
distributional, it might be so when there are di�erences in the
mean income or the quality of institutions.

6. Avoiding secession through fiscal

premium

Finally, let us consider a third strategy in which the citizens of the
region would have to pay lower taxes than the rest of the country.
Although citizens would be contributing di�erently, all of them
would be receiving the same amount of public good. Hence, the
citizens of the region, who would pay lower taxes, would enjoy
a �scal premium. It is straightforward that decreasing the tax to
be paid by the citizens of the region increases their utility and,
therefore, can help to avoid the appearance of a majority in favor
of independence.

There is no need to compare the e�ectiveness of a �scal pre-
mium with �scal autonomy, because the latter, as we have seen,
is not useful in our framework. If �scal autonomy was a useful
strategy under some other circumstances, �scal premium could
be combined with �scal autonomy. The interesting issue would
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be comparing using a �scal premium with the strategy of a com-
mon tax. The question is whether it is better to reduce the tax of
everybody, and adjust the expenditure in public good, or to only
reduce the taxes of the citizens in the region, while increasing the
taxes of those citizens outside of the region to keep constant the
expenditure in public good. We will answer that question for the
median voter of the rest of the country.

Reducing t, while keeping the public provision of the private
good constant, increases the utility of a citizen in w; that is, it
increases the utility of the median citizen of the region in 1

2α
.

Therefore, in order to increase an in�nitesimal unit of utility of
the median citizen in the region, the reduction of taxes in the
region must be equal to 2α. The reduction of one unit of taxes in
the region decreases the total revenue of the government in R,
which requires an increase in the tax rate outside of the region
equal to R

1−R
. Thus, in order to increase one unit of utility of the

median citizen in the region, the decrease in the utility of the
median citizen outside of the region must be equal to R2α

(1−R)2β
.

On the other hand, reducing the common tax one (in�nites-
imal) unit in order to make it closer to the preferred tax of the
median citizen of the region, increases her utility by

(
t+ 1−2α

2α

)
.

Therefore, in order to increase one unit the utility of the median
citizen of the region, the reduction in the utility of the median

citizen outside of the region must be
(

2β−1
2β
− t
)
/
(
1−2α
2α

+ t
)
.

By comparing the previous two,we can conclude that allowing
some �scal premium is an interesting strategy with respect to
imposing a common tax if and only if

2β − 1− 2βt

2α− 1 + 2αt
>

R

1−R. (6.39)

Proposition 6.1. In order for a �scal premium to be a more in-
teresting strategy than common tax from the point of view of the



XIII. ON THE OPTIMAL CONCESSION 305

median voter of the state, it is necessary that α < β.

Proof in the appendix.

Therefore, a �scal premium might be an interesting strategy
in the most important case of an undesirable secession from the
point of view of the median voter outside of the region. Moreover,
in order to consider the �scal premium as a desirable strategy, the
size of the region must be relatively small, so that (6.39) holds.

7. Non interior tax rates

Although the results above have been given for t⋆R, t
⋆
1−R and t⋆C ,

they are easily generalizable for t⋆⋆R , t⋆⋆1−R and t⋆⋆C .
When the �xed cost restriction is active, both in the region

and in the country, no citizen in the region would prefer to be-
come independent. Either of the two tax rates would imply a zero
redistribution, while the tax in the country would be lower.

When the �xed cost restriction is active in the country, but
not in the region, since the �xed cost is more restrictive in the
region, it must be the case that α > β. This case could be analyzed
as if the distribution of income outside of the region responded
to some β′ > β. However, it needs to be the case that α > β′, so
there will not be a majority in favor of secession in the region
and a majority outside of the region against it.

If the �xed cost restriction is only active in the region, we
may have two cases. In the �rst one, t⋆⋆R ≥ t⋆⋆C , while there is zero
redistribution in the region in case of independence. Clearly, in
this case, there would not be any majority in the region in favor
of independence. On the other hand, if t⋆⋆R ≥ t⋆⋆C = t⋆⋆C , together
with the �xed cost restriction being active in the region, which
implies t⋆R < t⋆⋆R , the results we have given for t⋆R, would be easily
extensible to t⋆⋆R , by considering an α′ such that α < α′ < β.
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8. Conclusions

Up to now we have compared three di�erent �scal strategies to
prevent the formation of a majority favoring independence in a
region. We have restricted our considerations to cases where the
mean rent is constant and, therefore, the only variables of the
model are the size of the region and the di�erences between the
distributions.

We have seen that �scal autonomy, as described, should never
be considered a useful strategy with respect to avoiding majorities
in favor of secession when these are only motivated by distribu-
tional di�erences. However, �scal autonomy can be considered
as an interesting strategy if secession is motivated by di�erences
in some of the variables than have been considered equal among
regions, such as the mean rent or the quality of institutions. Those
variables should be considered when extending the current paper.

As we have seen, a �scal premium can only be an optimal
strategy for small regions with a large set of relatively poor cit-
izens. That could be the case, for instance, with Greenland, as
long as they do not extract oil from it. Many citizens of Greenland
receive great subsidies from the Danish Government.

Although we have focused the welfare comparison on the
median voter outside of the region, we must point out that when
comparing the �scal premium and the common tax strategy, pref-
erences may di�er among individuals with di�erent incomes. For
instance, those citizens with greater income, that is, those who are
commonly related to rightist political parties, may favor the com-
mon tax strategy, that is, reducing the tax rate of all the citizens
in the country. That strategy may be justi�ed by principles such
as the equal �scal treatment of all the citizens in the country. The
citizens with a lower income and, therefore, commonly related
to leftist parties, may favor �scal premium strategies, which may
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be argued as adapting �scal regulation to the speci�cities of each
region.

9. Appendix: Proof of proposition 6.1 .

Since the denominator of the RHS of Inequation (6.39) is positive,
and α > 1

2
, which is a basic feature of the model, the numerator

must be positive. If we applied that condition to the preferred
tax of the median citizen of the country, it must be the case that
β > A, which is true if and only if β > α. Alternatively, we may
not consider the preferred tax of the median citizen of the country,
but a lower one as a result of a reduction of the common tax in
line with the �rst considered strategy. The preceding argument
could be applied to someA′, where the size of the region is greater,
and the argument explained above still applies.
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