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Abstract

A multifactor linear asset pricing model is estimated in order to check whether Fideicomisos de

Infraestructura y Bienes Raíces (FIBRAs) are exposed to stock market risk factors. Statistical

procedures are used for estimating risk factor portfolios from a large sample of stocks listed in the

Bolsa Mexicana de Valores. The pricing model for FIBRAs is estimated via a GMM-based asset

pricing test in order to avoid imposing strong distributional restrictions on the data. Results show

that all of the FIBRAs in the sample are exposed to at least one stock market risk factor. A test

for the validity of the linear specification fails to reject that the proposed model prices FIBRAs

correctly.
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1 Introduction

Empirical studies on the Mexican real estate market are sparse, although real estate arguably con-

stitutes an important part of the country’s stock of fixed capital. One of the main reasons for the

existence of this literature gap is undoubtedly related to the availability and quality of data on real

estate asset prices. However, the recent emergence of the Fideicomisos de Infraestructura y Bienes

Raíces (FIBRAs), investment vehicles similar in nature to Real Estate Investment Trusts (REITs),

provides a still unexploited opportunity to assess the real estate market from a financial perspective.

As Zietz, Sirmans, and Friday (2003) correctly state, REITs "allow investors to hold portfolios of

highly illiquid real estate assets while simultaneously enjoying traditional stock market liquidity

and marketability advantages." For us researchers, the Initial Public Offering (IPO) of FIBRA Uno

in 2011 brought along a stream of real estate data of unprecedented magnitude. This study aims

at taking advantage of the availability of daily prices on real estate-related securities in order to

assess the risk and return relationship in the Mexican real estate market.

According to Liu (2010), REITs were created by the U.S. Congress in 1960 and are charac-

terized by a series of regulatory requirements that have to do with distribution of income among

shareholders, holding of real estate assets and ownership schemes. In a brochure-like document

easily accessible online1, the BMV Group describes the main characteristics of the Mexican ana-

logue to REITs: FIBRAs. FIBRAs are publicly traded investment vehicles designed to finance the

acquisition or development of real estate assets. Their main regulatory characteristics are the re-

quirement that at least 70% of their wealth must be invested in real estate assets, and the obligation

to distribute 95% of their annual income among shareholders. There are essentially two ways of

becoming a shareholder: the investor can contribute to the social capital of the FIBRA either with

previously held real estate assets or by buying publicly traded shares on the Bolsa Mexicana de

Valores. As of June, 2016, there exist 10 FIBRAs listed in the BMV market.2 However, due to the

fact that one FIBRA has only been in the market for roughly one year, this study will only consider

9 of them.

The main goal of this work is to estimate a multifactor pricing model for FIBRAs in order to

study the relationship between risk and return in this branch of the real estate market. In particular,

I plan to answer the question of whether the returns on FIBRAs can be explained by the movements

of stock market-wide risk factors. It is my intention that the results of this work serve as a prece-

dent for further investigation about common real estate risk factors and as a tool for the assessment

1The referred document can be consulted in ❤tt♣s✿✴✴✇✇✇✳❜♠✈✳❝♦♠✳♠①✴❞♦❝s✲♣✉❜✴▼■❴❊▼P❘❊❙❆❴❊◆❴❇❖▲❙❆✴

❈❚❊◆❴▼■◆●❊✴❋✐❜r❛s✳♣❞❢
2A list of all publicly traded FIBRAs is available in the appendix.
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of risk and portfolio analysis. The approach I take builds on the Euler equations derived from an

investor’s utility maximization problem and develops an expected return-beta representation of as-

set returns that is easily testable empirically. The econometric strategy is a two-step process: first

I construct stock market risk factors through statistical techniques, and afterwards I use them to

estimate a linear pricing model for FIBRAs.

The epitome of linear multifactor asset pricing models is the Arbitrage Pricing Theory (APT)

of Ross (1976), and thus much of the literature on linear specifications for empirical asset pric-

ing has focused on tests of this model. Early examples are the works of Roll and Ross (1980), and

Chen, Roll, and Ross (1986), who perform empirical tests of the APT by using, respectively, statis-

tically estimated and macroeconomic factors. In the specific context of REITs, there is a relatively

vast literature on factor pricing models that started with the evaluation of both the Capital Asset

Pricing Model (CAPM) and the APT in Titman and Warga (1986), and Chan, Hendershott and

Sanders (1990). Of remarkable importance are the several works of Ling and Naranjo describing

the behaviour of REIT returns through the use macroeconomic factors. See, for example, Ling and

Naranjo (1997,1999), and Ling, Naranjo and Ryngaert (2000).

Other important study related to the pricing of REITs, and in particular to their response to

stock market risk factors, is Peterson and Hsieh (1997), which concludes that there is a significant

relationship between the volatility in the stock market and the risk premia of REITs. This last

result creates a precedent for the strategy of this investigation. Methodologically, this work resem-

bles the studies of Chen, Hsieh, and Jordan (1997), and Lizieri, Satchel, and Zhang (2007). These

two articles employ, among others, the same statistical approaches I use for the estimation of the

risk factors. Of course, the literature on REITs goes well beyond factor pricing models; general

references on other issues discussed in the literature can be found in the excellent surveys of Liu

(2010), and Zietz, Sirmans, and Friday (2003).

With respect to the Mexican real estate market, most of the recent works have focused on local

housing issues. Worthy of mentioning are the works of Sobrino (2014) and Isunza (2010), who

study housing demand and policy for the case of Mexico City. However, the empirical academic

literature on FIBRAs is close to inexistent. Hopefully, this work will forego many others on the

subject.

In the next section I state and detail the theoretical asset pricing framework upon which I

base my empirical strategy. Section three describes the econometric methodology; I briefly go

through the steps for the estimation of the risk factors, and then outline the specific empirical
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tests performed. The fourth section discusses data-related issues and displays the results of factor

construction and the outcome of the estimation of the factor pricing model. Section 5 concludes.

2 The model

I now introduce the theoretical framework upon which the asset pricing tests will be performed.

The development of the model is based upon Harvey and Kirby (1995) and Cochrane (2005).

Following Harvey and Kirby (1995), this model starts from an endowment economy in which each

agent chooses optimal holdings of assets. Within this setup, it is well known that the first order

conditions for each investor’s problem are the so-called basic pricing equations3

p
j
t = Et [mt+1x

j
t+1] (1)

where p
j
t is the price of security j at time t, x

j
t+1 is security j’s payoff at time t + 1, mt+1 is the

stochastic discount factor, henceforth SDF, and Et [·] is the expectation conditional on the agent’s

information set available at time t.

For the purpose of this paper, it is much more convenient to think of the traded assets in terms

of their returns.4 Returns are payoffs in terms of the price paid for them: R
j
t+1 ≡

x
j
t+1

p
j
t

. Equation (1)

can be stated in such terms by diving both sides by p
j
t :

Et [mt+1R
j
t+1] = 1 (2)

Notice that, since p
j
t is an element of the information set at time t, it makes sense to multiply

any term inside the conditional expectation operator by 1
p

j
t

. It follows from equation (2) that a

return can be thought of as a payoff of unit price.

In order to develop a framework consistent with linear factor models, it is necessary to assume

a particular expression for the SDF. Such functional form may well be some linear function of

K underlying risk factors common to all assets. Let ft+1 be the Kx1 vector of factor realizations

at time t + 1, then the stochastic discount factor can be expressed as mt+1 = a+ b′ft+1, where

a ∈R and b ∈R
K . Incorporating this particular SDF in Equation (2) and computing unconditional

expectations yields:

E[(a+b′ft+1)R
j
t+1] = 1

3Cochrane (2005) uses this particular terminology.
4Returns are more convenient than prices because of their statistical properties, and in particular because time

series of returns are often stationary. See, for example, Cochrane (2005), p. 8-9, and Brooks (2008), p. 7.
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which can be expressed in terms of the covariance between the stochastic discount factor and the

return:

cov(a+b′ft+1 , R
j
t+1)+E[a+b′ft+1]E[R

j
t+1] = 1

After some algebraical manipulation, the previous expression becomes:

E[R
j
t+1] =

1
a+b′

E[ft+1]
−

b′cov(ft+1 , R
j
t+1)

a+b′
E[ft+1]

I intend to express the basic return pricing equation (2) as an Expected Return-Beta represen-

tation of the linear factor model. In order to do this, I denote ΩΩΩK ≡ E[(ft+1 −E[ft+1])(ft+1 −

E[ft+1])
′].5 The former equation can equivalently be written as

E[R
j
t+1] = γ +λλλ ′βββ j (3)

where γ ≡ 1
a+b′

E[ft+1]
and λλλ ≡−γ ΩΩΩK b. Note that βββ j = ΩΩΩ−1

K cov(ft+1 , R
j
t+1) is a vector whose el-

ements are the K slope coefficients of a time-series regression of the return of asset j on the factors.

Each of the K betas, i.e. each term in βββ j, can be understood as a measure of exposure to the

correspondent risk factors. In order to illustrate the intuition of the beta pricing model in equation

(3), one can think of a single term in the sum, say λaβ j,a, with some a ∈ {1, ...,K}. The beta

pricing model interpretation of λaβ j,a is “for each unit of exposure β to risk factor a, you must

provide investors with an expected return premium λa.” (Cochrane, 2005, p. 78)

It may be the case that there is a risk-free asset in the economy, whose rate of return at time

t + 1 is denoted R
f
t+1. It is straightforward to say that, since the asset is risk-free, it doesn’t have

any exposure to any of the K risk factors, i.e. βββ f = 000. Applying equation (3) to this risk-free rate

yields E[R f
t+1] = R

f
t+1 = γ +λλλ ′000 = γ . Thus, in an economy with a risk-free rate, the beta pricing

model can be stated in terms of excess returns -the difference between any given return and the

risk-free rate- using the following expression:

E[R
j
t+1 −R

f
t+1] = λλλ ′βββ j (4)

So far, I have said nothing about the nature or particular characteristics of the risk factors f.

As mentioned in Cochrane (2005), the factors in many factor models, including the widely known

5ΩΩΩK is, evidently, the variance-covariance matrix of the factors.
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Capital Asset Pricing Model (CAPM), are expressed in terms of returns or excess returns. When

the risk factors are themselves returns of portfolios or assets, the beta pricing model for an economy

with a risk-free rate implies, for a given factor f k, E[ f k
t+1−R

f
t+1] = λλλ ′βββ k, with k ∈ {1, ...,K}. But,

since the betas are the time-series regression coefficients of the return -in this case the factor f k-

on the K factors, it is straightforward that each factor will have a β of 1 on itself and 0 on the other

factors. By letting λk be the kth element of λλλ , the model yields

E[ f k
t+1 −R

f
t+1] = λk

This result shows that the expected return premia associated to each unit of exposure to the risk

factors are non other than the excess returns of the factor mimicking portfolios:6 each element of

λλλ is the excess return on a portfolio that has a full loading (β = 1) on the corresponding risk factor

and a zero beta on every other factor.

The previous expressions can be used to state the beta pricing model in a way that is most

convenient to the objectives of the task at hand in this work. Let R
e j
t+1 and f ek

t+1 denote the excess

returns at time t + 1 on the jth asset and the kth factor, respectively. Furthermore, let fe
t+1 be the

Kx1 vector whose kth element is f ek
t+1. Then, equation (4) implies

E[R
e j
t ] = βββ ′

jE[f
e
t ] (5)

As the last equation shows, the beta pricing model predicts a very intuitive behaviour for

risky assets: that, in equilibrium -remember that the starting point of our theoretical development

were the first order conditions for the investor’s optimization problem-, expected excess returns

on a given risky asset are explained by the factors’ risk premia -the excess returns on the factor

portfolios- and the asset’s exposure to each one of the risk factors -the partial correlations between

the asset and the risk factors-.

Now that I have presented a theoretical framework for linear factor models, I can move forward

in the task of studying the returns on FIBRAs. Equation (5) seems to suggest that all that is needed

to study asset returns is the set of relevant risk factors. But the theoretical model provides no

information whatsoever on the existence or the characteristics of these variables. Fortunately,

there are certain statistical techniques that can be used to estimate proxies for the factors present in

asset returns. The following section addresses these matters and specifies the empirical procedure

that is to be followed in order to apply the pricing model to the returns on FIBRAs.

6The term factor mimicking portfolio refers to a portfolio, i.e. a linear combinations of assets, that is perfectly
correlated with a particular risk factor.
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3 Empirical methodology

The objective of this paper is to analyse the real estate market from the point of view of its as-

sets’ returns. The theoretical asset pricing model presented in the previous section provides one

way to approach the empirical study of financial markets and, in particular, of the Mexican REITs

(FIBRAs). Even a cursory look at equation (5) gives the idea that, in order to empirically test the

model, one needs statistical information about the risk factors and, of course, the asset returns. It

should be clear by now that the dataset used in this study must include observations of the returns

on FIBRAs, and of the risk factors. Returns on FIBRAs can be easily obtained from the time series

of their market prices, but the process of identifying the proper risk factors is somewhat trickier.

In the first part of this section, I describe two ways in which proxies for the risk factors can be

derived empirically from a large sample of asset returns: Maximum Likelihood Factor Analysis,

and Principal Component Analysis. Afterwards, I go through the details of the empirical method-

ology that I use in order to determine if the returns on FIBRAs are in fact exposed to these risk

factors, and if the asset pricing framework described earlier is an adequate tool for the analysis of

the FIBRAs market.

3.1 Estimation of the risk factors

The asset pricing model developed in section 2 states that, under certain conditions, excess returns

of risky assets can be explained by the risk premia of K risk factors and the risk exposures of

each particular asset to such variables. But, what exactly are those risk factors? The empirical

literature on multifactor linear asset pricing models has employed two different approaches for the

identification of the factors. One of them consists in finding theoretical arguments that justify the

use of macroeconomic variables that allegedly capture economy-wide systematic risks, as stated

in Campbell, Lo, and MacKinlay (1997). The use of macroeconomic factors, in spite of their in-

tuitive and often simple interpretation, implies a number of technical difficulties that hinders the

usefulness and validity of models based upon such factors.7

The alternative approach relies on the statistical estimation of the common risk factors in a

large sample of assets. Lizieri, Satchel and Zhang (2007) list some of the advantages of the use of

statistical factors, e.g. availability of data at higher-frequencies and the possibility of guaranteeing

statistical independence among the estimated variables. Their main downside is that, other than

7Some disadvantages are related to statistical or data availability, such as potential statistical dependence among the
macrovariables or the fact that most macroeconomic data is available only in low-frequency schemes. Other drawbacks
have to do with the lack of a proper theoretical framework for the selection of the macroeconomic variables. Cf. Lizieri,
Satchel and Zhang (2007), and Chen, Hsieh, and Jordan (1997).
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being linear combinations of asset returns, the interpretation of the factors is an arcane task.

In the particular case of the FIBRAs market, one of the largest hindrances for testing factor

models using macroeconomic variables as risk factors is the fact that most of them are only avail-

able at monthly or quarterly frequencies, which considerably shortens the length of the time series

that can be used for econometric analysis. For this reason, the fact that the FIBRAs market is only a

few years old makes statistical factor estimation much more convenient than any macroeconomic-

variable specification.8 Hence, in this work, the variables used for the empirical testing of the

pricing model in equation (5) are common risk factors from the Mexican stock market constructed

via two statistical techniques: Maximum Likelihood Factor Analysis and Principal Component

Analysis.

The crucial assumption is that random returns on the set of N assets follow some kind of factor

structure. Thus, their return generating process can be expressed by

Rt = E+Bft + εεε t

E[εεε tεεε
′
t |ft ]≡ ΣΣΣ

(6)

Where Rt is the Nx1 vector of asset returns, E is a vector whose elements are the N expected re-

turns, B is the NxK matrix of factor sensitivities, ft is the Kx1 vector of factor realizations at time

t, and εεε t is the Nx1 vector of contemporaneous model disturbances. Σ is defined as the covariance

matrix of model disturbances.

Both techniques have been employed in previous research concerning REITs. For example, in

a study of REITs in the US, Chen, Hsieh and Jordan (1997) compare the performance of factors

obtained through several methods, including Maximum Likelihood Factor Analysis. On the other

hand, Lizieri, Satchell and Zhang (2007) estimate the underlying risk factors in the REITs market

using both independent and principal component analysis. As to which of these approaches is

better suited for finite samples, a definite answer has not yet been produced. (Campbell, Lo and

McKinlay, 1997, p. 238-239).

3.1.1 Maximum Likelihood Factor Analysis

Maximum Likelihood Factor Analysis has been used several times in the context of linear factor

models. One particular and most famous reference is the work of Roll and Ross (1980). The pro-

cedure of factor estimation and testing is thoroughly described in such article, and this part of the

8This allows me to work with daily prices of FIBRAs and, consequently, obtain longer time-series of returns.
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paper is based upon it and chapter 6 of Campbell, Lo and McKinlay (1997).

Factor Analysis involves two steps: first, the estimation of factor sensitivity matrix B and dis-

turbance covariance matrix Σ, and second, the construction of measures of factor realizations. The

first step involves maximum likelihood estimation, while the second consists essentially of several

Generalized Least Squares regressions (one for each time period in the sample).

As usual, and especially because of the maximum likelihood nature of this method, some as-

sumptions are needed. In particular, returns are required to follow a strict factor structure, i.e. it is

assumed that K factors account for all the cross covariance of asset returns and, thus, idiosyncratic

disturbances are uncorrelated among assets. Thus, ΣΣΣ becomes, by construction, a diagonal matrix,

henceforth DDD.

The covariance matrix of returns can therefore be expressed as

ΩΩΩ = BBBΩΩΩKBBB′′′+DDD (7)

where ΩΩΩK = E[(ft −E[ft ])(ft −E[ft ])
′] is the factor variance-covariance matrix. Factors are un-

known, and thus potential rotational indeterminacies are an issue.9 In order to eschew, or at least

allay such ambiguities, factors can be restricted to be orthogonal to each other. Furthermore, since

the procedure is scale-free, imposing unit variance is innocuous. Once this adaptations have been

made, the variance-covariance matrix of the factors becomes the KxK identity matrix, and the

original expression turns into

ΩΩΩ = BB’+DDD (8)

making B unique up to any orthogonal transformation.10 Roll and Ross (1980), referring to the

space spanned by the factor loadings B, state that “Orthogonal transforms leave that space un-

changed, altering only the directions of the defining basis vectors, the column vectors of the load-

ings.” Any conclusion of this work is, thus, unaltered by this milder rotational indeterminacy.

Estimates of B and DDD are then obtained through maximum likelihood estimation. The distri-

butional properties imposed are joint normality and temporal independence of asset returns. Roll

& Ross (1980) use numerical techniques proposed in Jöreskog (1967) and Jöreskog and Sörbom

(1978), which allows a faster convergence to the maximum likelihood estimators. This completes

9Take any nonsingular matrix GGG. Then, the covariance matrix of the returns can equivalently be written as ΩΩΩ =
(BGGG−1)(GGGΩΩΩKGGG′)(BGGG−1)′+DDD, and the maximum likelihood process could yield estimators of BGGG−1 instead of B.

10Now, ambiguity stems only from matrices OOO such that OOOOOO′ = I.
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the first step of the factor analysis procedure.

Once the estimators B̂ and D̂DD are at hand, one can easily substitute them for the true parameters

in equation (6), which yields (Rt −E) = B̂ft + εεε t and E[εεε tεεε
′
t |ft ] = D̂DD. From a regression point of

view, D̂DD is an estimate of the error covariance matrix, and it permits the estimation of the unknown

vector ft through Feasible Generalized Least Squares (FGLS). Factor realizations for each time

period can thus be obtained through an FGLS regression of the (demeaned) asset returns on the

factor loadings:

f̂t = (B̂
′
D̂DD

−1
B̂)−1B̂

′
D̂DD

−1
(Rt −E) (9)

The asset pricing model in equation (5) considers factors in the form of returns. Since the

risk factors obtained through (9) are linear combinations of asset returns, they can, with some

modifications, be interpreted as portfolio returns. This can be achieved by forcing the coefficients

of this linear combination, i.e. the weights of each asset on the risk factors, to sum 1. Using matrix

notation, a closed-form expression for the vector of K factor portfolio returns, which I denote fP
t is

fP
t =WWW (B̂

′
D̂DD

−1
B̂)−1B̂

′
D̂DD

−1
Rt (10)

where WWW is a K-dimensional diagonal matrix whose kth diagonal element is the sum of the weights

of each asset on factor k. That is, WWW kk ≡ ([(B̂
′
D̂DD

−1
B̂)−1B̂

′
D̂DD

−1
]111)k. The factor portfolio returns

obtained in this manner can be used directly in the asset pricing model described in section 2.

There remains the question of the number of relevant factors. Notice that in describing the

Maximum Likelihood Factor Analysis procedure, I made the (implicit) assumption that the exact

number (K) of factors was known. Fortunately, maximum likelihood provides a very straightfor-

ward statistical test for the true value of K. By restricting equation (6) to consider exactly one

factor, a likelihood ratio test statistic can be constructed in which the unrestricted model considers

N factors. Under the null hypothesis that the single factor specification is correct, the test statistic

has a distribution χ2 with 1
2 [(N − 1)2 − (N + 1)] degrees of freedom. If H0 is rejected, another

test statistic should be constructed, now restricting the model to include 2 factors. The testing

procedure should go on until the null hypothesis that the k-factor specification is correct cannot be

rejected.
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3.1.2 Principal Component Analysis

Principal Component Analysis (PCA) has been widely used in the financial literature.11 The main

reason for its widespread application is the result obtained by Chamberlain and Rothschild (1983),

which relaxes the requirements of the factor model by eliminating the need for a strict factor

structure. All that is needed for the estimation of the latent factors is that asset returns follow an

approximate factor structure as defined in Chamberlain and Rothschild (1983). The main empirical

implication of this weaker assumption is that the idiosyncratic disturbance terms εεε t need not be

iid, i.e. the K common risk factors need not explain all of the joint variation in asset returns.

Principal Component Analysis is a statistical method whose applications transcend financial

economics, and therefore a thorough development of it can be found in several editorial sources,

like Dunteman (1989) or Jackson (1991). Here, however, my focus lies on its potential imple-

mentation in financial econometrics and, thus, the succinct description that follows is based almost

entirely in Campbell, Lo and McKinlay (1997).

The goal of PCA is to reduce the number of variables being considered by gathering as much

information (variance) as possible in some small number (K) of orthogonal components. As stated

above, Chamberlain and Rothschild (1983) showed that, under reasonable preconditions, these

principal components can be used as the risk factors in a linear asset pricing model. The first

principal component is the linear combination of the asset returns that has maximum variance, i.e.

R′
tx

∗
1, where

x∗1 = argmax x′1Ω̂ΩΩx1 s.t. x′1x1 = 1

This x∗1 is non other than the eigenvector associated with the largest eigenvalue of Ω̂ΩΩ, which

is exactly why this approach is compatible with the specification of Chamberlain and Rothschild

(1983). The second factor is obtained in an analogous manner, with the additional restriction of

orthogonality with the first principal component. The procedure is repeated until K principal com-

ponents have been computed.

As with Maximum Likelihood Factor Analysis, the factors obtained via PCA are subject to a

portfolio interpretation. This is done, once more, by forcing the asset weights of each principal

components to sum 1. Multiplying each eigenvector x∗i by 1
111′x∗i

provides the desired factor portfolio

returns. As stated in Lizieri, Satchel and Zhang (2007), there are several available criteria for the

selection of the proper number of factors K. One of the most common is to determine an arbitrary

11Besides its use in the REITs literature referred above, slight modifications of PCA have been applied to macroe-
conomic financial forecasting and linear factor models. See, for example, Stock and Watson (2002), and Connor and
Korajczyk (1986, 1988, 1993).
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proportion of variance to be explained by the principal components, say 70% or 80%. That is,

principal components are computed one by one until the cumulative proportion of total sample

variance explained by the first K components reaches the arbitrarily predetermined proportion.

3.2 Empirical asset pricing tests

The factors obtained through Maximum Likelihood Factor Analysis and Principal Component

Analysis can be used as arguments in an empirical test of the linear asset pricing model described

by equation (5). Such model states that excess asset returns are equal to the product of the factor

risk premia and the asset betas, which are measures of risk exposure. Factor risk premia, as shown

in section 2, are excess returns on the factor portfolios. In this section, I describe the empirical

strategy used for testing whether the asset pricing model is an adequate specification for the FI-

BRAs market.

The empirical strategy I follow was first proposed in MacKinlay and Richardson (1991) as a

way of correcting previous asset pricing tests by allowing model disturbances to be heteroskedastic

and autocorrelated. The test in MacKinlay and Richarson (1991) exploits the time-series specifica-

tion for testing linear factor models first developed by Black, Jensen, and Scholes (1972). Both of

the referred articles test a single factor asset pricing model. Nonetheless, as stated in Jagganathan,

Skoulakis, and Wang (2002), a generalization to the case of multiple factors is quite straightfor-

ward. This description of the empirical test follows closely MacKinlay and Richarson (1991), and

makes the pertinent changes in order to test the model with K risk factors.

For the FIBRAs market, the conditions implied by equation (5) can be seen as a set of restric-

tions on regression equations:

R
e j
t = α j +βββ ′

jf
e
t + ε

j
t

E[ε
j

t ] = 0

E[ε
j

t fe
t ] = 000

α j = 0

(11)

Notice that both E[ε
j

t ] = 0 and E[ε
j

t fe
t ] = 000 are the usual regression conditions from least squares

projection theory. However, the last line in system of equations (11), α j = 0, imposes testable re-

strictions on the data. On the other hand, the elements of βββ j provide information on whether the

FIBRAs are significantly exposed to stock market risk factors.
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The straightforward strategy for testing α j = 0 is running time-series regressions for each FI-

BRA in the sample in order to check if the intercept estimates α j are indeed statistically different

from 0. Traditional ordinary least squares (OLS) distribution theory may lead to incorrect statis-

tical conclusions because of potential problems that may arise due to the unknown distribution of

the error terms. These issues can be dealt with by adopting the Generalized Method of Moments

(GMM) approach described in Jagganathan, Skoulakis, and Wang (2002) and in McKinlay and

Richardson (1991), along with a heteroskedasticity and autocorrelation consistent (HAC) covari-

ance matrix for the parameters as proposed by Newey and West (1987). The use of this techniques

allow me to adequately perform statistical inference without imposing unrealistic distributional

properties upon the data. 12

The GMM test involves estimating all time-series regressions at once. Using matrix notation,

as in Cochrane (2005), the parameters of interest are the elements of ααα and B in the system of

equations

Re
t = ααα +Bfe

t + εεε t (12)

where Re
t , ααα and εεε t are a 9x1 vectors of, respectively, FIBRAs excess returns, regression constants

and error terms, and B is a 9xK matrix whose jth row is equal to βββ ′
j. The moment conditions

E[ht(α,B)] = 000 used for GMM estimation in this linear case are

E[εεε t ] = 000

E[εεε t ⊗ fe
t ] = 000

(13)

where ⊗ is the Kronecker product. The system consists of 9x(1+K) equations and 9x(1+K)

unknowns, and exactly identifies the parameters of interest. Furthermore, the sample analogues

gT (ααα,B) of the moment conditions in (11) coincide with OLS estimation, and the estimators of

ααα and B are equivalent to those produced by OLS. Hansen (1982) showed that the GMM esti-

mator of δδδ ≡ (ααα ′
,βββ ′

1, · · · ,βββ
′
9)

′ is asymptotically normally distributed with mean δδδ and variance

(D′
0S−1

0 D0)
−1, where

D0 = E

[

∂ht

∂δδδ
′ (δδδ )

]

and S0 =
∞

∑
r=−∞

E[ht(δδδ )(ht−r(δδδ ))
′]

However, both population matrices D0 and S0 are unknown and must be estimated. Chaussé (2010)

suggests that the HAC matrix proposed by Newey and West (1987) can be used as an estimator of

12GMM requires only that FIBRAs asset returns be stationary and ergodic with finite fourth moments. (MacKinlay
and Richardson, 1991)
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the asymptotic variance-covariance matrix (D′
0S−1

0 D0)
−1. The HAC matrix is, in its general form,

Ω̂ΩΩδ =
T−1

∑
r=−(T−1)

kh(r)Γ̂ΓΓr(δ̂δδ ) (14)

where kh(·) is a kernel density function with bandwith h, Γ̂ΓΓr(δ̂δδ ) =
1
T

T

∑
t=1

ht(δ̂δδ )ht+r(δ̂δδ )
′ and δ̂δδ is

the GMM estimator of δδδ . In this work, I use a Quadratic Spectral kernel density and select the

bandwidth according to Andrews (1991).

The asymptotic joint normality of the GMM estimators for δ allows us to construct standard t-

statistics -with HAC standard errors- that permit to assess the statistical significance of each of the

individual elements of α and B. Rejection of the null hypothesis that the elements of B are individ-

ually 0 means that the correspondent FIBRA is significantly exposed to the respective risk factor.

On the other hand, if some α j were statistically different from 0, the validity of the asset pricing

model would be rejected for the corresponding asset. The purpose of this paper is, nonetheless, to

check whether the pricing model is adequate for all the FIBRAs in the market. The relevant null

hypothesis is that the intercept coefficients in ααα are jointly equal to 0. Constructing a test statistic

for this H0 is quite straightforward: asymptotic normality implies that, under the null hypothesis,

α̂αα ′var(α̂αα)−1α̂αα ∼ χ2
9 . The estimate for var(α̂αα) is the 9-dimensional square sub-matrix at the top-left

corner of Ω̂ΩΩδ .

The details of every empirical technique employed in order to carry out the analysis of FIBRAs

were presented in this section. Summarizing, the first step towards testing the pertinence of the lin-

ear asset pricing model for the study of FIBRAs is to extract common risk factors from a large

sample of assets. This can be achieved through both Maximum Likelihood Factor Estimation and

Principal Component Analysis. Afterwards, factor portfolio returns are computed and applied as

arguments in the asset pricing model of FIBRAs. Because of the unknown distributional prop-

erties of asset returns, a GMM based empirical test is performed. Statistical significance of the

slope coefficients in the time-series regressions suggests that FIBRAs are exposed to common risk

factors in asset markets, while the intercept coefficients test the validity of the linear factor pricing

framework for this particular market.

4 Data and estimation results

The asset pricing model and the way in which it can be empirically tested have been thoroughly

described in the previous parts of this work. This section goes through the details of the actual
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implementation of the techniques presented above. I start by describing the dataset and show some

basic statistics of the returns on FIBRAs. Subsequently, I narrate the factor estimation procedure

and analyse the main characteristics of the factor portfolio returns. In the last part of this section,

results of the Generalized Method of Moments estimation are shown, along with the main test

statistic, that which offers information about the validity of the asset pricing specification.

4.1 Data

The dataset used in this work includes time-series of the daily closing prices of 9 out of the 10

FIBRAs currently listed in the Mexican stock market. I decided not to include FIBRA HD, the

youngest of all the FIBRAs, because it has been in the market only for a relatively short time.13

The sample period covers all trading days between January 1st, 2015 and March 14th, 2016. For

the estimation of the risk factors, I used data on the daily closing prices of 106 stocks listed in the

Bolsa Mexicana de Valores, those with available data for all the days in the sample period. Loga-

rithmic returns were computed for each of the series, resulting in 312 daily returns for each of the

variables in the dataset.14 Prices of stocks and FIBRAs were obtained from Yahoo!, and abnormal

data points were cross-checked with data from Bloomberg and the BMV.

To compute excess returns, both for the FIBRAs and the factor portfolios, the 28-day CETEs

return is considered as the risk-free asset. Daily data on this (annualized) rate of return was down-

loaded directly from the statistical site of Banco de México. For the purpose of this work, an-

nualized rates had to be properly transformed to daily returns. In order to do so, I adopted the

convention of dividing the annualized rate by 360 days. It is worthy of mention that public auc-

tions of these risk-free securities take place only once a week, and that the return of the CETEs

in days in which no auction occurred corresponds to a shorter maturity -sometimes as short as 22

days-. In spite of this disclaimer, this rate of return can still be considered as risk-free, since 28-

day CETEs are available for the investors everyday, and their payoff is known at the current day

regardless of whether the transaction takes place 22 or 28 days prior to maturity.

Table 1 shows the mean and standard deviation of the log-returns of each FIBRA in the dataset.

The mean returns of all the FIBRAs in the sample are very close to zero. The only FIBRA that

earned a positive mean return during the sample period is FIBRA Monterrey. On the other hand,

13FIBRA HD had its initial public offering in June, 2015. Including it in the empirical asset pricing model would
have considerably shortened the length of the time-series and hampered the capacity for statistical inference.

14Logarithmic returns imply, among other computational advantages, continuous compounding. Besides, they pro-
vide a sensible approximation to arithmetic returns when the holding period -and thus the return itself- is small (as is
the case for daily returns). This stems from the fact that ln(x)≈ x−1 when x is close to 1.
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Table 1: Returns on FIBRAs

FIBRA Mean S.D.

Danhos -0.01 1.07
Hotel -0.14 1.66

Inn -0.05 1.01
Macquarie -0.04 1.24
Monterrey 0.03 0.82

Prologis -0.01 1.16
Shop -0.03 1.12

Terrafina -0.01 1.05
Uno -0.04 1.29

Note:Values are expressed in
percentage points.

FIBRA Hotel presented the worst performance in terms of returns: a net loss of 0.14%. The stan-

dard deviation of returns can be thought of as a proxy of the riskiness of each asset, in the sense

that it states how much a return usually diverges from its mean. Under such risk measure, FIBRA

Monterrey is once more the FIBRA with the most favourable behaviour. Every other FIBRA de-

parts, on average, more than 1% from its mean and, notably, Hotel has a sample standard deviation

of 1.66%, which makes it the riskiest of all the FIBRAs considered in our sample. The sample

correlations between each pair of FIBRAs are shown in Table 2. Remarkably, Monterrey’s cor-

relation with any of the FIBRAs is comparatively low: its highest sample correlation is 0.13. On

the other hand, Shop’s correlation with every FIBRA, excluding Monterrey,lies between 0.14 and

0.44. Monterrey’s apparent atypical behaviour could be explained by the fact that it is the youngest

of all the FIBRAs included in the dataset.

Table 2: FIBRAs correlation matrix

FIBRA Danhos Hotel Inn Macquarie Monterrey Prologis Shop Terrafina Uno

Danhos 1.00
Hotel 0.15 1.00

Inn 0.05 0.07 1.00
Macquarie 0.12 0.24 0.08 1.00
Monterrey 0.04 0.05 0.13 -0.07 1.00

Prologis 0.08 0.26 0.06 0.33 0.12 1.00
Shop 0.19 0.44 0.14 0.21 0.06 0.30 1.00

Terrafina 0.14 0.12 0.13 0.33 0.01 0.28 0.16 1.00
Uno 0.10 0.19 0.18 0.11 0.06 0.16 0.14 0.25 1.00
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4.2 Results: Factor estimation

The risk factors used for the pricing of FIBRAs were extracted from the stock market. Many of

the stock prices in the dataset showed little or no variation at all during the sample period, and thus

were not useful for the purpose of identifying risk factors. I restricted the sample to those firms

whose stock price changed in at least one tenth of the days in the sample period. Each of the 87

stock series that survived this criterion is listed on table A3 in the appendix. Stationarity tests were

conducted prior to the implementation of the factor analytical procedures. The null hypothesis of

the existence of a unit root was rejected at all confidence levels for every series of stock returns in

the sample, according to both Phillips-Perron and Augmented Dickey-Fuller tests.15

Table 3: Tests for the number of factors

K χ2 P-value
1 4522.22 0.00
2 4285.40 0.00
3 4084.13 0.00
4 3887.16 0.00
5 3730.12 0.00
6 3593.05 0.00
7 3455.54 0.00
8 3321.88 0.00
9 3197.43 0.00

10 3080.56 0.02
11 2963.09 0.05
12 2852.49 0.12

Likelihood ratio tests as described in section 3.1.1 were performed in order to determine the

adequate number of risk factors to be estimated through Maximum Likelihood Factor Analysis.

The test statistics and P-values of these tests are displayed in Table 3. The null hypothesis that

exactly K factors are present in the stock market was rejected of all K lower than 12, although

eleven factors were enough at the 5 percent level. Hence, the MLFA procedure was performed

in order to extract 12 common risk factors from the sample of stocks in the dataset and factor

portfolios were constructed. As stated above, economic interpretation of factors obtained through

statistical methods is not an easy task. For the task at hand, it suffices to say that our risk factors

are the 12 linear combinations of the 87 series listed on table A3 that best describe the behaviour

of the entire sample of stocks. Table 4 shows basic statistics of the factor portfolio returns. Mean

15As an additional check, the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test was performed on every stock return
series. The null hypothesis of stationarity was rejected for only one of the 87 stock return series.
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portfolio returns lie in the range of -0.56% - 0.21%, while standard deviations of factor portfolio

returns are between 1.22 and 7.15 percent. When compared to returns on FIBRAs, factor portfolios

seem considerably riskier. This comes as no surprise since the objective of MLFA is to identify

and estimate risk factors, i.e. to construct variables that explain the variation of all assets in the

sample.

Table 4: Risk factors obtained via MLFA

Risk factor Mean S.D.

1 0.14 1.22
2 -0.19 2.19
3 0.21 5.78
4 -0.37 5.21
5 0.14 2.62
6 -0.07 5.49
7 0.20 7.15
8 0.00 1.85
9 -0.10 2.42

10 -0.02 1.60
11 -0.13 2.78
12 -0.56 5.05

Note:Values are expressed in
percentage points.

Principal Component Analysis was performed on the same 87 stocks. Figure 1 shows the

cumulative proportion of total sample variance as a function of the number of (ordered) principal

components. The graphic shows that the amount of explained variance increases at a relatively

slow rate. The first 10 principal components together explain only about 32% of the total variance,

and up to 33 principal components are needed to accumulate two thirds of the sample variance. It

is reasonable to conclude that the nature of the stock data does not allow a considerable reduction

of the number of relevant variables. The use of so many risk factors in the pricing model for

FIBRAs would represent a considerable loss of parsimony in the results, and thus I decided base

all subsequent analysis exclusively on the factors estimated through MLFA.

4.3 Multifactor pricing of FIBRAs

The main objective of this work is to apply the linear asset pricing model in equation (5), E[Re j
t ] =

βββ ′
jE[f

e
t ], to the study of risk and return in the FIBRAs market. The main research question is

whether FIBRAs are exposed to risk factors pervasive in the financial market. In this study, I iden-
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Figure 1: Cumulative proportion of variance explained by PC

tified such common risk factors by using MLFA to construct portfolios of stocks that concentrate

the variation of stock market returns. A GMM-based approach was adopted in order to be able to

estimate standard errors consistent with potential issues of heteroskedasticity and/or autocorrela-

tion, as explained in section 3.2. Nine time-series regressions of FIBRAs excess returns on factor

portfolios excess returns were carried on simultaneously. The regression equations are

R
e j
t = α j +βββ ′

jf
e
t + ε

j
t

The GMM estimates of βββ j are measures of the exposure of FIBRAs returns to the risk factors, and

the parameters α j are indicative of whether the linear pricing specification constitutes an adequate

approach to the FIBRAs market. Table 5 displays the output of the estimation, and Table 6 provides

a succinct summary of the results and shows the computed test statistic for the null hypothesis that

the model prices FIBRAs correctly, i.e. that the alphas are jointly zero.

The results show that all FIBRAs are exposed to at least one stock market risk factors, with a

level of confidence of 90%. Factors 1, 2, and 3, are significantly present in many of the FIBRAs.

FIBRA Hotel and FIBRA shop are the more responsive to stock market risk factors, followed

closely by Prologis. On the other hand, the estimation shows that Monterrey is only exposed to

one of the factors. Oddly, the risk factor to which Monterrey is exposed does not have any signif-
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icant presence on any of the other FIBRAs. Regarding to the validity of the linear asset pricing

specification, a remarkable result is that none of the elements of ααα are statistically different from 0

individually. Furthermore, the computed test statistic for the null hypothesis that the intercepts are

jointly zero is quite distant from the rejection regions. The statistic and the critical values for the

χ2 distribution with 9 degrees of freedom are displayed in the bottom panel of Table 6.

As an additional check, I used the same Generalized Method of Moments procedure to esti-

mate a model with the returns of the main Mexican stock market index, the Índice de Precios y

Cotizaciones (IPC), as the single risk factor. This alternative specification is equivalent of an ap-

plication of the traditional CAPM to the FIBRAs market. Results of this estimation show that 7

out of the 9 FIBRAs are significantly exposed to IPC-risk. This single-factor model indicates that

FIBRA Macquarie is the most risky security in the sample, i.e. the one that is most responsive to

the IPC-risk factor. Once again, FIBRA Danhos and FIBRA Monterrey show the smallest asset

betas, both insignificant at the 10% level. Although this single factor model is computationally

simpler, the fact that 2 FIBRAs are not significantly exposed to this single factor suggests that a

multifactor specification like the one performed in this study constitutes a robuster approach to the

risk and return relationship in the market for FIBRAs. Furthermore, the intercept in the regression

for FIBRA Hotel is statistically different from zero at the 10% level, which casts further doubts on

the appropriateness of the single-factor model. Table A4 in the appendix displays detailed results

of this estimation.

In short, a linear multifactor pricing model like the one evaluated here constitutes an adequate

approach to the assessment of risk and return in the FIBRAs market. All of the FIBRAs in the

sample are responsive, although at different degrees, to stock market risk factors. The riskiest

securities in the FIBRAs market, i.e. the ones most responsive to risk factors, are Hotel and Shop.

On the other hand, FIBRA Monterrey behaves quite differently from the other FIBRAs: besides

the fact that that Monterrey had a higher return and a lower standard deviation than other REITs,

it is the only FIBRA that responds to the eleventh stock market risk factor. As stated above, this

abnormal behaviour could stem from the relative youth of Monterrey in the market. However, the

explanation of such peculiar characteristics transcends the reach of this work.
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Table 5: GMM estimation results

Danhos Hotel Inn Macquarie Monterrey Prologis Shop Terrafina Uno

α 0 -0.0014 -0.0003 -0.0005 0.0001 -0.0001 -0.0006 -0.0002 -0.0003
(0.0007) (0.001) (0.0007) (0.0007) (0.0005) (0.0007) (0.0006) (0.0006) (0.0009)

β1 0.1316* 0.4758** 0.0851 0.3293** 0.0287 0.2314** 0.3815** 0.1727** 0.1633**
(0.0729) (0.12) (0.0784) (0.0741) (0.0661) (0.0799) (0.0912) (0.0661) (0.0691)

β2 0.0556 0.1621** 0.1035** 0.1907** 0.0124 0.145** 0.1301** 0.1224** 0.1876**
(0.0476) (0.0658) (0.0365) (0.0469) (0.0305) (0.0447) (0.05) (0.0404) (0.0487)

β3 0.002 0.0489** -0.0009 0.0442** 0.0099 0.0443** 0.0323** 0.052** 0.087**
(0.0128) (0.0239) (0.0126) (0.0159) (0.0129) (0.0132) (0.0137) (0.0116) (0.0227)

β4 0.0283 0.0743** 0.0232* 0.0228 0.0088 0.0137 0.0524** 0.0159 0.01
(0.0173) (0.0271) (0.0137) (0.0178) (0.011) (0.0138) (0.0215) (0.0137) (0.0164)

β5 0.0203 -0.0309 0.0314 0.0047 0.0102 0.0295 0.0371 0.0452 0.0236
(0.0297) (0.0535) (0.0286) (0.0346) (0.0188) (0.0323) (0.029) (0.0292) (0.039)

β6 0.0106 0.0535** -0.0012 0.0147 0.0052 0.041** 0.0253* 0.0253* 0.0019
(0.0171) (0.0215) (0.0139) (0.0183) (0.0099) (0.0168) (0.0138) (0.0142) (0.0162)

β7 -0.0102 0.0012 0.0129 0.0064 0.0009 -0.0013 -0.001 0.0002 -0.0088
(0.0109) (0.018) (0.0118) (0.0137) (0.0095) (0.012) (0.0133) (0.0112) (0.0142)

β8 0.0729* 0.1217** 0.0656* -0.0113 0.0213 0.0205 0.1054** 0.0158 0.0016
(0.0439) (0.0566) (0.0357) (0.0503) (0.0265) (0.0377) (0.0421) (0.0392) (0.0506)

β9 0.052 0.0361 0.0215 -0.0063 -0.0166 0.0059 -0.0014 0.0178 0.005
(0.0368) (0.0488) (0.0312) (0.0322) (0.0207) (0.0318) (0.0384) (0.0317) (0.0346)

β10 -0.0384 -0.0555 -0.0332 0.0176 0.0459 -0.0235 -0.0113 0.0441 -0.0183
(0.0597) (0.0821) (0.0485) (0.0585) (0.0413) (0.0535) (0.0562) (0.0564) (0.0513)

β11 -0.0379 0.0063 0.0011 0.0127 0.0399* 0.0339 -0.0031 0 0.0081
(0.027) (0.0357) (0.0303) (0.0245) (0.0214) (0.0274) (0.024) (0.0355) (0.0326)

β12 0.0219 0.0161 0.0131 0.0016 -0.0207 0.0168 -0.0149 0.0009 0.029
(0.017) (0.0244) (0.0143) (0.0184) (0.014) (0.0172) (0.0185) (0.017) (0.0212)

Note: Heteroskedasticity and autocorrelation consistent standard errors are shown in parentheses.
*Statistically significant at the 10% level. **Statistically significant at the 5% level.
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Table 6: Summary of estimation

Danhos Hotel Inn Macquarie Monterrey Prologis Shop Terrafina Uno

β1 β ∗
1 β ∗

2 β ∗
1 β11 β ∗

1 β ∗
1 β ∗

1 β ∗
1

β8 β ∗
2 β4 β ∗

2 β ∗
2 β ∗

2 β ∗
2 β ∗

2
β ∗

3 β8 β ∗
3 β ∗

3 β ∗
3 β ∗

3 β ∗
3

β ∗
4 β ∗

6 β ∗
4 β6

β ∗
6 β6

β ∗
8 β ∗

8

Test Statistic

χ2
9 90% 95% 99%

3.1476 14.68 16.91 21.66

Note: The top panel of this table shows the statistically significant parameters for each FIBRA at
the 10% level. Parameters marked with * are also significant at the 5% level. The bottom panel
shows the test statistic for the null hypothesis that the α coefficients are jointly equal to 0, along
with the critical values of the distribution.

5 Final remarks

The recent appearance of FIBRAs has opened a window of opportunity for research in real estate-

related topics. This work exploits the availability of daily, transaction-based information about the

returns on real estate assets in order to investigate risk factors in the FIBRAs market. This investi-

gation contributes to the literature on REITs by applying the GMM-based approach for empirical

asset pricing proposed in MacKinlay and Richardson (1991). Furthermore, this work is a pioneer

in the econometric study of FIBRAs and hopefully sets a precedent for future research on the sub-

ject.

Based upon a stochastic discount factor specification, I describe conditions under which ex-

pected excess returns are linear combinations of the factor risk premia. I then estimate risk factors

from a large sample of Mexican stocks via Maximum Likelihood Factor Analysis. Risk factors

were also estimated through Principal Component Analysis, but too many variables were needed

to explain a reasonable proportion of the variance in the stock market. Consequently, only MLFA

factor portfolios were used in the subsequent estimation of the linear pricing model for FIBRAs. I

used a GMM-based strategy that generalizes the method postulated in MacKinlay and Richardson
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(1991) to the case of multiple risk factors.

Results show that all FIBRAs are exposed to at least one stock market risk factor. The most

responsive securities in our sample were FIBRAs Hotel and Shop. On the contrary, FIBRA Mon-

terrey displayed a very weak correlation structure with the other assets in the market, and is sig-

nificantly exposed to only one of the 12 estimated risk factors. One more peculiarity of FIBRA

Monterrey is the fact that it is the youngest FIBRA in the sample. This might cause the atypical

behaviour, but this work provides no useful information for determining the validity of such asser-

tions. A test for the validity of the linear multifactor specification indicates that the null hypothesis

that the model prices FIBRAs correctly on average cannot be rejected at any of the traditional sig-

nificance levels.

The conclusions of this investigation should be assessed carefully. The most evident caveats

have to do with the data, e.g. a very limited number of FIBRAs that does not permit the perfor-

mance of cross-sectional asset pricing tests, and the relatively short time-series I was forced to

consider because of the recent emergence of FIBRAs. In the future, once the market can provide

enough data, it may be advisable to study multifactor models for FIBRAs using observable macroe-

conomic variables as the risk factors, or even statistical factors derived from other asset markets,

like corporate debt or derivatives. Other issues are related to the factor estimation procedures, like

the fact that risk factors were constructed via a maximum likelihood approach that imposes strong

distributional assumptions on the data. Hence, this work should be taken as nothing more than

what it is: a first attempt at the study of the implicit risk factors in this branch of the real estate

market and an opportunity for future research regarding the specific characteristics of FIBRAs and

their broader role in the real estate and financial markets.
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Appendix

Table A1: Publicly traded FIBRAs

FIBRA Portfolio IPO

Uno Diversified March, 2011
Macquarie Diversified December, 2012
Hotel Lodging November, 2012
Inn Lodging March, 2013
Terrafina Industrial March, 2013
Shop Commercial July, 2013
Danhos Diversified October, 2013
ProLogis Industrial June, 2014
Monterrey Office buildings October, 2014
HD Diversified June, 2015

Source: Websites of BMV and the individual FIBRAs.

Table A2: Stationarity tests

FIBRA PP ADF KPSS

Danhos 0.01 0.01 0.1
Hotel 0.01 0.01 0.1
Inn 0.01 0.01 0.1
Macquarie 0.01 0.01 0.1
Monterrey 0.01 0.01 0.1
Prologis 0.01 0.01 0.1
Shop 0.01 0.01 0.1
Terrafina 0.01 0.01 0.1
Uno 0.01 0.01 0.1

Note: Table shows P-values for three tests:
Phillips-Perron (PP), Augmented Dickey-
Fuller (ADF), and Kwiatkowski–Phillips–
Schmidt–Shin (KPSS).
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Table A3: Stock series used for factor estimation

ACTINVR CEMEX GCC HILASAL MEDICA SIMEC
AEROMEX CHDRAUI GENTERA HOTEL MEGA SORIANA
AGUA CIDMEGA GFAMSA ICA MEXCHEM SPORT
ALFA CMOCTEZ GFINBUR ICH MFRISCO TEAK
ALPEK CMR GFINTER IDEAL MONEX TLEVISA
ALSEA COMERCI GFNORTE IENOVA OHLMEX TMM
AMX CREAL GFREGIO KIMBER OMA VALUEGF
ARA CULTIBA GISSA KOF PAPPEL VASCONI
ASUR CYDSASA GMD KUO PINFRA VESTA
AUTLAN ELEKTRA GMEXICO LAB POCHTEC VITRO
AXTEL FINDEP GNP LALA RASSINI VOLAR
AZTECA FRAGUA GRUMA LAMOSA RCENTRO WALMEX
BACHOCO GAP GSANBOR LIVEPOL SANMEX
BIMBO GBM HCITY MASECA SARE

Note: Table shows all the 87 stock series used for factor estimation. Selection criteria are: 1) data availability
over the whole sample period, and 2) price changes in at least one tenth of the days in the sample period.

Table A4: FIBRAs CAPM

Danhos Hotel Inn Macquarie Monterrey Prologis Shop Terrafina Uno

α -0.0002 -0.0015* -0.0006 -0.0005 0.0002 -0.0002 -0.0004 -0.0002 -0.0005
(0.0006) (0.0009) (0.0006) (0.0006) (0.0004) (0.0006) (0.0006) (0.0005) (0.0007)

βIPC 0.1156 0.4628** 0.1778** 0.5199** 0.044 0.4716** 0.369** 0.3721** 0.4091**
(0.0881) (0.1526) (0.0812) (0.0941) (0.0605) (0.0979) (0.1108) (0.0776) (0.0982)

Note: Heteroskedasticity and autocorrelation consistent standard errors are shown in parentheses.
*Statistically significant at the 10% level. **Statistically significant at the 5% level.
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