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Abstract

We present a problem in which colleges choose quality in a continuum two-sided

matching market, where a finite set of colleges is matched to a continuum of students.

We consider the case when this choice is constrained, that is, when each college has a

budget to invest in improving. We show that there exists a Nash Equilibrium when all

of them choose quality simultaneously. Moreover, we analyze the case of the duopoly in

order to make our results clear, it also shows how the mechanism works and it allows us

to get some comparative statics.
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1 Introduction

This paper develops a model of school quality choice inspired by the article of

Azevedo and Leshno [6], which consists of choosing a school quality parameter

for each school in a continuum matching market, that is, where a finite set of

colleges is matched with a continuum of students. The choice of quality is taken

before the assignment takes place, so that the mechanism assigns a continuum of

students having observed the quality parameter of each one.

We take an important and innovative result by Azevedo and Leshno [6], which

establishes the equivalence between i) finding a stable matching using the contin-

uous version of the deferred acceptance algorithm of Gale & Shapley [10], and ii)

solving a system of equations of supply and demand (finding the market-clearing

cutoff vector). The main issue of this work is to model the choice of school quality

by taking into account two aspects:

1. The strategic behavior of colleges, and

2. A budget constraint faced by each college to carry out the investment in

quality.

This approach proposes a maximization problem subject to a budget con-

straint by each college, where the decision variable is precisely school quality. We

use the Lagrange method to incorporate the budget constraint into the maxi-

mization of the entering class, which we define as the quality of students that

are assigned to each college by the mechanism. We show that there exists at

least one Nash quilibrium. Moreover, we analyze the case of duopoly (i.e. only

two schools), in order to explain how the mechanism works and to get some

comparative statics.

This model has two parts. The first one is related to the continuum matching

model of Azevedo and Leshno [6], from which we take the terms to analyze

the incentives for colleges to invest in school quality (with basically the same

notation). The second part is related to a model of a constrained maximization

problem in order to capture the strategic behavior of the colleges.

3



We find basically two kinds of results. The first one is theoretical, in which

we show that there exists a Nash equilibrium in the game where colleges choose

quality simultaneously. It is well known that even in the basic Cournot model,

the sufficient conditions for equilibrium to exist are quite restrictive (Roberts and

Sonnenschein [15]), so we had to assume a quasi-concave function of the quality

of the entering class in order to use the Kakutani’s fixed point theorem to prove

existence. The second result is related to comparative statics, where, by assuming

a truncated distribution function, we show that the market clearing cutoffs of the

colleges (defined as a threshold above which students are acceptable for colleges),

are indeed positive in some interval, and, with income restrictions, that the quality

of the entering class of a college increases with the college’s budget to invest in

quality.

Since this paper considers the case of an economy where each of a finite number

of colleges is matched to a continuum mass of students, it is based on Aumann [2]

insight that markets with a continuum of traders may be considerably simpler that

those with a finite number of traders. As mentioned by Azevedo and Leshno [6],

the model follows Gale and Shapley [10] college admissions model, which allows

for complex heterogeneous preferences. In the mechanism design literature there

are several papers that study the properties of large markets (see, for example,

Swinkels [19]). In the market design literature, many recent papers have focused

on large markets (Che and kojima [8] and Azevedo and Budish [5]). More related

to this model, are the contributions in market design that study large matching

markets (Roth and Peranson [17] and Kojima and Pathak [12]). Besides, Avery

and Levin [3] consider noncooperative models of college admissions, where colleges

use admissions thresholds.

In the context of the incentives for colleges to invest in school quality, Hat-

field et al. [11] consider this problem, in particular whether competition for the

best students gives colleges incentives to improve their quality. They show that

no stable mechanism respects improvements of school quality. However, in large

markets, any stable mechanism approximately respects improvements, so the in-

centives are nonnegative but we do not know anything about the magnitude of
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them. Finally, for the last part, we follow the work of Azevedo [4] who introduce

imperfect competition in two-sided matching markets.

2 The Model

We start with some definitions in order to analyze the two parts of the model.

We use the same notation of Azevedo and Leshno [6] to make our extension clear.

2.1 Definitions

Consider an economy with a set of public colleges C = {c1, ..., cC} on one side of

the market, where we denote a generic college as c. Each college c has capacity

sc, which is the measure of the maximum number of students that college c can

admit. The preferences of the colleges over students are defined by the vector

ec ∈ [0, 1]C which are the scores that students obtain at college c. We need

some measure of the quality of colleges. Let δ be the vector of qualities of the C

colleges, so that δc ∈ R represents the quality of college c; students prefer higher

δc to lower δc.

On the other side, I is the set of students, generically denoted i. In this

case we say that eic is the score of student i at college c. It is assumed that the

vectors ei are distributed according to a distribution function G(·) in [0, 1]C , with

an associated continuous density g > 0. Let τ : I −→ Θ be a type function

(where Θ is the set of student types), such that τ(i) = θ, that is, τ assigns a type

θ ∈ Θ to each student i ∈ I. We denote the type of students θ = (≻θ, eθ), where

≻θ represents the student’s strict preference ordering over colleges, and eθ is the

vector of scores obtained by θ at every single college. Colleges prefer students

with higher scores, that is, c prefers θ over θ′ if eθc > eθ
′

c , or equivalently, i ≻c j

iff e
τ(i)
c > e

τ(j)
c , for all i, j ∈ I.

Students’ preferences depend on the quality of each college δc. Nevertheless,

there is the possibility that different students may be affected differently by δc.
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This will be useful when competition for the best students is taken into account.

Student i has utility uic(δc) > 0 of attending college c, increasing in δc, and utility

0 of being unmatched. Strict preferences are assumed, that is, the measure of

students who are indifferent between two colleges is 0 for any value of δ; even

when δc is the same for all colleges, they are not perfect substitutes, it means

that even if δc = δc′ , it is possible that uic(δc) 6= ui
c
′ (δ

′

c), and also when δc 6= δc′ ,

it could be the case that uic(δc) = ui
c
′ (δ

′

c). Intuitively, if δc measures the quality

of an applied econometrics course in a masters program, students with interest

in working at Sedesol1 will be more sensitive to changes in δc than those who

prefer to study a PhD. Given δ, colleges’ preferences induce a distribution ηδ over

student types Θ, this distribution is assumed to be smooth in δ and θ, and to

have a density fδ > 0.

The decision of colleges of admitting students depends on a threshold of the

students’ scores, above which a student is acceptable. Azevedo and Leshno

[6] name this threshold a cutoff and assume dependence on quality, P (δ) =

(Pc1(δ), ..., Pc1(δ)), so that Pc is the college c’s cutoff. For a given δ and P (δ),

a student’s demand is defined as her favorite college among those she can afford

(i.e. those where Pc ≤ eθc). Dependence on δ will be omitted when there is no

risk of confusion (P = (Pc1 , ..., PcC )).

Now, since Θ is continuous, we say that a continuum economy is given by

E = [η, S], where η is a probability measure over Θ and S = (s1, s2, ..., sC) is

a vector of strictly positive capacities for each college. As stated above, strict

preferences have been assumed, so that every college’s indifference curves have

η-measure 0. That is, for any college c and real number x, η({θ : eθc = x}) = 0.

Definition 1. (Azevedo and Leshno [6]) A matching describes an allo-

cation of students to colleges. Formally, in a continuum economy E = [η, S], it is

a function µ : C ∪Θ −→ 2Θ ∪ (C ∪Θ), such that

1. For all θ ∈ Θ : µ(θ) ∈ C ∪ {θ}.
1Secretaŕıa de Desarrollo Social.
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2. For all c ∈ C : µ(c) ⊆ Θ is measurable, and η(µ(c)) ≤ sc.

3. c = µ(θ) iff θ ∈ µ(c).

4. (Right continuity) For any sequence of student types θk = (≻, ek) and θ =

(≻, e), with ek converging to e, and ekc ≥ ek+1
c ≥ ec for all k, c, we can find

some large K so that µ(θk) = µ(θ) for k > K.

Conditions (1)-(3) are analogous to those in the discrete model. Condition (1)

states that each student is matched to a college or to herself (unmatched); (2) that

colleges are matched to sets of students with measure not exceeding its capacity;

(3) is a consistency condition, requiring that a college is matched to a student if

and only if the student is matched to the college. The technical Condition (4) is

novel. It states that given a sequence of student types θk = (≻, ek), which are

decreasingly desirable, with scores ek −→ e, then for large enough k all student

types (≻, ek) in the sequence receive the same allocation, and the students whose

score is the limit (≻, e) receive this allocation too. The last condition does not

affect the set of stable matchings, it only implies that a stable matching always

allows a set of extra students of measure 0 into a college when this can be done

without compromising stability.

A student-college pair (θ, c) blocks a matching µ at economy E if the student

θ prefers c to her match and either (i) college c does not fill its quota, or (ii)

college c is matched to another student that has a strictly lower score than θ.

Formally, (θ, c) blocks µ if c ≻θ µ(θ) and either (i) η(µ(c)) < sc, or (ii) ∃ θ′ ∈ µ(c)

with eθ
′

c < eθc .

Definition 2. (Azevedo and Leshno [6]) A matching µ for a continuum

economy E is stable if it is not blocked by any student-college pair.

As stated before, the target of this paper is to address the problem of investing

in school quality by colleges. In doing so, the characterization of a matching in

terms of supply and demand will be used. Recall that a cutoff is a minimal score

Pc ∈ [0, 1] required for admission at a college c. A student’s demand given a

7



vector of cutoffs is her favorite college among those she can afford. That is,

Dθ(P ) = argmax
≻θ

{c|Pc ≤ eθc} ∪ {θ}.

The aggregate demand for college c is the mass of students that demand

it,

Dc(P ) = η({Dθ(P ) = c}).

The aggregate vector {Dc(P )}c∈C is denoted by D(P ). A market clearing cutoff

is a vector of cutoffs that clears supply and demand for colleges.

Definition 3. (Azevedo and Leshno [6]) A vector of cutoffs P is a market

clearing cutoff if it satisfies the following market clearing equations

Dc(P ) ≤ sc

for all c, and Dc(P ) = sc if Pc > 0.

There is a one-to-one correspondence between stable matchings and market

clearing cutoffs. To define this correspondence, two operators are defined. Given

a market clearing cutoff P , we define the associated matching µ = MP using the

demand function:

µ(θ) = Dθ(P ).

Conversely, given a stable matching µ, we define the associated cutoff P = Pµ

by the score of the marginal students matched to each college:

Pc = inf
θ∈µ(c)

eθc .

The operatorsM and P form a bijection between stable matchings and market

clearing cutoffs.

Lemma 1. (Supply and Demand Lemma - Azevedo and Leshno [6])

If µ is a stable matching, then Pµ is a market clearing cutoff. If P is a market

clearing cutoff, then MP is a stable matching. In addition, the operators P and

M are inverses of each other.
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This lemma implies that, given E, computing stable matchings is equivalent

to finding market clearing cutoffs, as P and M are a one-to-one correspondence

between the two sets.

2.2 Investment In School Quality

Now we are able to say that, given δ, there exists a unique stable matching µδ.

Let P ∗(δ) be the unique associated market clearing cutoffs. More specifically,

Azevedo and Leshno (2013) define the aggregate quality of a college’s entering

class as

Qc(δ) =

∫

µδ(c)
eθcdηδ(θ) (1)

That is, the integral of scores eθc over all students matched to the college c.

Why do we need this term? Consider how a college’s quality δc affects the quality

of its entering class Qc. Once we have a direct link between δc and Qc, we are

able to say something about the incentives to improve quality, it could be to

improve the quality of the entering class as a whole or to attract a specific kind

of students.

Taking into account that students’ utility is increasing in δc, we need to define

some relevant quantities:

• The number Nc of additional students attracted to college c by a marginal

increase in quality:

Nc ≡
d

dδc
Dc(P ) |P=P ∗(δ)=

∫

{θ:Dθ(P ∗(δ))=c}

d

dδc
fδ(θ)dθ.

• The average quality of the attracted students:

ēc ≡
∫

{θ:Dθ(P ∗(δ))=c}
eθc ·

d

dδc
fδ(θ)dθ/Nc.

• The set of students who are marginally accepted to college c′ and would go

to college c otherwise:

M̃c′c = {θ : c′ ≻θ c, Pc′ = eθc′ , Pc ≤ eθc , Pc′′ > eθc′′∀c′′ 6= c′ : c′′ ≻θ c}.
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• The number of students in this margin, and their average scores:

Mc′c =

∫

M̃
c′c

fδ(θ)dθ,

P̄c′c = E[eθc | θ ∈ M̃c′c].

At this point, notice that a cutoff P ∗
c is the quality of a marginal accepted (or

rejected) student at college c. The effect of school quality δc on the quality of the

entering class Qc is as follows.

Proposition 1. (Azevedo and Leshno [6]) Assume that P ∗(δ) > 0, and

that P is differentiable in δc. Then the quality of the entering class Qc is differ-

entiable in school quality δc, and its derivative can be decomposed as

dQc

dδc
= [ēc − P ∗

c ] ·Nc
︸ ︷︷ ︸

Direct Effect

−
∑

c′ 6=c

[P̄c′c − P ∗
c ] ·Mc′c · (−

dP ∗
c′

dδc
)

︸ ︷︷ ︸

Market Power Effect

. (2)

The direct effect term is weakly positive, always giving incentives to invest in

quality. The market power terms increase (decrease) the incentives to invest in

quality if an increase (decrease) in the quality of college c increases the market

clearing cutoff of college c′, that is dP ∗
c′(δ)/dδc > 0(< 0).

2.3 Income Restrictions

So far, as mentioned before, we only have replicated the Azevedo and Leshno’s

model (the remaining is ours) in order to extend it in the form of a constrained

maximization problem. Suppose that, in the context of the model described

above, there is a budget constraint for colleges Rc, i.e. investment in quality

depends both on the behavior of the other colleges in the economy, and on an

amount available to the college c to invest in quality.

Investing in quality is costly, we denote h(·) the cost function for investing

in quality (i.e. depends on δ) for college c, h : [0,∞) −→ R. We assume the

following:
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Figure 1: The strictly convex form of the cost function.

h′(δ) > 0

and also

h′′(δ) > 0.

The intuition of an increasing and strictly convex h(·) is the following (see

Figure 1): suppose that college c wants to increase its quality of, say, ∆δ. What

is the cost associated with this increase? It stands to reason that c can achieve

this target at a lower cost when the quality is low than when it is high, and

that the greater δc, the greater the amount of money required to improve (e.g.

c could hire a recent graduate of the Master in Economics of Colmex to teach

Microeconomics when δc is low, while it would have to hire a SNI2 III researcher

to obtain the same change when δc is high).

Having defined above, we can address the investment in quality for c as a

maximization problem subject to a budget constraint as follows:

max
δc

Qc(δ)

subject to

h(δc) ≤ Rc.

Using the Lagrange method, the problem becomes

2Sistema Nacional de Investigadores.
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L = Qc(δc)− λ[h(δc)−Rc], (3)

from which we get the following first order conditions:

∂L

∂δc
=

dQc(δc)

dδc
− λ

dh(δc)

dδc
= 0 (4)

∂L

∂λ
= h(δc)−Rc = 0. (5)

Recalling that the vector of cutoffs that clear the market P ∗ is determined by

the condition D(P ) = S, for a given δc′ , ∀c′ 6= c, we can substitute (2) into (4)

to obtain

δc = δc(Rc, δc′∈{C\c}). (6)

Since this expression depends on the amount Rc and the quality of the other

colleges, it clearly captures the two effects mentioned above: the effect of the be-

havior of the other colleges in the economy, and the effect of the budget constraint

for college c to invest in quality. It is a reaction function.

At this point, assuming that all colleges choose their quality simultaneously,

we can model this problem as a game:

G = 〈C, {∆c}, {Qc(·)}〉, for all c ∈ C,

where C is the set of players (colleges), {∆c} is the set of strategies for each

player c (with δc ∈ ∆c), and {Qc(δc1 , ..., δcC )} the payoff function giving the von

Neumann-Morgenstern utility levels associated with the outcome arising from

strategies (δc1 , ..., δcC ). Given the reaction functions in (6), we can say that:

Proposition 2. For a given function Qc(δ), quasi-concave in δc, a pure-

strategy Nash equilibrium, δ∗ = (δ∗c1 , ..., δ
∗
cC
), exists in the game G.

Proof. We begin with Lemma 2, which provides a key technical result.
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Lemma 2. If the sets ∆c1 , ...,∆cC are nonempty, ∆c is compact and convex,

and Qc(·) is continuous in (δc1 , ..., δcC ) and quasi-concave in δc, then player c’s

best-response correspondence bc(·) is nonempty, convex-valued, and upper hemi-

continuous.

Proof. Note first that bc(δ−c) is the set of maximizers of the continuous function

Qc(·, δ−c) on the compact set ∆c. Hence, it is nonempty[]. The convexity of

bc(δ−c) follows because the set of maximizers of a quasi-concave function [in this

case, the function Qc(·, δ−c)] on a convex set [∆c, in this case] is convex. Finally,

for upper hemi-continuity, we need to show that for any sequence (δnc , δ
n
−c) −→

(δc, δ−c) such that δnc ∈ bc(δ
n
−c) for all n, we have δc ∈ bc(δ−c). To see this,

note that for all n, Qc(δ
n
c , δ

n
−c) ≥ Qc(δ

′

c, δ
n
−c) for all δ

′

c ∈ ∆c. Therefore, by the

continuity of Qc(·), we have Qc(δc, δ−c) ≥ Qc(δ
′

c, δ−c).

Now, in order to prove Proposition 2, define the correspondence b : ∆ → ∆

by

b(δc1 , ..., δcC ) = bc1(δ−c1)× · · · × bcC (δ−cC )

Note that b(·) is a correspondence from the nonempty, convex, and compact set

∆ = ∆c1×· · ·×∆cC to itself. In addition, by Lemma 2, b(·) is a nonempty, convex-

valued, and upper hemi-continuous correspondence. Thus, all the conditions of

the Kakutani fixed point theorem are satisfied. Hence, there exists a fixed point

for this correspondence, a strategy profile δ ∈ ∆ such that δ ∈ b(δ). The strategies

at this fixed point constitute a Nash equilibrium because by construction δc ∈
bc(δ−c) for all c = c1, ..., cC .

3 Application: Duopoly

We now restrict our attention to the duopoly case. This section attempts to

show the main results of the previous sections. First of all, we need to make the

allocation mechanism clear. Consider the case when there are only two colleges,
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Figure 2: These squares represent the set of student types.

The left square represents students that prefer college c1, and

the right square students who prefer college c2. Scores at each

college are represented by the (x, y) coordinates.

c1 and c2. The distribution of the students η is a truncated distribution to the

interval [0, 1]. That is, we assume that there is a mass m ∈ [0, 1] of students with

preference list c1, c2, and a mass (1 −m) of students with preference list c2, c1,

where we assume that m is the mean of the truncated distribution.

Each mass of students has scores distributed uniformly over [0, 1]2 as it is

shown in Figure 2. Note the following: if both colleges had capacity 1/2, the

unique stable matching would have each student matched to her favorite college.

To make the model interesting, assume that the capacity of college c1 is sc1 , and

the capacity of college c2 is sc2 , and sc1 + sc2 < 1. That is, colleges do not

necessarily have the capacity to accept all students who prefer them.

As Azevedo and Leshno [6] have shown, there are two ways of finding stable

matchings: the continuous version of the student-proposing deferred acceptance

algorithm and the application of Lemma 1. As they show, we may simply look

for cutoffs that equate supply and demand. This is illustrated in Figure 3, where

it is easy to see that the market clearing equations are:

sc1 = (1− p1)(1 + p2)(m)

sc2 = (1− p2)(1 + p1)(1−m)

Solving this system, we get p1 = p1(m, sc1 , sc2) and p2 = p2(m, sc1 , sc2), which

are the market clearing cutoffs in terms of the capacities and the mean of the

distribution η.
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Figure 3: These squares are the same as in Figure 2, but

here we can see the mass of students assigned to each college.

The area with ∅ represents the mass of unmatched students.

As we said in section 2.3, this is the starting point in order to analyze the

investment in quality, since the mechanism assigns students to colleges once the

quality of the latter has been observed. Now, we need an expression to capture

the effect of the qualities of both colleges on the students’ demand. The following

expression for m, the mean of the distribution, is proposed

m(δc1 , δc2) = 1− 1

1 +
δc1
δc2

. (7)

This way of expressing the mean has two advantages. First, we can take the

following limits in equation (7):

lim
(

δc1

δc2

)

→0

m = 0

lim
(

δc1

δc2

)

→∞

m = 1

This tells us that for all possible values of the qualities, captured by the

ratio between them, the mean is always in [0, 1]. Remember that we assumed

that the mean determines the demand for each college, and that we truncated

the distribution to [0, 1] (so that, a mean outside this range would be a big

problem!). Second, this expression is consistent with our assumptions because

it implies that an increase in the quality of college c1, increases the demand for
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it (∂m(·)/∂δc1 > 0), and an increase in the quality of college c2 decreases the

demand for college c1 (∂m(·)/∂δc2 < 0), which is very intuitive.

Now, we have to be sure that our market clearing cutoffs are indeed positive.

Solving the equations of p1 and p2 above, we obtain

p1 =
sc1(1−m)− sc2m

4m(m− 1)

−

√

(sc1(m− 1) + sc2m)2 + 8m(m− 1)[sc1(1−m) +m(2(m− 1) + sc2)]

4m(m− 1)
,

and

p2 =
sc1(m− 1) + sc2m

4m(m− 1)

−

√

(sc1(m− 1) + sc2m)2 + 8m(m− 1)[sc1(1−m) +m(2(m− 1) + sc2)]

4m(m− 1)
.

Suppose that sc1 = 1/4 and sc2 = 1/2. Replacing this values in p1 and p2,

and computing them using Mathematica for m in [0, 1], we get the result shown

in Figure 4, where we can see not only that our results make sense, but the range

in which p1 and p2 are positive. Remember that we have, basically, two kinds

of results. The first one is theoretical, in which we have shown that there exists

a Nash equilibrium in the game where colleges choose quality simultaneously. It

is well known that even in the basic Cournot model, the sufficient conditions for

equilibrium to exist are quite restrictive (Roberts and Sonnenschein [15]), so we

had to assume a quasi-concave function of the quality of the entering class in order

to use the Kakutani’s fixed point theorem to prove existence. The second result

is related to comparative statics, where, by assuming a truncated distribution

function, we show that the market clearing cutoffs of the colleges, are indeed

positive in some interval. This can be extended to several cases when the sum

of the capacities colleges is less than 1 (see Figure 7 in the Appendix). At this

point, we can replace (7) into p1 and p2 to obtain p1(δc1 , δc2) and p2(δc1 , δc2).

This expressions are useful to analyze the incentives for colleges to invest in

school quality. Since the cutoffs depend on the qualities, we can compute the
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Figure 4: We can see that for a range between 0.2 and 0.7 of

the mean, our clearing market cutoffs are positive. Here, the

cutoffs are plotted on the y axis and the mean on the x axis.

sign of ∂Pc/∂δc and ∂Pc/∂δc′ , ∀c, c′ = {c1, c2}, in order to find an interval for

equation (2) to be positive, giving incentives to invest in quality.

Having defined above, we set up the maximization problem for colleges in the

case of duopoly:

max
δc

Qc(δ)

subject to

h(δc) ≤ Rc

for all c = {c1, c2}. At this point, we note that our assumption of the quasi-

concavity and the strategic behavior of the colleges derive in two cases for the

solution of this problem, both related to the constraint. Let δ̃c be the value of the

quality of college c for which the constraint is satisfied with equality. The cases

are the following:

1. When the constraint is not active. This is the case when λ = 0

in the maximization problem of equation (3). A non active constraint implies

that the function Qc(·) reaches an interior maximum δ∗ ∈ (0, δ̃c) (see Figure 5).

We assume that this is so because of the strategic behavior of the colleges, and

suppose that the problem can be posed as follows

max
δc

Qc(δc, δc′(δc)),

which is a standard problem of Industrial Organization (for example, the Stack-
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Figure 5: When the constraint is not active, we have an

interior maximum of Qc(·).

elberg model). We can obtain the following first order condition:

dQc

dδc
=

∂Qc

∂δc
+

∂Qc

∂δc′
· dδc′
dδc

= 0,

from which we get

dδc′

dδc
= −

∂Qc

∂δc
∂Qc

∂δ
c′

, for all c, c′ ∈ {c1, c2}. (8)

It is clear that (8) is a reaction function. Assuming that ∂Qc/∂δc ≥ 0 and

∂Qc/∂δc′ ≤ 0 for all c, c′ ∈ {c1, c2}, we can say that colleges are strategic comple-

ments.

2. When the constraint is active. This is the case when we do not have

to take into account the strategic behavior of colleges, that is, when λ > 0. Here

we are in the case of equation (3), from which we obtain the same first order

conditions:
∂L

∂δc
=

dQc(δc)

dδc
− λ

dh(δc)

dδc
= 0,

and
∂L

∂λ
= h(δc)−Rc = 0.

Given that Qc(·) is a continuous and quasi-concave function of δc, by the Bolzano-

Weierstrass theorem, we can say that, in this case, Qc(·) reaches its maximum in

δ∗c , which is the supreme of the compact interval [0, δ∗c ] (see Figure 6).
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Figure 6: When the constraint is active, Qc(·) has a maxi-

mum in the interior point δ∗c .

3.1 Comparative Statics

Finally, we want to derive comparative statics in the constrained maximization

problem. Once we know how the mechanism works, we just have to note that,

in the second case discussed before (when the constraint is active), δ∗c is given by

the second F.O.C., so we can assume a specific functional form of h(·) to obtain

it. Then, we replace δ∗c and δ∗c′ in equation (7) to obtain the value of the mean

of our distribution and, finally, by replacing them in equation (1) the quality of

the entering class to college c is obtained. It should be clear that we only have

to know the score of the students assigned to each college (see Figure 3), which

depends on the distribution of eθ.

First of all, we get the market clearing cutoffs P ∗
c and P ∗

c′ in terms of Rc and

Rc′ as follows

P ∗

c =
2Rc +

√
Rc

√
Rc′ −Rc′ −

√

4R2
c − 60R

3/2
c

√
Rc′ + 157RcRc′ − 34

√
RcR

3/2
c′ +R2

c′

16
√
Rc

√
Rc′

and

P ∗

c′ =
1

16RcRc′

(

−2R3/2
c

√

Rc′ −RcRc′ +
√

RcR
3/2
c′

)

− 1

16RcRc′

(
√

Rc

√

Rc′

√

4R2
c − 60R

3/2
c

√

Rc′ + 157RcRc′ − 34
√

RcR
3/2
c′ +R2

c′

)
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Now, having obtained P ∗
c (Rc, Rc′) and P ∗

c′(Rc, Rc′) we need to calculate the

integral of equation (1). We use Mathematica to compute the integral in order to

obtain Qc(Rc, Rc′) and Qc′(Rc, Rc′) This calculation is a little difficult, and the

expression is very large (we omit the result here). Assuming a nice distribution

of the student types, one can see the following

∂Qc(Rc, Rc′)

∂Rc
≥ 0,

which means that the quality of the entering class to college c is increasing in the

budget assigned to college c by the State. It is easy to see that, by equation (7),

∂Qc(Rc, Rc′)

∂Rc′
≤ 0,

which tells us that the quality of the entering class to college c is decreasing in the

budget assigned to college c′. This is so because c′ is attracting the best students.

Considering polar cases, for example Rc > 0 and Rc′ = 0, it should be noted that

the quality of students depends on the capacities of colleges, so that, assuming

sc = sc′ we will find that Qc ≥ Qc′ , for all c, c
′ = {c1, c2}. This means that, when

colleges have the same capacities, the quality of the students is higher for the one

with the largest budget.

4 Conclusion

This paper proposes an extension of the Azevedo and Leshno’s work [6] in the

choice of the quality offered by colleges in a model of matching markets with a

continuum of students on one side, and a discrete set of colleges on the other.

This model admits complex heterogeneous preferences, so that we assume that

colleges are not necessarily perfect substitutes even if they have the same quality.

We show that there exists a Nash equilibrium in the constrained maximization

problem, i.e. when colleges choose quality simultaneously subject to a budget

constraint. Moreover, we analyze the case of the duopoly in order to make both

the mechanism and our results clear. The distribution for the students used in
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the model was a truncated one to the interval [0, 1], and a specific functional

form (in terms of the qualities of both colleges) of the mean of it was proposed.

Additionally, we obtain the cutoffs in terms of the qualities by solving the supply

and demand equations of Azevedo and Leshno [6], and we found that there is a

range in the values of them for which there are incentives for colleges to invest in

quality.

We consider two cases of the maximum quality. First, when the constraint is

not active, where we obtained conditions under which the colleges are strategic

complements (as in a standard problem of Industrial Organization). Second, when

the constraint is active, where we solved the standard problem by the Lagrange

method; this case let us finding some comparative statics. Once we obtained the

maximum quality of colleges in this case in terms of the budget assigned by the

State to each one, we calculated the quality of the entering class and considered

different cases for the distribution of that budget.

A contrastation can be made between the paradigm of assortative matching

and our results, more related to the distribution of education by using two decision

variables of the State, the capacities of colleges, and the budget assigned to each

one to invest in school quality. It was shown that the amount assigned to each

college has a positive impact on the quality of the students, so that, the greater

the amount assigned to one college, the higher the quality of its entering class.

It is only an analysis tool to address the issue of education and the incentives to

invest in school quality for colleges.
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5 Appendix

Proof. (Proposition 1. Azevedo and Leshno, 2013 ) We need to define some

additional relevant quantities in order to prove this proposition:

• The set of students who are marginally accepted to college c and would go

to college c′ otherwise:

M̃cc′ = {θ : c ≻θ c′, Pc = eθc , Pc′ ≤ eθc′ , Pc′′ > eθc′′∀c′′ 6= c : c′′ ≻θ c′}.

• The number of students in this margin:

Mcc′ =

∫

M̃
cc′

fδ(θ)dθ.

• The set of students who are marginally accepted to college c and would be

matched to herself otherwise:

M̃c∅ = {θ : c ≻θ ∅, Pc = eθc , Pc′ > eθc′∀c′ 6= c : c′ ≻θ c}.

• The number of students in this margin:

Mc∅ =

∫

M̃c∅

fδ(θ)dθ,

it is intuitive that, since these students are “marginally accepted”, their

average score is precisely the cutoff of college c.

Aggregate quality is defined as

Qc(δ) =

∫

µδ(c)
ec

θdηδ(θ)

=

∫

{θ:Dθ(P ∗(δ))=c}
ec

θ · fδ(θ)dθ

By Leibniz’s rule, Qc is differentiable in δc, and the derivative is given by

dQc(δ)

dδc
=

∫

{θ:Dθ(P ∗(δ))=c}
ec

θ · d

dδc
fδ(θ)dθ

+
∑

c′ 6=c

dP ∗
c′

dδc
·Mc′c · P̄c′c

− dP ∗
c

dδc
· [Mc∅ +

∑

c′ 6=c

Mcc′ ] · P ∗
c
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The first term is the integral of the derivative of the integrand, and the last two

terms the change in the integral due to the integration region {θ : Dθ(P ∗(δ)) = c}
changing with δc.

The terms in the second line are the changes due to changes in the cutoffs

P ∗
c′ , the students that college c gains (or loses) because college c′ becomes more

(less) selective. The quantity of these students is
dP ∗

c′

dδc
· Mc′c, and their average

quality P̄c′c. The last line is the term representing the students lost due to college c

raising its cutoff Pc. These students number [Mc∅+
∑

c′ 6=cMcc′ ], and have average

quality P ∗
c . Note that, since the total number of students admitted at college c

is constant and equal to sc, we have

0 =

∫

{θ:Dθ(P ∗(δ))=c}

d

dδc
fδ(θ)dθ

+
∑

c′ 6=c

dP ∗
c′

dδc
·Mc′c

− dP ∗
c

dδc
· [Mc∅ +

∑

c′ 6=c

Mcc′ ]

Therefore, if we substitute dP ∗
c

dδc
· [Mc∅ +

∑

c′ 6=cMcc′ ] in the above equation we

have

dQc(δ)

dδc
=

∫

{θ:Dθ(P ∗(δ))=c}
[eθc − P ∗

c ] ·
d

dδc
fδ(θ)dθ

+
∑

c′ 6=c

dP ∗
c′

dδc
·Mc′c · [P̄c′c − P ∗

c ]

The term in the second line is the market power effect as defined. That the

term in the first line equals the expression in Proposition 1 follows from the

definition of Nc and ēc. To see that the direct effect is positive, note that by

definition ēc ≥ P ∗(δ), and since uic(δ) is increasing in δc we have Nc ≥ 0.

In Figure 7, we can see the extension of the market clearing cutoffs to several

cases when the sum of the capacities colleges is less than 1:
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Figure 7: The cutoffs are positive in a an interval of the

mean for different values of capacities of the colleges. Here

the cutoffs are plotted on the y axis and the mean on the x

axis, and we consider only the cases in which sc1 + sc2 < 1 for

several combinations of values of them.
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