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Szilvia Papai, Guillaume Haeringer, Utku Unver and Francis Bloch. Also thanks to my committee

members, Kaniska Dam, Jaime Sempere, and Stephen McKnight, who offered guidance and support.

I would like to thank my parents Magdalena Romero Plata and Emilio Gibaja Arriaga, for always

supporting me and never let me down. Also, I want to thank my sister Iliana Gibaja, who endured

this long process with me.

Last but not the least, I would like to thank to my friends Vanessa, Osvaldo, Omar, César who sup-

porting me spiritually throughout my stay at El Colegio de México.
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Chapter 1

Introduction

This thesis is a collection of three essays on assignment problems in matching markets. Each essay

is self-contained. However, the first two essays are closely related, specifically, some of the results of

the first essay are applied in the second one.

We study the allocation of indivisible goods (e.g., apartments, school seats, scholarships) to different

agents (e.g., households, students) in the context of three different assignment problems. The first

essay focuses on a school choice problem where all students have the same priority for all schools

and students can be indifferent between them. In the second essay we establish the existence and

uniqueness of the price vector of equilibrium in the assignment game when markets are large. The

last essay deals with the subsidized housing problem in Paris.

The first essay analyses the School Choice problem in Toluca to allocate seats in elementary schools

to six years old children. Parents submit a preference list of up to five elementary schools to the as-

signment procedure used by the local Ministry of Education, the Sistema Anticipado de Inscripción

y Distribución (SAID). This mechanism presents efficiency problems because indifferences are per-

vasive in the market. Well-known school choice mechanisms, like the Deferred Acceptance and

Top Trading Cycles algorithms, have a loss of efficiency due to the presence of indifferences. We

introduce the Top Trading Cover (TTCo) mechanism to deal with them. This new mechanism is char-

acterized by Pareto efficiency and the fact that it recursively respects top ranking. Nevertheless, this

assignment procedure is manipulable, that is to say students have incentives to misreport their pref-
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erences. To support the use of this mechanism, we analyze its incentives properties when the market

is large. In a Bayesian game where student only know their own ranking of elementary schools, we

prove that truth-telling is the unique epsilon Nash equilibrium when the markets satisfy a “thickness”

condition.

In the second essay we re-examine the heterogeneity feature of real estate markets by modelling

them as large auction markets. More specifically, considering large enough markets, we study the

equilibrium prices in the Assignment Game when buyers and sellers do not know the valuation of

other. We model the problem as a three-stage game. First, nature draws the valuation of each agent,

namely over the good they own for sellers, or the goods on sale for buyers. At stage two sellers

simultaneously set prices, which are observed by buyers before stage three begins, when buyers report

their valuation to the assignment mechanism. The payoffs are determined using the Top Trading

Cover (TTCo) algorithm. We prove that the price vector at equilibrium is unique when markets satisfy

the thickness condition and agents preferences are independent and follow an exponential distribution

with the same parameter. This result is robust when we assume that preferences are independent but

not identically distributed. Concretely, we extend our result to different parameters and overlapping

valuations, assuming an exponential distribution.

Finally, in the last essay we study the subsidized housing problem in Paris. The French tradition

in subsidized housing aims at “mixité sociale”, namely promoting social diversity in all districts. A

high population percentage in Paris is eligible to one of the many existing programs, promoting by

a wide quantity of institutions, which is financially profitable to the programs. The allocation of a

common pool of subsidized housing is solved by the institutions in Committees. The assignment

process, thus, is not transparent, which raises criticisms over its discretionality. Our work focuses on

designing a fair and efficient mechanism that incorporates different scoring schemes. We introduce

the Nested Deferred Acceptance algorithm to get an assignment for this three sided market. However,

it does not satisfy the “mixité sociale” condition nor fairness for the same type. We encompass

these deficiencies by detecting institution acting as interrupters, and deleting them accordingly in the

Efficiently Adjusted Deferred Acceptance Mechanism.

7



Chapter 2

An equilibrium analysis for the Top Trading

Cover algorithm in large markets

2.1 Introduction

In Toluca, seats in public elementary schools are assigned through the Sistema Anticipado de In-

scripción y Distribución (Anticipated System of Inscription and Distribution, SAID). The parents of

six years old children submit a preference list of up to five elementary schools to the local Ministry of

education; schools do not distinguish between kids and only can accept a limited number of kids de-

termined by a quota. Schools run two rounds of classes; the quota is the number of available seats in

the morning turn plus the available seats in the afternoon turn, which are not necessarily equal. Since

schools are indifferent between students, this assignment problem differs from the School Choice

problem because all students have the same priority over schools. The authority runs the SAID to

determine the final allocation between students and schools. This mechanism has the following defi-

ciencies1:

1. It does not deal with indifferences. This situation can be presented in the case of “twin schools”,

which are two public schools in the same block. Given their proximity, parents do not distin-

guish between them. The existence of these schools is due to the fact that years ago male and

1http://saidedomex.wordpress.com/

8



female children were separated in two different schools in the same block. Now, they are two

mixed gender schools2.

2. It is wasteful. A common situation after the publication of the final allocation is that parents

find an available place in a preferred school to the school they have been assigned to.

3. It is not always Pareto efficient. Parents exchange seats in order to get a better school.

The school choice problem in Toluca consists of a finite set of students; a finite set of elementary

schools, each student has a non-strict ranking of elementary schools and elementary school with a

finite capacity.

We introduce the Top Trading Cover (TTCo) algorithm to deal with indifferences. The mechanism

relies on a graph representation of the market, where a node is associated to all students and schools,

and directed edges represent the top choices of students. A cover of the graph is selected by a tie

breaking rule; each student is assigned to her partner in the cover. The procedure is iterated with the

remaining students, analogically to David Gale’s Top Trading Cycle; indeed TTCo also encompasses

Hierarchical Exchange rules by Papai (2000).

We show that TTCo mechanism is characterized by: 1. Pareto efficiency, there is no other assignment

that improves a student’s allocation without harming other; and 2. the fact that it recursively respects

top rankings: if a student is not assigned to her top ranked school, then this school is assigned to a

student that also top ranks it, and this is true when one removes iteratively students assigned to one

of their top ranked schools. Both properties are satisfied when we consider tie breaking rules that

remove a top trading cover of maximum cardinality at each step. However, this tie breaking rules do

not find all the Pareto efficient assignments.

Previous properties are useful to support the TTCo mechanism. For example, the existence of in-

differences induces a loss of efficiency in the Student Optimal Stable Mechanism (Erdil and Ergin,

2008). Moreover, queue allocation rules (Svensson, 1994) do not recursively respect top rankings

despite the fact that they deal with indifferences and they are Pareto efficient.

2http://portal2.edomex.gob.mx/edomex/temas/educacion/index.htm
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Our characterization of the TTCo algorithm is related with the characterization of others mechanisms.

The closest study to ours is Abdulkadiroglu and Che (2010), who provide a characterization of Top

Trading Cycle mechanism through Pareto efficiency, strategy-proof and the fact that it recursively

respects top ranking. Kojima and Manea (2010) characterize the Deferred Acceptance algorithm

using non-wastefulness, population monotonicity and weak Maskin monotonicity. Kojima and Unver

(2010) show that a mechanism coincides with the Boston mechanism if and only if the mechanism

respects preference profile, resource monotonicity, and consistency. On the other hand, Papai (2000)

study and characterize the hierarchical exchange rules, connecting the Serial Dictatorship and the

TTC mechanism when agents have strict preferences.

Assuming non-strict preferences, Svensson (1994) characterizes the queue allocation rules with Pareto

efficiency and strategy-proofness, when there are no property rights. Ehlers (2002) shows the exis-

tence of a unique maximal domain on which efficiency and coalitional strategy-proofness are compat-

ible, moreover, mixed dictator-pairwise-exchange rules are the only rules that satisfy both properties

on this domain. Later, Bogomolnaia, Deb and Ehlers (2005) extend the queue allocation rules to the

case of private information introducing Bi-polar Serially Dictatorial Rules. They characterized these

rules and discuss the consequences on equity when information is private.

Under the existence of property rights and indifferences, Alcalde and Molis (2011) and Jaramillo and

Manjunath (2012) extend the Top Trading Cycles mechanism through the Top Trading Absorbing

Sets and the Top Cycle Rules mechanism, respectively. Both mechanisms are Pareto efficient and

strategy-proof.

Truth-telling, however, is not a dominant strategy for the TTCo. We extend the analysis on large

matching markets, developed by Immorlica and Mahdian (2005) and Kojima and Pathak (2009),

to the TTCo. In a simultaneous game where students report their preference list to the TTCo and

only know their own schools valuations, we prove that truth-telling is an Epsilon Bayesian Nash

equilibrium when market is sufficiently thick. There are crucial differences between our analysis and

previous ones:

• Unlike in the Deferred Acceptance Algorithm (DA), the side of the market which manipulates
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the mechanism is the one that points to the favorite option.

• Fuhito and Pathak (2009) uses the rural hospital theorem to prove that dropping strategies

are exhaustive is a general property of stable mechanisms. TTCo, however, is not stable; the

argument used to establish exhaustiveness relies on the fact that TTCo is Pareto Efficient for all

tie breaking rules.

• Students with more than one effective school have incentives to misreport their preference

list. While previous works count schools using an algorithm based on reaction chains, we

construct an algorithm based on dropping strategies that erase schools from the top, one-by-

one, to analyze whether the most preferred school in this ranking can be an effective school

when other students do not change their ranking.

• We use the thickness condition of Kojima and Pathak (2009), which specifies that for each

school the number of students is balanced; the condition which implies that TTCo ends at the

first iteration of the mechanism, when DA does not.

The paper is organized as follows. The model and the TTCo are presented in Sections 2 and 3. The

characterization of this assignment procedure is carried out in Section 4. Finally, the equilibrium

analysis under the thickness condition is done in Section 5.

2.2 The Model

2.2.1 Preliminary Definitions

We consider an economy with a set of students and a set of schools. Let A = {1,2, . . . ,n} be the set

of students, a generic student is denoted by i; and a set of elementary schools O = {ω1,ω2, . . . ,ωm},

where ω denotes a generic elementary school, or simply school. Each school has a capacity of qω > 0.

First, we assume that each school has capacity qω = 1. We consider that n and m are not necessarily

equal, i.e. n can be less than, greater than or equal to m. A generic element in A∪O is represented by

r.
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We suppose that each student i has a preference relation represented by an utility ui(·) over Oi =

O∪{i}. We assume the following quasi-linear utility function

ui(r; v̂i) =

 v ji +θ((vτi)τ6= j) if r = ω j ∈ O

0 if r = i.

Each student i has a valuation v ji ∈ R of school ω j for all j ∈ {1,2, . . . ,m}. The type of student i is

the vector v̂i = (v1i, . . . ,vmi). The set of all possible types of student i is denoted by V̂i ⊆ Rm. The

state of the market is the vector v = (v̂1, . . . , v̂n) ∈ Rn. The set of all possible states of the market is

the Cartesian product between all sets V̂i; let V ≡ ∏
n
i=1 V̂i. We suppose that the state of the market

v ∈V is drawn according to a probability function f from V to R, of common knowledge.

An school ω is individually rational (IR) for student i if ui(ω)≥ ui(i). From now on, we omit not IR

schools from the representation of Ri, for all i ∈ A.

An assignment is a function γ from A∪O to A∪O such that

1. γ(i) ∈ Oi = O∪{i}, for all i ∈ A,

2. γ(ω) ∈ Aω = A∪{ω}, and

3. γ(i) = ω if and only if γ(ω) = i.

In words, each student i is assigned exactly one school in Oi and each school ω is assigned exactly one

student in Aω, under an assignment γ. If γ(r) = r, r remains unassigned. The set of all assignments is

denoted by Γ.

An assignment γ is individually rational (IR) if ui(γ(i))> ui(i) for all i ∈ A. In words, every student

is assigned an IR school at γ.

We say that an assignment γ is blocked by a pair (i,ω) ∈ A×O with respect to R if and only if

1. γ(ω) = ω, and

2. ui(ω)> ui(γ(i)).

12



If γ is blocked by the pair (i,ω), we say that it is a blocking pair at R. An assignment γ is non-wasteful

if and only if it is individually rational and it is not blocked by any pair. Non-wastefulness establishes

than an student cannot be allocated with an school strictly preferred to her allocation because it has

been assigned to some other student.

2.2.2 The two-step Game

We consider a two-step game. Nature moves first, determining the type of each student according

to the probability distribution f . All students of the market observe their type, but do not observe

the type of the others. At stage 2, students report a preference list of schools. Each student observes

the schools in the market and sets her preference relation Ri(v̂i), or Ri, over the set Oi. Naturally,

students can be indifferent between different schools. This preference relation is complete, reflexive

and transitive. Let Pi and ∼i represent the asymmetric and symmetric parts of Ri. For all ω,ω′ ∈ Oi,

we write ωPiω
′ when student i strictly prefers ω to ω′, or ui(ω)> ui(ω

′); and ω∼i ω′ if i is indifferent

between them, ui(ω) = ui(ω
′). The indifference class of ω at Ri is the set [ω]i = {ω′ ∈ | ω∼i ω′}. If

ω is the unique element in its indifference class at Ri, we consider that [ω]i = ω. The preference list

of student i is represented by

Ri : [ω1]i, [ω2]i, . . . , [ωk]i, [i]i, [ωk+1]i . . . [ωK]i.

A preference profile is a n−tuple of preferences, denoted by R. As in the usual way, let R−i = (R j) j 6=i,

RA′ = (Ri)i∈A′ and R−A′ = (Ri)i∈A−A′ , for all A′ ⊂ A. We denote by ℜi the set of all preference lists of

student i, ℜ = ∏
i∈A

ℜi is the set of all possible preferences profile. Let Ri(ω) be the rank of school ω

in Ri, i.e. Ri(ω) = k if and only if ω belongs to the k−th most preferred indifference class.

Given the profile R of reported preference profile, the final allocation of each student is determined

by a fix mechanism (assignment procedure). A mechanism is a systematic procedure φ from ℜ to Γ

that maps a preference profile into an assignment. The assignment generated by the mechanism φ at

a preference profile R′ is represented by φ[R′]. Let r ∈ A∪O, the allocation of r under the assignment

φ[R′] is denoted by φ[R′](r). A mechanism φ is IR and non-wasteful if φ[R′] is IR and non-wasteful

for all R′ ∈ ℜ. To determine the allocation of each student, we introduce the Top Trading Cover
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algorithm to deal with indifferences. For all preference profile R ∈ℜ, this mechanism generates the

assignment T TCo[R].

2.2.3 Solution Concept

We need some extra concepts and notations. Given the realization of her type v̂i, an action of student

i is a preference list Ri over the set Oi. A decision rule/pure strategy βi(v̂i) for student i is a function

that maps types into preference lists.

Definition 1. Let β∗ = (β∗1, . . . ,β
∗
n) be a profile of strategies for students, and ε > 0. An ε−Bayesian

Nash equilibrium is a profile of pure strategies (β∗1, . . . ,β
∗
n) such that

E[ui(T TCo[β∗i ,β
∗
−i](i)]+ ε≥ E[ui(T TCo[β′i,β

∗
−i](i)],

for all i ∈ A and β′i decision rule.

2.3 The Assignment Procedure

At the end of the game, the students payoffs are induced by the TTCo algorithm. In order to describe

it, we must first introduce some concepts from Graph Theory.

2.3.1 Graph Theory Preliminaries

Consider a set of schools, O′ ⊆ O; a set of students, A′ ⊆ A; and a profile of preferences R′ = RA′ .

We define the bipartite directed graph G(A′,O′,R) as a pair (V (A′,O′,R),E(A′,O′,R)), where

V (A′,O′,R) = A′ ∪O′ is the set of nodes; and E(A′,O′,R) is the set of all directed edges (i,ω) ∈

A′×O′, such that (i,ω) ∈ E if and only if student ω is the most preferred school of i at R′i. Since we

consider non-strict preference lists, the most preferred school of student i is not necessarily unique.

Thus, the fact that there is more than one edge from i to the set of schools represents indifference. We

refer us to this bipartite graph only by G = (V (G),E(G)) whenever there is no confusion.

Given that not all schools are IR for all students, it is possible that an student prefers to remain

unassigned to be assigned with some school ω ∈ O, i.e. Ri(i) = 1 and Ri(ω) > 1 for all ω ∈ O. In

14



such situation, we use loops, which are pairs (i, i) ∈ A×A. In words, a loop is an edge from the

set of students to the set of students. Consequently, loops are not admitted in bipartite graphs, that

is why our assignment procedure makes use of quasi-bipartite graphs. We define a quasi-bipartite

directed graph G(A′,O′,R) as a pair (V (A′,O′,R),E(A′,O′,R)), where V (A′,O′,R) = A′∪O′ is the

set of nodes; and E(A′,O′,R) is the set of all directed edges (i,ω) ∈ A′×O′ and loops ( j, j) ∈ A′×A′,

such that:

1. student i prefers school ω to any other school, and

2. student j prefers to remain unassigned to being assigned any school ω ∈ O.

An arbitrary element of E(A′∪O′,R) is denoted by~e. So, the quasi-bipartite graph G is the graph on

A′∪O′ which results when each student i in A′ points to her most preferred element in A′i. Whenever

there is no confusion, a quasi-bipartite graph is denoted by G = (V (G),E(G)). In the following

example we show the construction of a quasi-bipartite graph.

Example 2.3.1. Consider O = {ω1,ω2,ω3}, A = {1,2,3}. The preference relations are:

R1 : [ω1,ω3],ω2,1,

R2 : [ω2,2],

R3 : ω3,3.

Figure 2.1 shows the quasi-bipartite graph G(A,O,R).

2.3.2 Top Trading Covers and Tie Breaking Rules

Given a quasi-bipartite graph G, a top trading cover (ttco) is a subset T = {~e1,~e2, . . . ,~ek} of E[G],

such that there are no two edges in T with a node in common. For example, the empty set and the

set with a unique edge are top trading covers. Consequently, there always exist at least one ttco for

all quasi-bipartite graph. A maximal top trading cover is a ttco of G that is no longer a ttco when

an edge, not in it, is added to it. In other words, a maximal ttco is not a proper subset of any other

ttco of the quasi-bipartite graph G. A maximum top trading cover is a ttco that covers the largest
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1 2 3

ω1 ω2 ω3

Figure 2.1: A Quasi-bipartite Graph

1 2 3 4

ω1 ω2 ω3

(a) Maximal TTCo

1 2 3 4

ω1 ω2 ω3

(b) Non-Maximum and Non-Maximal TTCo

1 2 3 4

ω1 ω2 ω3

(c) Maximum TTCo 1

1 2 3 4

ω1 ω2 ω3

(d) Maximum TTCo 2

Figure 2.2: Top Trading Covers in dotted lines for the same Quasi-Bipartite Graph

possible number of nodes. It is clear that all maximum top trading covers are also maximal; however,

a maximal ttco is not always maximum.

Figure 2.2 shows four different top trading covers (in dotted lines) for the same quasi-bipartite graph.

Note that all edges not in the ttco of Figure 2.2(a) have a node in common with it. Then, this ttco

is a maximal ttco because adding an edge, not in it, the resulting subset of edges is not a ttco. Now,
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the ttco illustrated in 2.2(a) covers 4 nodes and the ttco in 2.2(c) covers 6 nodes, the largest possible

of nodes than can be covered. Therefore, 2.2(c) is a maximum top trading cover and 2.2(a) is not.

Finally, if we add the edge (ω3,1) to the ttco in 2.2(b), we get a larger top trading cover. Therefore,

this ttco is non-maximum and non-maximal.

The existence of at least one maximum top trading cover is a well-known result from Graph Theory.

Proposition 2.3.1. Let G(A′,O′,R) a quasi-bipartite graph, a maximum T TCo always exists.

Proof. See Appendix A1.

However, the maximum top trading cover is not unique. Figure 2.2(d) shows a ttco that covers the

same number of nodes than the ttco in 2.2(c), but they differ in the edges (ω1,3) and (ω1,2). That is,

we have two different maximum top trading covers for the same quasi-bipartite graph.

The non-uniqueness of the maximum ttco represents a problem for the Top Trading Cover algo-

rithm. In each iteration of it, every student i points to her most preferred school ω, between the

remaining schools in the market. After that, we remove a maximum top trading cover and each

student is assigned its corresponding partner in the ttco removed. To choose only one maximum

ttco we use tie breaking rules. Formally, consider a quasi-bipartite graph G and let ϒ[G] = {T ⊆

E[G] | T is a ttco of G} be the set of all top trading covers of G. The set of elements which are sub-

sets of ϒ[G] is denoted by 2ϒ[G]. A tie breaking rule is a function ς from 2ϒ[G] to ϒ[G] that chooses

maximum top trading covers, for all quasi-bipartite graph G.

2.3.3 The Top Trading Cover Algorithm

Consider an economy (A,O,R) and a tie breaking rule ς. Initialize the algorithm with A0 = A and

O0 = O. The assignment procedure proceed as follows:

Step t: Every student in At−1 points to her most preferred school between the schools in Ot−1.

According to the tie breaking rule ς, we remove a maximum top trading cover of Gt , every student in

the cover is assigned to its partner in the cover.

Let At and Ot be the sets of students and schools remaining in the economy after removing ς(ϒ[Gt ]).

If both are non-empty, we continue to the next step. Otherwise, the algorithm stops.
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The final allocation produced by the TTCo algorithm depends on the economy (A,O,R) and the tie

breaking rule ς that we use. We sometimes write the final allocation as T TCo[A,O,Rς], and we denote

by T TCo[A,O,R,ς](r) the assignment given to r ∈ A∪O under this assignment procedure. If there is

no confusion we refer to the assignment only by T TCo.

To illustrate how the TTCo algorithm works, we use the “lexicographic tie-breaking rule”. This rule

is based on a lexicographic order defined over the edges in E(G)∩A′×O′ of the quasi-bipartite graph

G.

Definition 2. Let G = (V (G),E(G)) be a quasi-bipartite graph, and (i,ω j, i),(i′,ω j′) ∈ E(G)∩ (A′×

O′). The lexicographic order 4L over E(G)∩ (A′×O′) is defined as follows

(i,ω j)4L (i′,ω j′) if and only

 i < i′ or

i = i′ and j ≤ j′.

We recall that students and schools are indexed by the set of natural numbers, a well-ordered set,

which implies the veracity of the next observation.

Observation 2.3.1. Given a quasi-bipartite graph, let Ẽ be a subset of E(G)∩ (A×O), then there

exists an edge (i,ω) ∈ A×O such that (i,ω) 4L (i′,ω′) for all (i′,ω′) ∈ Ẽ. In other words, the

minimum element of Ẽ exists for all Ẽ ⊆ E(G)∩ (A×O). We write (i,ω) = min Ẽ.

By Proposition 2.3.1 we can ensure the existence of at least one maximum top trading cover regardless

the quasi-bipartite graph. Thus, we can proceed to define the lexicographic tie-breaking rule over ϒ[G]

using Definition 2 and Observation 2.3.1.

Definition 3. Consider a quasi-bipartite graph G, and let T = {Tη | Tη ∈ϒ[G] and is maximum for all 1≤

η ≤ K} be a finite subset of maximum top trading covers. Consider T ′η = Tη ∩ (A′×O′) for all

η ∈ {1,2, . . . ,K}. The lexicographic tie breaking rule ςL is the function ςL : 2ϒ[G]→ ϒ[G] such that

ςL(T ) = Tκ if and only if

min

[
T ′κ \

K⋂
η=1

T ′η

]
4L min

[
T ′t \

K⋂
η=1

T ′η

]
,

for all t 6= κ.
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We provide an example to show how the Top Trading Cover algorithm and the lexicographic tie

breaking rule algorithm work.

Example 2.3.2. Consider the set of schools O = {ω1,ω2,ω3}, and the set of students A = {1,2,3,4}.

The preference list of each student is

R1 : [ω1,ω3],ω2,1,

R2 : ω1,ω2,2,

R3 : [ω1,3],

R4 : ω1,ω2,ω3,4.

Figure 2.3 illustrates the step 1 of the TTCo algorithm. The maximum ttco that satisfies the lexi-

cographic is shown in dotted lines. The other maximum ttco, not chosen, includes the edge (4,ω1)

instead of (2,ω1). Therefore, the set {(2,ω1),(1,ω3),(3,3)} is removed from the market.

1 2 3 4

ω1 ω2 ω3

Figure 2.3: First step of the TTCo algorithm

Figure 2.4 shows the quasi-bipartite generated by the schools and students remaining in the market.

Consequently, the maximum ttco chosen by ςL is the unique edge (4,ω2).

The algorithm finishes at step 2 because all schools and students are removed from the market at the

end of this stage. Therefore, the final allocation is

T TCo =

 ω3 ω1 3 ω2

1 2 3 4

 .

Unless we specify some other tie breaking rule, in each example we will show the assignment

produced by the the lexicographic tie breaking rule. However, it is important to remark that non-

wastefulness is a property that satisfies the TTCo algorithm for all tie breaking rule ς. This is because

19



4

ω2

Figure 2.4: Second and last step of TTCo algorithm

the existence of a blocking pair contradicts the definition of maximum top trading cover, as we for-

malize in the following proposition.

Proposition 2.3.2. Consider a market (A,O,R) and ς a tie breaking rule. The assignment

T TCo[A,O,ς]

is non-wasteful for all tie-breaking rule ς.

Proof. By construction, it is clear that T TCo[R,ς] is individually rational.

To prove that T TCo[R,ς] is not blocked by any pair, we proceed by contradiction. Suppose that this

assignment is blocked by a pair (i,ω) ∈ A×O. Then, T TCo[R,ς](ω) = ω and ω Pi T TCo[R,ς]. We

have the following cases.

Case I. student i remains unassigned under T TCo[R,ς], i.e. T TCo[R,ς](i) = i. By assumption,

student i strictly prefers ω to its allocation under this assignment. Then, there exists a step ti ∈N such

that the pair (i,ω) is an edge of the graph Gti . Moreover, we have that

(i,ω) /∈ ς(ϒ[Gti])

because we assume that T TCo[R,ς](ω) = ω. Consequently, (i,ω) does not have nodes in common

with the maximum ttco removed at step ti. So, the set ς(ϒ[Gti])∪ {(i,ω)} is a ttco greater than

ς(ϒ[Gti]). This is a contradiction with the definition of maximum ttco.

Case II. Suppose that T TCo[R,ς](i) = ω′, then, the edge (i,ω′) was removed from the market in

some step t ′ of the TTCo algorithm, i.e. (i,ω′) belongs to the maximum ttco ς[ϒ(Gt ′)]. Also, we

suppose that ωPiω
′, this implies that (i,ω) must be an edge of Gt , for some t ≤ t ′. Moreover, (i,ω)
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was not included in the maximum ttco ς(ϒ[Gt ]) because ω was not assigned to any student during the

algorithm. Now, if t = t ′, we have that (i,ω) and (i,ω′) belong to the same graph Gt . By construction

of Gt we conclude that ω∼i ω′, contradicting that (i,ω) is a blocking pair. Otherwise, t < t ′, we have

that (i,ω) ∈ Gt and (i,ω) /∈ ς(ϒ[Gt ]). Even more, the edge (i,ω) does not have nodes in common

with the edges in the removed ttco. Consequently, the set ς(ϒ[Gt ])∪{(i,ω)} is a ttco greater than the

ttco ς(ϒ[Gt ]), contradicting the definition of maximum ttco.

Therefore, the assignment T TCo is not blocked by any pair regardless the tie breaking rule that we

use.

2.3.4 Picking rules and Other mechanisms

The tie breaking rules are quite restrictive since they remove maximum top trading covers. Picking

rules are more general functions than tie breaking rules. Given a quasi-bipartite graph G, a picking

rules is a function ς̂G that chooses one and only one non-empty top trading cover of G.

In the following lemma we show that every Pareto efficient assignment γ can be gotten using the

TTCo algorithm and a picking rule ς̂γ that never chooses an empty ttco.

Lemma 2.3.1. If γ[R] is a Pareto efficient assignment, there is some picking rule ς̂γ such that ς̂γ(T ) 6= /0

for all T ∈ 2ϒ[G]\{ /0}, subset of top trading covers, and γ[R] = T TCo[R, ς̂γ].

Proof. Let T γ = {(i,r) ∈ A× (A∪O) | γ(r) = i}∪{(i, i) | γ(i) = i}. The pairs in the set T γ include all

members in the market and do not have elements in common because γ is also a feasible assignment,

i.e. each element in the economy is assigned one and only one element in A∪O.

We partition T γ in the following way:

• T Γ
1 = {(i,r) ∈ T Γ | i ∈ A and r is the most preferred element of i in Ri}.

• For all k ≥ 2, define

T Γ
k = {(i,r) ∈ T γ | i ∈ A and r is the top ranked in Ri after removing

k−1⋃
l=1

T γ

l },

and
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• Let K ≡max{k ∈N|T γ

k 6= /0}, the set of remaining students is T γ

K+1 = T\
(

K⋃
k=1

Tk

)
.

Note that, since γ is individually rational, TK+1 is the set of schools that are assigned to themselves at

the end of the TTCo algorithm.

We claim that each T γ

k is a non-empty top trading cover of the graph Gk for all k ≥ 1.

Affirmation 2.3.1. All sets Tγ

k are non-empty for all 1≤ k ≤ K.

Proof. We proceed by induction.

Induction Base. By contradiction. Suppose that T γ

1 = /0, then, any buyer is assigned her most pre-

ferred basket. We have the following cases:

Case I. There are i and i′ such that γ(i′) is the most preferred school of i and γ(i) is the most preferred

school of i′, consequently

γ(i′)Piγ(i) and γ(i)Pi′γ(i
′),

i.e. i strictly prefers the allocation of i′ than her allocation and vice versa. Then, defining an assign-

ment γ′ such that

• γ′(i) = γ(i′) and γ′(γ(i′)) = i,

• γ′(i′) = γ(i) and γ′(γ(i)) = i′,

• γ′(r) = γ(r) for all r ∈ (A∪O)\{i, i′,γ(i),γ(i′)},

we contradict the fact that γ is Pareto efficient.

Case II. There is an school ω such that γ(ω) = ω and it is the most preferred school of some student

i. Then, ωPiγ(i). Consequently (i,ω) is a blocking pair. However, this is not possible because γ is

Pareto efficient.

Therefore T Γ
1 6= /0.

Induction Hypothesis. Assume that T Γ
k 6= /0, for all 1≤ k < K.

Induction Step. We have to prove that Tk+1 = /0, for k+ 1 < K + 1. We proceed by contradiction.
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Suppose that T Γ
k+1 = /0, then, applying the hypothesis of induction we have that

T γ

k+2 =

{
(i,r) ∈ T γ | i ∈ A and r is the top ranked in Ri after remove

k+1⋃
l=1

T γ

l

}

=

{
(i,r) ∈ T γ | i ∈ A and r is the top ranked in Ri after remove

k⋃
l=1

T γ

l

}
.

So, T γ

k+2 = T γ

k+1 = /0. Analogously, we conclude that T γ

k′ = /0 for all k′> k+1. Then max{t ∈N | T γ

t 6=

/0}= k < K = max{t ∈N | T γ

t 6= /0, which is not possible. Therefore T γ

k+1 6= /0.

Now, define the picking function ς̂γ : 2ϒ[G]→ υ[G] as

ς̂(ϒ[G′]) =

 T γ

k if G′ = Gk[Ak,Ok,Rk] for all 1≤ k < K−1,

T γ

K ∪T γ

K+1 if G′ = GK[AK,OK,RK].

Affirmation 2.3.1 guarantees that ς̂γ is a picking function that chooses the non-empty top trading

cover T γ

k in every step k of the algorithm. Moreover, it is clear that γ(r) = T TCo[R, ς̂γ](r) for all

r ∈ A∪O.

The TTCo algorithm and other mechanisms

Assuming strict preferences, the top trading cover algorithm encompasses with hierarchical exchange

rules. We describe the corresponding picking rules for the polar cases: the top trading cycles and the

serial dictatorship mechanisms. Consider P a profile of strict preferences and G the quasi-bipartite

graph induced by these preferences.

Top Trading Cycles. Assume that the initial endowment of each agent is described by a bijection

µ : O→ A. Note that a cycle is a ttco C⊆ E[G] if and only if for all (i,ω) ∈C there exists ω′ ∈O such

that (µ(ω),ω′) ∈C. So, a cycle picking rule is a picking rule ςC such that ςC(ϒ[G]) is a cycle.

Serial Dictatorship. Given an exogenous priority π of agents in A, the serial picking rule ςS is

defined as follows: ςS(ϒ[Gt ]) = {(i,ω) ∈ E[Gt ] | i = π(t)}, for all t = 1, . . . , |A|.

As we know, top trading cycle and serial dictatorship mechanism belong to a more general family of

mechanisms: the hierarchical exchange rules. The TTCo algorithm encompasses with this family of

mechanisms. To show it, we first describe the inheritance trees.
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An inheritance tree Γa = (V, Ã) for object a is a rooted tree where V is the set of nodes, and

Ã ⊆ V ×V is the set of arcs (or edges) such that there is a path from vi to v j for all vi, v j ∈ V . The

root of an inheritance tree is a node such that there is no incident arcs on it. An inheritance tree has

the following properties

1. All nodes are students, V ⊆ A,

2. Every vertex of a path represent a different individual.

3. All arcs in Ã are labelled by schools, that is to say, for all (vi,v j) ∈ Ã, this arc corresponds to a

school in O\{a}.

4. Every arc in a path represents a different school.

5. Arcs from the same node represent different schools.

Consider Ga the set of inheritance tree, G =×a∈OGa, where Γ∈G is a list of inheritance trees. When

A = O =∅, the initial endowment ξΓ
i of each student is given by

ξ
Γ
i = {ω ∈ O|i is the root in Γa}.

Let σT,P : T → P a bijection between T and P. Now, consider T ⊆ A, P⊆ O and a student i ∈ A\T ,

the corresponding non-initial endowment ξΓ
i (T,P,σT,P) is given by

ξ
Γ
i = {ω ∈ O\P|i is the root in Γa or there exists a v0− vr path

such that v0 = i,(vs,vs+1) ∈ P,φ(vs) = (vs,vs+1)}.

The initial endowment is denoted by E1(i,R) = ξΓ
i (∅), and a cycle at the first step is defined as

follows:

S1(i,R) =

 { j1, . . . , jg} if there exist j1, . . . , jg ∈ Asuch that R−1
ja (1) ∈ E1(i,R),

∅ otherwise.
(2.1)

Consequently, the set of assigned students is W1(R) = {i : S1(i,R) /∈ ∅}, and the set of assigned

schools is F1(R) = {R−1
j (1) : j ∈W1(R)}. Consequently, the non-endowments are defined as follows

Et(i,R) = ξ
Γ
i (Wt(R),F t(R),φWt(R),Ft(R)).
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We define the hierarchical exchange rules as a picking rule ςH such that (i,ω) ∈ ςH [Gt ] if and only

there exists in (i′,ω′) ∈ ςH [Gt ] such that ω ∈ Et(i′,R). In other words, in a hierarchical picking rule

me remove a top trading cover if and only the owner of each object is also in the ttco, according to

the endowment Et(i′,R).

Now, consider R a profile of non-strict preference list, Alcalde and Molis (2011) propose the Top

Trading Absorbing Sets mechanisms as a generalization of the Top Trading Cycles mechanism. To

describe this mechanism through picking rules, we need the following concepts.

Let i,ω j ∈V [G], we say that there is a path from the student i to the school ω j if there is a sequence

of nodes v1 = i, . . . ,v2m = ω j that satisfies two conditions: 1. v2k−1 ∈ A for all k ∈ {1, . . . ,m}, v2k ∈O

for all k ∈ {1, . . . ,m}; and 2. (v2k−1,v2k) ∈ E[G] and µ(v2k) = v2k+1 for all k ∈ {1, . . . ,m− 1}.

Analogously, we define a path between a school ω j and a student i. The pair i,ω j is symmetric

if (i,ω j) ∈ E[G] and µ(ω j) = i.

An absorbing set is a set of nodes A⊆∈V [G] such that

1. for any two nodes i,ω j ∈ A there is a path from one to the other,

2. there is no path from any node r ∈ A to any node r′ /∈ A.

An observing set is paired symmetric if each of its nodes belongs to a symmetric pair.

The absorbing rule is a picking rule ςAS that chooses a collection of paired symmetric absorbing sets.

In the corresponding T TC[ςAS] algorithm, the quasi-bipartite graph Gt+1 actualizes the endowments

of each agent not in a paired-symmetric absorbing set. Every agent in a non paired-symmetric ab-

sorbing set point to the maximal object with the highest priority, different from her initial endowment.

Each agent in a cycle changes her endowment for the object that she is pointing to.

2.4 Characterization

The objective of this section is to present the axioms that characterize the Top Trading Cover algo-

rithm. We get a characterization through Pareto efficiency and the Recursively Respect Top Prefer-
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ence axiom, introduced by Abdulkadiroglu and Che in [1] as the fact that an assignment Recursively

Respects Top Rankings.

2.4.1 Pareto Efficiency

An assignment γ is Pareto efficient if there is no other assignment γ′ such that γ(i)∼i γ(i) for almost

i ∈ A, and there exists at least one i such that γ′(i)Piγ(i).

Proposition 2.4.1. Let γ be a Pareto efficient assignment, then γ is IR and non-wasteful.

Proof. Let γ be a Pareto efficient assignment. To prove that γ is IR, we proceed by contradiction, so

we assume that γ is not IR. Consider A− = {i ∈ A | iPiγ(i)}, the set of students assigned to some not

IR school. Since γ is not IR, then A− 6=∅.

Now, define the assignment γ′ in the following way:

γ
′(r) =


γ(r) if r ∈ A\A− or γ(r) ∈ A\A−,

r if r ∈ A− or γ(r) ∈ A−,

r if r ∈ O and γ(r) = r.

It is clear that γ′(i)Rii for all i ∈ A. Then, γ is IR.

Consequently, by definition of γ′ we have that

γ
′(i) = γ(i) for all i ∈ A\A−,

and, by individual rationality, we conclude that

γ
′(i)Piγ(i) for all i ∈ A−.

This is a contradiction because γ is Pareto efficient. Therefore, γ is IR.

Also, to prove that γ is wasteful, then there exists a blocking pair (i,ω) such that

γ(s) = s and sPiγ(i).

Define the assignment γ′ as follows

γ
′(r) =


γ(r) if r ∈ (A∪O)\{i,s},

s if r = i,

i if r = s.
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Since (i,s) is a blocking pair, the definition of γ′ implies that

γ
′( j) = γ( j) for all j ∈ A\{i}, and γ

′(i)Piγ(i).

This is a contradiction because γ is Pareto efficient. Therefore γ is non-wasteful.

Now, we prove that every tie breaking induces a Pareto efficient assignment.

Proposition 2.4.2. Let ς be a tie breaking rule. The assignment T TCo[R,ς] is Pareto efficient.

Proof. We proceed by contradiction. Suppose that there exists an assignment γ such that γ(i) ∼i

T TCo[R,ς](i) for almost i ∈ A, and there exists at least one j such that γ( j)PjT TCo[R,ς](i).

Consider that T TCo[R,ς] = ∪K
k=1T TCok, where T TCok is the maximum ttco removed at step t of the

TTCo algorithm. Since γ( j)PjT TCo[R,ς], for at least one j ∈ A, then ( j,γ( j)) /∈ T TCok for some

k ∈ {1,2, . . . ,K}. Let k∗ be the minimum k such that some j improves under γ. We know that other

students in T TCok∗ are indifferent between γ and T TCo[R,ς]. This implies that T TCok∗ is not a

maximum ttco, which is not possible by the definition of ς. Therefore T TCo[R,ς] is Pareto efficient

for all tie breaking rule ς.

2.4.2 Recursively Respects Top Preferences

An assignment γ respects top preferences if for each ω ∈O and i ∈ A such that Ri(ω) = 1 and ωPiγ(i)

implies that

Rγ(ω)(ω) = 1.

In words, if an student is not assigned some of her most preferred schools, this implies that her most

preferred schools are assigned to students who also put these schools as their most preferred schools.

All tie breaking rules generate an assignment that respects top preferences.

Proposition 2.4.3. T TCo[ς] respects top preferences for all tie breaking rule ς.

Proof. Consider (i,ω) ∈ A×O such that Ri(ω) = 1 and ωPiγ(i). Then

(i,ω) ∈ E[G1] and (i,ω) /∈ ς[ϒ(G1)].
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Then, by definition of maximum top trading, there is i′ ∈ A such that

(i′,ω) ∈ E[G1] and (i′,ω) ∈ ς[ϒ(G1],

otherwise ς did not remove a maximum ttco which contradicts the fact that it is a tie breaking rule.

Consequently, there is i′ such that i′ = γ(ω) and Ri′(ω) = 1. Therefore T TCo[ς] respects top prefer-

ences for all tie breaking rule.

The TTCo mechanism is related with the Gales Top Trading Cycles (TCC) mechanism. Both mecha-

nisms respect top preferences, and remove a set of pairs (students-schools) at the end of its iteration.

Both properties are crucial to describe the TTCo algorithm when we use a tie breaking rule.

If γ respects top preferences, then ςγ(ϒ[G1]) is a maximum ttco. However, this axiom says nothing

about other iterations.

Abdulkadiroglu and Che (2010) made a characterization of the Top Trading Cycle mechanism for

the assignment of indivisible schools between students. In this work, they introduced the axiom

recursively respect top rankings (top preferences in our case) to explain how the TTC mechanism

removes a set of students in each iteration. Before introduce this axiom, note that respecting top

preferences axiom leads to the following concept.

Definition 4. A top preference group is a subset A0 = {a1,a2, . . . ,ak} ⊆ A such that there is ωi ∈ O

such that

γ(ai) = ωi and Rai(ωi) = 1 for all 1≤ i≤ k.

A top preference group is a set of students assigned to its most preferred school.

Let γ be an assignment and A0 ⊆ A a top ranked group of the initial economy E = (A,O,R). The

sub-economy induced by A0 is the economy (A\A0,O
γ

A\A0
,RA\), to simplify, we sometimes represent

the induced economy by E \A0. In words, the induced economy E \A0 is the economy where all the

students in A0 left the initial economy with her allocations under the assignment γ. As in [1], we use

this elements to generalize the idea of respecting top preferences in a recursive form.

Let E0 = (A0,O0,R0) = (A,O,R) be the original economy and consider an assignment γ. We denote

by Et the sub-economy induced by a top preference group At
0 of the economy Et−1, for all t ≥ 1.
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Definition 5. We say that the assignment γ recursively respects top preferences if γ[Et ] respects top

preferences for all t ≥ 0, regardless the sequence of top ranked groups {At
0}t≥0.

In words, an assignment recursively respects top preferences if it respects top preferences in any

sub-economy induced by a top preference group and this goes recursively in each sub-economy.

Moreover, it is important to note that this must be true regardless the top preference group initially

chosen.

We say that Ri(ω;Et) = k if and only if (i,ω) ∈ At ×Ot and ω is the k−th most preferred student in

Ot with respect to Ri.

We have already proved that every Pareto efficient assignment can be gotten using a picking rule that

never chooses the empty top trading cover, see Lemma 2.3.1. Before to establish our characterization

of the TTCo algorithm and tie breaking rules, we require an extra lemma.

The following lemma shows a sufficient condition to choose a maximum top trading cover in the first

step of the TTCo algorithm. That is to say, if an IR assignment respects top preferences, then the

corresponding picking rule chooses a maximum ttco.

Lemma 2.4.1. Let γ be an IR assignment that respects top preferences, then there is a picking rule ς̂

such that γ = T TCo[ς̂] and ς̂[ϒ(G1)] is a maximum ttco.

Proof. By Lemma 2.3.1, there exists ς̂γ such that γ = T TCo[ς̂γ]. We have to prove that

ς̂γ[ϒ(G1)]

is a maximum ttco.

By construction, ς̂γ[ϒ(G1)] = {(i,γ(i)) | Ri(γ(i)) = 1}.

We proceed by contradiction. Suppose that it is not a maximum ttco, then there is (i,r) ∈ E[G1] such

that

(i,r) /∈ ς̂γ[ϒ(G1)],

and (i,r) does not have nodes in common with ς̂γ[ϒ(G1)].
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Case I. If r = i, then ς̂γ[ϒ(G1)]∪ {(i, i)} is a larger ttco than ς̂γ[ϒ(G1)], which is not possible by

construction of ςγ.

Case II. If r = ω ∈ O, we know that Ri(ω) = 1 and γ(i) 6= ω. Then there is r′ ∈ (A\{i})∪{ω} such

that γ(ω) = r′.

II.A If r′ = ω, this means that ω remains unassigned under γ and ωPiγ(i) because i is not removed in

the first step (remember that (i,r) does not have nodes in common with the ttco removed). This is a

contradiction because γ respects top preferences.

II.B If r′ = j ∈ A\{i}, then R j(ω)≥ 1. If R j(ω) = 1, the fact that γ respects top preferences implies

that ( j,ω) belongs to ς̂γ(ϒ[G1]) which contradicts that (i,ω) does not have nodes in common with the

ttco. If R j(ω)> 1 we contradict that γ respects top preferences.

In any case, we get a contradiction. Therefore ς̂γ(ϒ[G1]) is a maximum top trading cover.

The Theorem establishes a characterization of the TTCo algorithm when it uses a tie breaking rule.

Theorem 2.4.1. Given an economy (A,O,R), a mechanism φ is Pareto efficient and recursively re-

spects top preferences if and only there is a tie breaking rule ςφ such that φ[R] = T TCo[R,ς].

Proof. We have proven that T TCo[ς] is Pareto efficient and respects top preferences in propositions

2.4.2 and 2.4.3 for all tie breaking rule ς, respectively. We have to prove that T TCo[ς] recursively

respects top preferences, i.e. we have to prove that T TCo[Et ] respects top preferences for all t ≥ 0.

We proceed by induction.

Base of Induction. Consider A1
0 a top ranked group of E0. We have to prove that T TCo[E1,ς]

respects top preferences. Let (i,ω) ∈ A1×O1 such that

Ri(ω;E1) = 1 and ωPiT TCo[E1,ς](i).

Then, we have that

(i,ω) ∈ G1[E1] and (i,ω) /∈ ς(ϒ[G1[E1]]).

Consequently, there exists j∈A1\{i} such that ( j,ω)∈ ς(ϒ[G1[E1]]). Otherwise, (i,ω)∪ς(ϒ[G1[E1]])

is a top trading cover greater than ς(ϒ[G1[E1]]), which is not possible because ς is a tie breaking rule.

Since j ∈ A1 and G1[E1] is the quasi-bipartite graph where all students in A1 point to her most pre-

ferred school in E1, we conclude that R j(ω;E1) = 1.
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Hypothesis of Induction. Let k ∈N. Consider At
0 a top ranked group of Et−1 for all t = 0,1, . . . ,k.

Suppose that T TCo[Ek,ς] respects top preferences.

Induction Step. Let Ak+1
0 a top ranked group of Ek. We have to prove that T TCo[Ek+1,ς] respects

top preferences. The proof is equal to the done in the Base of Induction.

Therefore, T TCo[ς] recursively respects top preferences for all tie breaking rule ς.

Now, let γ be a Pareto efficient assignment that recursively respects top preferences. We have to prove

that γ = T TCo[ς] for some tie breaking rule ς.

In Lemma 2.3.1 we proved the existence of a picking rule ςγ such that γ = T TCo[ςγ]. Even more, we

know that ς(ϒ[Gk]) = T γ

k is a non-empty top trading cover for all k = 1,2, . . . ,K. Then, we have to

prove that every ttco T γ

k is a maximum ttco. We proceed by induction.

Base of Induction. Since γ recursively respects top preferences, particularly, γ respects top prefer-

ences. Therefore, ςγ(ϒ[G1]) = T γ

1 is a maximum top trading cover by Proposition 2.4.1.

Hypothesis of Induction. For 1≤ k < K, suppose that T γ

k is a maximum ttco of Gk.

Induction Step. We have to prove that T γ

k+1 is a maximum ttco of Gk+1. By hypothesis of induction,

we know that each ttco T γ

k is a maximum ttco.

Note that T γ

1 is also a top preference group of the economy E0 with maximum cardinality. If E1 =

E0 \T γ

1 , the construction of ςγ implies that T γ

2 is a top preference group of the economy E1 because

T γ

1 is a maximum ttco. So, consider the sequence of economies Et such that Et = Et−1 \T γ

t .

Since γ recursively respects top preferences, we have that γ respects top preferences at economy

EK−1. By construction, T γ

K is a top preference group of the economy EK−1. Then, applying Lemma

2.4.1, we conclude that T γ

K is a maximum ttco of G[EK−1].

So, any Pareto efficient assignment that recursively respects top preferences is generated by the TTCo

mechanism through a tie breaking rule.

2.5 Equilibrium Analysis

The objective of this section is to show the existence of a unique ε−Bayesian Nash equilibrium,

where all students are truth-telling, in large markets that satisfy the thickness condition. Remember,
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an ε−Bayesian Nash equilibrium of the game described above is a profile of decision rules such that

in expectation no student has large incentives to deviate from it. In other words, no single student i

can improve significantly her final allocation T TCo[β∗,ς](i) at equilibrium.

We search the best response correspondence of each student following the methodology developed

by Immorlica and Mahdian (2005), and extended by Kojima and Pathak (2009). Since the TTCo

algorithm is manipulable, we simplify the searching of the best responses analysing dropping strate-

gies, and show that students have incentives to deviate whenever they have more than one effective

school. In large markets, the proportion of students with more than one effective school tends to

zero. Finally, the thickness condition ensures the existence of a unique ε−Bayesian Nash equilibrium

where all students are truth-telling.

2.5.1 Dominant Strategies in the TTCo algorithm

A preference list R∗i is a dominant strategy for student i if and only if

φ[A,O,(R∗i ,R−i)](i)Riφ[A,O,(R′i,R−i)](i),

for all R′i ∈ ℜi and for all R−i ∈ ∏
j 6=i

ℜ j. An student i is truth-telling if her true preference list is a

dominant strategy. We use Ri to denote the true ranking of i; if i is not truth-telling, she manipulates

the TTCo algorithm.

Definition 6. An student i manipulates the φ at R through R′i if there exists R′i in ℜi such that

φ[A,O,(R′i,R−i)](i)Piφ[A,O,(Ri,R−i)](i).

If an student manipulates the mechanism, the mechanism is said to be manipulable.

Recall that the T TCo assignment depends on: a set of students, A, a set of schools, O, and the reported

profile of preference lists R . We define a market as a tuple ℵ = (A,O,R).

Observation 2.5.1. The TTCo mechanism is manipulable.

The above observation is illustrated in the example below.
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Example 2.5.1. Consider the market given in Example 2.3.2, students true preferences are

R1 : ω1,ω2,1

R2 : ω1,ω2,2

R3 : ω1,ω2,ω3,3

R4 : ω1,ω2,ω3,4.

Given the profile R of true preferences, the assignment produced by the TTCo algorithm under the

market (S,B,R) is:

T TCo(1) = ω1

T TCo(2) = ω2

T TCo(3) = ω3

T TCo(4) = 4.

Now, suppose that student 4 reports

R′4 : ω3,

while other students report their true preferences. Let R′= (R1,R2,R3,R′4), the T TCo algorithm under

R′ outputs the following assignment:

T TCo[R′](1) = ω1

T TCo[R′](2) = ω2

T TCo[R′](3) = 3

T TCo[R′](4) = ω3.

Since student 4 prefers ω3 to remain unassigned, she manipulates the mechanism at (R1,R2,R3)

through R′4. �

Indeed, truth-telling is neither a dominant strategy for students nor a Nash equilibrium in small mar-

kets.

33



2.5.2 Dropping Strategies

To establish that truth-telling is an ε−Nash equilibrium in large markets, we show first that dropping

strategies cover all the range of best responses, i.e. dropping strategies are exhaustive.

Definition 7. A preference list R′b is said to be a dropping strategy for the TTCo at true preference

list Rb if

1. ωR′bω′ then ωRbω′, and

2. bRbω then bR′bω.

That is to say, a dropping strategy is a preference list that 1. drops some elements and 2. respects the

order in Rb.

In [15], Kojima and Pathak showed the exhaustiveness of dropping strategies in their Lemma 1: “All

manipulations of the Student Optimal Stable Mechanism (SOSM) can be gotten through a dropping

strategy when others report true preferences”. Even more, they proved that this is a general property

of any stable mechanism. We establish a similar result for the family of non-wasteful assignments

T TCo[ς] for all tie breaking rule ς. With respect to the proof of Kojima and Pathak, we restrict our

attention to dropping strategies which drop all the schools preferred to the one assigned by the TTCo

algorithm, denoted by RT TCo(b)
b . That is to say, if student b reports a strategy

R′b : [ω1]b, [ω
2]b, . . . , [T TCo(b) = ω

k]b, . . . , [b]b,

the corresponding dropping strategy RT TCo(b)
b is defined as follows

RT TCo(b)
b : [T TCo(b) = ω

k]b, . . . , [b]b.

Lemma 2.5.1. (Dropping strategies are exhaustive) Fix an student b ∈ A. Suppose that b reports

R′b ∈ℜb, and all the other students report any ranking R′−b. Consider that the assignment γ is equal

to T TCo[R′b,R
′
−b;ς], that is to say T TCo[R′b,R

′
−b;ς](i) = γ(i) for all i ∈ A. Then

T TCo[Rγ(b)
b ,R′−b;ς](b) = γ[R′b,R

′
−b],

for all tie breaking rules ς.
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Proof. Specifically, we prove that T TCo[Rγ(b)
b , R̃−b;ς](b) = γ(b) when γ(b) is declared as the unique

most preferred school of b at Rγ(b)
b , i.e. Rγ(b)

b : [γ(b)]b, . . . , [b]b.

We have that γ(b) = T TCo[R′b,R
′
−b](b) = ω. By construction of the TTCo algorithm, there is τ ∈N,

such that

(b,ω) ∈ ςL(ϒ[Gτ]).

Then, all student b′ that points to ω are not removed in any step t = 1, . . . ,τ. So, edges (b′,ω) were

never removed from the market.

Case I. If τ = 1, then T TCo[Rγ(b)
b ,R′−b] = T TCo[R′b,R

′
−b].

Case II. If τ 6= 1. Running the TTCo algorithm with the profile (Rγ(b)
−b ,R′−b), in its first step we have

that

b ∈ D1
ω(p) = {i ∈ A | ω is the most preferred school in (Rγ(b)

b ,R′−b)}.

The only change in the algorithm is that b∈D1
ω(p), which did not happen under (R′b,R

′
−b). Remember

that any tie breaking rule selects a maximum ttco at any step of the mechanism. Since ω is the unique

most preferred school of b, the edge (b,ω) does not have nodes in common with other edges in

ς(ϒ[G1[R′b,R
′
−b]]). Therefore, (b,ω) must belong to ς(ϒ(G1[Rγ(b)

b ,R′−b])), so T TCo[Rγ(b)
b ,R′−b](b) =

ω.

We extend Lemma 1 of Kojima and Pathak to the family of non-wasteful assignments T TCo[ς], for all

tie breaking rule ς. In general, non-wasteful assignments do not satisfy the “Rural Hospital Theorem”

(Roth (1984)), which is a central argument in Lemma 1 of [15]). Figure (2.5) shows this fact, the set

of single agents is not the same in two different non-wasteful assignments.

2.5.3 Counting Effective schools

Below, we introduce the tools that we use to prove that no student has incentives to deviate from her

true ranking in large markets.

Given an assignment Γ, we recall that Γω[R](b) ∈ O∪{∅} is the good assign to b at Γ[R], for some

R ∈ ℜ. We say that [ω]b = {ω′ ∈ O|ω′ ∼b ω} is effective for the student b if and only if there is a
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1 2

ω1

(a) Non-Wasteful As-

signment 1

1 2

ω1

(b) Non-Wasteful As-

signment 2

Figure 2.5: Dotted lines represent two different non-wasteful assignments. These assignments have different sets of

unmatched members, so, the “Rural Hospital” Theorem does not hold for our non-wasteful assignment problem.

strategy R′b such that Γ[R′b, R̃−b] ∈ [ω]b. If there is no preference list R′′b ∈ Rb such that Γ[R′′b, R̃−b] ∈

[ω]b, we say that [ω] is a non-effective class.

Observation 2.5.2. Student b has not incentive to deviate from her true ranking if and only if

T TCo[R′b, R̃−b](b) = T TCo[Rb, R̃−b](b), for all dropping strategies

R′b : [ω1], [ω2], . . . , [T TCo[Rb, R̃−b](b)], . . . [b].

The Waiting Algorithm

The importance of Observation 2.5.2 lies in changing our original problem: instead of searching best

response correspondences it is sufficient to count how many effective schools each student has. In

this section we explain how to count effective schools.

Immorlica and Mahdian (2005) and Kojima and Pathak (2009) also change the original problem into a

counting problem. They count stable partners3 using an algorithm based in reaction chains. However,

we cannot use reaction chains to count effective schools because our game only considers that one

side of the market reports a ranking of the members of the other side of the market.

Example 2.5.1 shows that TTCo is manipulable and Lemma 2.5.1 implies that all profitable manipu-

lations can be gotten through dropping strategies where the corresponding effective school is declared

3In papers [11] and [15] the deviations are identified with stable husbands/students, which are equivalent to the effec-

tive schools in our model.
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as the most preferred school. Based on these observations we construct the Waiting Algorithm (WA)

to count all the effective schools preferred to T TCo[R](b).

The WA checks if student b can get a school preferred to T TCo[R](b) using dropping strategies while

other students are truth-telling. These dropping strategies are truncating R̃b in a descending form.

The Waiting Algorithm

Fix a student b, the Waiting Algorithm is described below:

Step 0. Initialization: Consider R0
b = Rb the ranking reported by b, and X0

b = ∅, the set of effective

schools of b before starting the assignment procedure. Run the T TCo algorithm with the profile of

true preferences R = (R0
b, R̃−b).

Step t.

1. Effective schools: If T TCo[Rt−1
b , R̃−b](b) ∈ S, the WA actualizes the set of effective schools:

X t
b = X t−1

b ∪{[T TCo[Rt−1
b , R̃−b](b)]}.

2. Preference actualization:

Case A. If the dropping strategy Rt−1
b is the strategy where the original assignment

[T TCo[R0
b, R̃−b](b)]

is the most preferred school, then the algorithm stops.

Case B. Otherwise, consider the dropping strategy Rt
b as the strategy where the most preferred

indifference class in Rt−1
b is dropped. Run the T TCo algorithm with the profile of preferences

Rt = (Rt
b, R̃−b). Go to t.1.

In the step t.2.B, we construct the dropping strategy Rt
b by dropping simultaneously all the elements

of the most preferred indifference class in Rt−1
b . We can construct this dropping strategy deleting

school by school from the most preferred class of indifference at Rt−1
b . For example, consider

Rb : [s,ω1,ω2], s̃,T TCo[Rb, R̃−b](b),b,

and suppose that s̃ is an effective school of b, but [s,ω1,ω2] is not an effective class when other

students are truth-telling. The ranking

R′b : [ω1,ω2], s̃,T TCo[Rb, R̃−b](b),b
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is also a drooping strategy of b. The TTCo algorithm ignores these strategies when the whole class is

not effective. In other words, reducing a non-effective class school by school does not affect the final

allocation when others tell the truth. This property is justified in the following proposition.

Proposition 2.5.1. Let b ∈ A and R̃ = (R̃b, R̃−b), a profile of preference lists. Suppose that

R̃b : [s0,ω1, . . . ,ωk], [T TCo[R̃](b)], . . . , [b],

for some k ≥ 1. Consider

R′b : [ω1,ω2, . . . ,ωk]b, [T TCo[R̃](b)]b, . . . , [b]b.

Then T TCo[R′b, R̃−b](b) = T TCo[R̃b, R̃−b](b).

Proof. It is clear that b is removed from the market in the second step of the TTCo algorithm and is

assigned to T TCo[R̃](b).

First, note that each school in [ω0,ω1, . . . ,ωk] is assigned to some student at the end of first step of

T TCo[R̃]. To see it, proceed by contradiction. Suppose the existence of ωt , for some τ∈ {1,2, . . . ,k},

such that she is not removed at the end of step 1. We know the following

1. b and ωt are not removed from the market at the end of step 1, and

2. (ωt ,b) is an edge of G1.

Then the maximum ttco of G1 is not a maximum cover, because ς(ϒ[G1]])∪{(ωt ,b)} is a larger top

trading cover. Consequently T TCo[R̃](b)R̃bωt = T TCo[R̃](b), which is a contradiction.

Then there exist students bτ such that T TCo[R̃b,R−b](bτ) = ωt , for all τ = 0,1, . . . ,k. Moreover, the

tie breaking rule implies that

(b,ωt)≺ (ωt ,bτ) (2.2)

for all τ = 0,1, . . . ,k.

Given the profile (R′b,Rb), the pair (s0,b) is not an edge of the quasi-bipartite graph G1[R′b, R̃b], but

all pairs (ωt ,bτ) are edges of G1[R′b, R̃b] and the equation (2.2) is also true. So, the maximum ttco of

G1[R′b, R̃b] is the same maximum ttco of G1[R̃].
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Following to the second step, as student b is the unique student who changes her strategy and all

schools in [ω1,ω2, . . . ,ωk] are removed at the end of step 1, we have that

G2[R̃] = G2[R′b, R̃−b].

Therefore T TCo[R′b, R̃−b](b) = T TCo[R̃b, R̃−b](b).

Let xb = |XT
b | denote the number of effective schools that improve the allocation of b, produced at the

end of the WA.

Next example illustrates how the Waiting Algorithm works.

Example 2.5.2. Consider the same market described in Example 2.5.1. We count all the effective

schools of student 4 using the WA. We know that T TCo[R0](4) = 4, then X1
b =∅.

The step 2 of the WA submit R1
4 : ω2,ω3,4 to the TTCo algorithm. Then T TCo[R1

4, R̃−4](4) = 4. WA

outputs not effective schools, X2
4 =∅.

Actualizing the ranking, we have R2
4 : ω3,4, consequently T TCo[R2

4, R̃−4] = 3. WA outputs X3
4 =

{ω3}. In step 4 we have that R4
4 : 4 = T TCo[R̃](4), the algorithm stops.

We conclude that ω3 is the unique effective school of 4. �

We prove formally that the WA outputs all the possible effective class of indifference that represent a

profitable deviation.

Proposition 2.5.2. The Waiting Algorithm outputs, under R̃b, all the effective classes [ω]b for b such

that

[ω]bPbT TCo[Rb, R̃−b](b).

Proof. We proceed by contradiction. Suppose there is an effective class [ω]b such that the waiting

algorithm did not output it and

[ω]bRb[T TCo[Rb, R̃−b](b)]b.

Then T TCo[Rt
b, R̃−b](b) 6= [ω]b for all t ∈N.

Since [ω]b is an effective class, there is a strategy R′b such that T TCo[(R′b, R̃−b)] = ω′ ∈ [ω]b. By

Lemma 2.5.1, we have that

T TCo[R′b, R̃−b](b) = T TCo[Rω′
b , R̃−b](s),
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where Rω′
b is the dropping strategy where ω′ is declared the unique most preferred school of b. Now,

dropping all the indifference classes preferred to [ω]b, we get the dropping strategy R[ω]b
b such that

T TCo[Rω′
b , R̃−b](b)∼b T TCo[R[ω]b

b , R̃−b](b).

By construction of the WA algorithm, in some step t ∈Nwe have Rt
b =R[ω]b

b , which is a contradiction.

Therefore, the waiting algorithm outputs all affective classes of b.

Random Markets

To simplify the analysis, we first assume complete information. We have shown that: truth-telling

is not a Nash equilibrium of the game described in Subsection 2.2, and students can manipulate the

TTCo mechanism. We investigate how likely students manipulate the TTCo algorithm introducing

random markets as in [11] and [15].

Consider D = (d1,d2, . . . ,dm) a probability distribution over O such that, without loss of generality,

d j ≥ d j+1 and d j > 0 for all ω j ∈ S. We say that school ω j is more popular than school ω j′ if

d j ≥ d j′ . For each student i, a distribution D induces a random ranking R̃i, not necessarily complete,

of length k ∈N as follows4:

Step 1. Select randomly a school following distribution D. List this school as the most preferred

school of i.

Step t. Select randomly a school following distribution D.

t.1 If this school has not been previously drawn in steps 1 through t−1, list this school as the tth most

preferred school of i, go to t +1.

t.2 Otherwise, we select randomly a school following distribution D, go to t.1.

The procedure ends at step k.

A random market is a tuple ℵ̃ = (A,O,D,k) with an associated profile of random preferences R̃.

Given ε > 0, a profile of preferences R∗ = (R∗i )i∈A is an ε-Nash equilibrium if there is no i ∈ A and R′i

such that

E[ui(T TCo[A,O,(R′i,R
∗
−i)](i))]> E[ui(T TCo[A,O,R∗](i))]+ ε,

4This is defined in the same form as in [15].
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where the expectation is taken with respect to random preferences.

In random markets, we count all profitable deviations of student b using the WA, assuming that

she knows her true ranking Rb and other students report random preferences R̃−b. As a conse-

quence of Proposition 2.5.2, the WA outputs all effective indifference classes [ω]b strictly preferred

to T TCo[Rb, R̃−b](b), for all b ∈ A.

Large Markets

A sequence of random markets is denoted by (ℵ̃1,ℵ̃2, . . .), where each ℵ̃n is a random market

(An,On,Dn,kn)

such that Dn = (dn
1 ,d

n
2 , . . .), |An|= n and |On|= mn, for all n ∈N.

For each random market ℵ̃n in the sequence, we denote the expected number of students that

manipulate the TTCo mechanism by

δk(n) = E[#
{

i ∈ An|T TCo
[
R′ni , R̃

n
−i
]
(i)PiT TCo

[
Rn

i , R̃
n
−i
]
(i)
}

for some Rn
i in the induced market|ℵ̃n].

The expectation is taken with respect to the random profile R̃n of the random market ℵ̃n. This rep-

resents a difference with the work done by [11] and [15]: we cannot assume that other students are

truth-telling because schools do nothing during the TTCo algorithm.

We prove that the expected proportion of students that manipulate the algorithm, δk(n)/n, tends to

zero as n tends to infinity, i.e., for all ω > 0 there must exists N ∈N such that∣∣∣∣δk(n)
n
−0
∣∣∣∣< ω.

for all n≥ N. To prove it, we require the following regularity conditions.

Definition 8. A sequence of random markets (ℵ̃1,ℵ̃2, . . .) is regular if there exists a positive integer

k such that

1. kn = k for all n,
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2. mn ≤ n for all n.

Condition (1) assumes that preferences length of each student does not grow as the size of the market

increases, i.e., each student has an incomplete preference list because she does not know all the

schools in the market; condition (2) requires that the number of schools does not grow much faster

than the number of students, the supply is lower than demand.

Regularity conditions are taken from [15], which considers four regularity conditions. The other two

conditions are: the number of college positions is bounded and all students are acceptable to any

college, respectively. We do not require a bound of “positions ” because we assume that students

only can hold one and only one school. On the other hand, they need all students to be acceptable to

guarantee the existence of a large number of IR matchings. We do not need it because the existence

of a large number of IR assignments is guaranteed by Proposition 2.3.1: there always exists at least

one maximum ttco in any quasi-bipartite graph, regardless the tie breaking rule that the assignment

procedure uses.

Since we want to know how likely students misreport their true preferences at equilibrium, regularity

conditions ensure that markets in the sequence are very similar, they only differ in their associated

profile of random preferences. Our first Theorem establishes that δk(n) tends to zero as n tends to

infinity. Its proof requires the following lemma, which is the adaptation of Lemma 4.2 in [11] to the

characteristics of the TTCo algorithm. With this lemma we can find the bounds to δk(n).

We introduce extra notation to describe the required bounds. Consider a random market ℵ̃=(A,O,D)

and a fixed student b ∈ A, from now on we only write T TCo(b) instead of T TCo[Rb, R̃−b](b). Let

OT TCo(b) = {ω ∈ O | dω ≥ dT TCo(b) and T TCo(ω) = ω}, the set of all schools more popular than

T TCo(b) which are not assigned at the end of the algorithm. The number of elements in OT TCo(b) is

denoted by XT TCo(b) = |OT TCo(b)|. Consider ET TCo(b) = {ω∈O | dω > dT TCo(b) and iR̃is for all i∈

A}, the set of schools more popular than T TCo(b) that do not appear on any ranking R̃−b. The number

of elements in ET TCo(b) is denoted by Yb = |ET TCo(b)|.

Lemma 2.5.2. Consider a regular sequence of random markets (ℵ̃1,ℵ̃2, . . .). For every b > 4k,

E
[

1
XT TCo(b)+1

]
≤ 12e8nk/b

b
.
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Moreover, ∂g
∂b < 0 where g(b)≡ 12e8nk/b

b .

Proof. We divide this proof in the following three affirmations.

Affirmation 2.5.1. For every b, we always have XT TCo(b)≥ Yb.

Proof. Let ω ∈ ET TCo(b), by definition, ω does not appear in any ranking and is more popular than

T TCo(b). Then, no student does point to s during the T TCo algorithm. Consequently, T TCo(ω) =

ω for all ω ∈ ET TCo(b). Moreover, we have that ω is more popular than T TCo(b) and remains

unassigned. So, ω∈OT TCo(b), which implies that ET TCo⊆OT TCo(b). Therefore XT TCo(b)≥Yb.

Affirmation 2.5.2. Consider a distribution D. For b > 4k, then

E[XT TCo(b)]≥
b
2

e−8nk/g.

Proof. Let b ∈ A a fixed student, and Q = ∑
k
j=1 d j the total probability of the first k more popular

schools according to D. Suppose that b picks ωb
1,ω

b
2, . . . ,ω

b
l−1 as her first l− 1 preferred schools,

with l ≤ k. Since d1 ≥ d2 ≥ . . .≥ dm, we have that

Q ≥
l−1

∑
j=1

d
ωb

j

1−
l−1

∑
j=1

d
ωb

j
≥ 1−Q

dω

1−Q
≥ dω

1−
i−1
∑
j=1

d
ωb

j

1− dω

1−
i−1
∑
j=1

d
ωb

j

≥ 1− dω

1−Q
.

for all schools ω. In words,

1− dω

1−
l−1
∑
j=1

d
ωb

j

is the probability that student b does not rank school ω as her l’th most preferred school, given that

she picks schools ωb
j . Even more, the probability that a student does not list ω in her ranking is(

1− dω

(1−Q)

)
.
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By construction of random preferences, each school is chosen according to D independently of the

schools chosen before. Then, the stochastic independence implies that the probability that ω is not

listed by any student in her ranking is at least(
1− dω

1−Q

)nk

. (2.3)

Now, consider ω = ωt . If t > k, there are at least t− k schools who are at least as popular as ω, but

not among the k most popular schools5. So, dω is at most the probability of not being one of the k

most popular schools, divided by the total of schools who are at least as popular as her

dω ≤
1−Q
t− k

. (2.4)

On the other hand, we know that the limit definition of the exponential function is

ex = lim
n→∞

(
1+

x
n

)n
. (2.5)

For t > 2k, expressions (2.3), (2.4) and (2.5) imply that

Pr[ET TCo(b)] ≥
(

1− dω

1−Q

)nk

≥
(

1− 1
t− k

)nk

≥ e−2nk/(t−k)

≥ e−4nk/t .

Therefore, decomposing the expectation of Yb, we obtain

E[Yb] =
b

∑
w=1

Pr[ET TCo(w)]

≥
b

∑
j=2k

e−4nk/ j

≥
b

∑
j=b/2

e−8nk/b =
b
2

e−8nk/b,

for every b > 4k.

5Remember that we assume dt ≥ dt+1 in distribution D.
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By Affirmation 2.5.1, we conclude that

E[XT TCo(b)]≥ E[Yb]≥
b
2

e−8nk/g.

Affirmation 2.5.3. The variance σ2(Yb)≤ E[Yb].

Proof. This proof is taken from Immorlica and Mahdian (2005), Lemma 4.4. We show it for peda-

gogical purposes. We will show that events ET TCo(i) are negatively correlated, proving that

Pr[ET TCo(i)∩ET TCo( j)]≤ Pr[ET TCo(i)]Pr[ET TCo( j)],

for all i, j ∈ A.

Let Fω(i) be the event that a given school s is not included in the list of preference of i. By stochastic

independence, discussed in Affirmation 2.5.2, we know that

Pr[ET TCo(i)]≤ (Pr[Fω(i)])n and

Pr[ET TCo(i)∩ET TCo( j)]≤ (Pr[Fω(i)]∩Pr[Fω′( j)])n.

On the other hand, the definition of conditional probability is Pr[X |Y ] = Pr[X∩Y ]
Pr[Y ] then, it is enough to

show that for every i and j,

Pr[Fω(i)|Fω′( j)]≤ Pr[Fω(i)].

Let M be an arbitrarily large constant. With the following process, we simulate the selection of one

preference list L = (l1, l2, . . . , lk): Consider Σ the set of bpωMc, the immediate inferior integer of

pωM, copies of school ω. Pick a random permutation R of Σ. Let li be the i’th distinct name in R. It is

clear that, if M tends to ∞, the probability of a given list L in this process converges to its probability

under Dk. Therefore, Pr[Fω(i)] is equal to the probability that k distinct schools of ω are chosen by

i in R when M tends to ∞. Similarly, if Σ′ denotes the multiset obtained by removing all copies of

school ω′ from Σ, then Pr[Fω(i)|Fω′( j)] is equal to the probability that k distinct schools are chosen

by i in a random permutation of Σ′ as M tends to ∞. However, this is precisely equal to the probability

that k distinct names other than ω′ occur before ω in a random permutation R of Σ. This implies that k
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distinct schools (including ω′) occur before ω in R. So, for every R where Fω(i)|Fω′( j) happens, Fω(i)

also happens. It means that the first event is contained by Fω(i), so Pr[Fω(i)|Fω′( j)]≤ Pr[Fω(i)].

Using the relation between Fω(i) and ET TCo(i), we conclude that ET TCo(i) and ET TCo( j) are negative

correlated

Pr[ET TCo(i)∩ET TCo( j)]−Pr[ET TCo(i)]Pr[ET TCo( j)]≤ 0.

Then

σ
2(Yb) = E[Y 2

b ]−E[Yb]
2

=
b

∑
i=1

Pr[ET TCo(i)]+2 ∑
1≤i< j≤b

Pr[ET TCo(i)∩ET TCo( j)]−
b

∑
i=1

Pr[Ei]
2 + . . .

. . . −2 ∑
1≤i< j≤b

Pr[ET TCo(i)]Pr[ET TCo( j)]

≤
b

∑
i=1

Pr[ET TCo(i)] = E[Yb].

Continuing with the proof of Lemma 2.5.2, this last part is equal to the proof of Lemma 4.1 in [15].

Consider

Pr
[
Yb <

E[Yb]

2

]
= q.

Using Chebyshev’s inequality, we have that

q ≤ Pr
[
|Yb−E[Yb]|>

E[Yb]

2

]
≤ σ2(Yb)

(E[Yb]/2)2 .

Now, applying Affirmation 2.5.3 to the above expression

q ≤ 4
E[Yb]

. (2.6)

Affirmation 2.5.1 tells us that Yb + 1 ≤ XT TCo(b) + 1. Moreover, the expectation operator respect

inequalities, then

E
[

1
XT TCo(b)+1

]
≤ E

[
1

Yb +1

]
= ∑

Yb

1
Yb +1

Pr[Yb].
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On the other hand, we know that:

1
Yb +1

≤ 1 and Pr
[
Yb ≤ E

[
Yb

2

]]
= Pr

[
1

E[Yb]/2+1
≤ 1

Yb +1

]
.

Consequently

∑
Yb

1
Yb +1

Pr[Yb] ≤ ∑
Yb

1Pr[Yb]

≤
1/(E[Yb]/2+1)

∑
Yb=0

Pr[Yb]+ ∑
Yb=1/(E[Yb]/2+1)

Pr[Yb]

≤ Pr
[

1
E[Yb]/2+1

≤ 1
Yb +1

]1/(E[Yb]/2+1)

∑
Yb=0

1+ . . .

+Pr
[

1
E[Yb]/2+1

≥ 1
Yb +1

]
= (1−q)

1
E[Yb]/2+1

+q.

Using expression (2.6)

(1−q)
1

E[Yb]/2+1
+q≤ 4

E[Yb]
+

2
E[Yb]

. (2.7)

Finally, expressions (2.6) and (2.7), together with Lemma 2.5.2, imply that

E
[

1
XT TCo(b)+1

]
≤ 6

E[Yb]

≤ 6
b
2e−8nk/b

=
12e8nk/b

b
.

To complete the proof of Lemma 2.5.2, we need to prove that function g(b)= 12e8nk/b/b is decreasing

with respect to b:

∂g(b)
∂b

=
b12e8nk/b(−8nk/b2)−12e8nk/b

b2

= −12e8nk/b
(

b−1
b2

)
.

Since b > 4k, we conclude that
∂g(b)

∂b
< 0.
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In the following lemma we prove that the proportion of students with incentives to deviate from their

true preference list tends to zero as the size of the market increases. Its proof follows closely the

proof of Theorem 4.1 in [11]. The reasoning is the same, however, we avoid the arguments related

with reaction chains using the properties of the TTCo algorithm, the Waiting Algorithm and Lemma

2.5.1.

Theorem 2.5.1. Let (ℵ̃1,ℵ̃2, . . .) a regular sequence of random markets, and k a fixed positive con-

stant. Suppose that each student has a random ranking chosen according to Dk. Then

lim
n→∞

δk(n)
n

= 0.

Proof. If b is an student that manipulates the TTCo algorithm, by construction of the WA we have

that xb > 1, she has incentives to report a dropping strategy instead of her true ranking, see Lemma

2.5.1 and Definition 7. Consequently, δk(n) is equal to the expected number of students such that

xb > 1, then

δk(n) = ∑
b∈Bk

Pr[b has at least one effective school preferred to T TCo[Rb, R̃−b](b)].

We search an upper bound for δk(n). First, we bound the probability that b has at least one school

preferred to T TCo[Rb, R̃−b](b). By Proposition 2.5.2, this is the same as bounding the probability

that the random variable xb is more than one, Pr[xb > 1].

We can divide the WA into two phases: the first phase is from the beginning of the algorithm until it

finds the first effective school, and the second phase is from that point until the algorithm terminates.

By Proposition 2.3.1, at the end of the first phase there exists an IR assignment, i.e. the assignment

T TCo[Rb, R̃−b] = T TCo always exists. Given the existence of this assignment, we first bound

Pr[xb > 1|T TCo],

the probability that xb > 1 conditioned on the existence of the IR assignment T TCo; later, we take

the expectation of this bound over T TCo to get Pr[xb > 1]. We know that

T TCo(b) ∈ O∪{b}.

Case I. If T TCo[Rb, R̃−b](b) = b, b does not get any school, we have that Pr[xb > 1|T TCo] = 0. The

proof finishes.
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Case II. If T TCo[Rb, R̃−b] ∈ S, remember that

OT TCo(b) = {ω ∈ O | dω ≥ dT TCo(b) and T TCo(ω) = ω},

the set of schools more popular than T TCo[Rb, R̃−b](b) that remain unassigned, and XT TCo(b) is

the cardinality of this set. Moreover, xb > 1 if and only if for student b there exists a profitable

dropping strategy Rt∗
b , and we know that the WA ends at some t ′ such that Rt ′

b is the strategy where

[T TCo[Rb, R̃−b](b)] is declared as the most effective indifference class. So, student b has exhausted

all strategies Rt
b strictly preferred to T TC[Rb, R̃−b](b) in the WA.

Implicitly, we assume that no allocation was made before the WA starts. Since the T TCo always

exists at the end of the first phase of the WA, we claim that:

Affirmation 2.5.4. Xb∩OT TCo(b) =∅.

Proof. If there exists ω ∈ Xb∩OT TCo(b) then T TCo(ω) = b and T TCo(ω) = ω which is a contra-

diction.

Thus, the WA cannot output an element of OT TCo(b) by Affirmation 2.5.4. Consequently, the proba-

bility Pr[xb > 1|T TCo] is equal or less than the probability that T TCo(b) appears before any school

in OT TCo(b) because dropping strategies in the WA truncate schools in a descending form, so

Pr[xb > 1|T TCo]≤ Pr[T TCo(b) appears before any school in OT TCo(b)]. (2.8)

On the other hand, by definition of OT TCo(b), the probability that t is picked is at least as large as

the probability that T TCo(b) is picked, for all t ∈ OT TCo(b). Thus, the probability that T TCo(b)

appears before all elements in OT TCo(b), in a sequence of elements picked according to Dk, is at most

the probability that T TCo(b) appears first in a random permutation on the elements of {T TCo(b)}∪

OT TCo(b) which is 1/(XT TCo(b)+1). So

Pr[T TCo(b) appears before any school in OT TCo(b)]≤
1

XT TCo(b)+1
. (2.9)

Joining expressions (2.8) and (2.9)

Pr[xb > 1|T TCo]≤ 1
XT TCo(b)+1

. (2.10)
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Applying the expectation operator and the Law of Iterative Expectations

Pr[xb > 1] = ET TCo[Pr[xb > 1|T TCo]]

≤ ET TCo

[
1

XT TCo(b)+1

]
.

(2.11)

Applying Affirmation 2.5.2 for b ≥ 16nk
ln(n) , equation (2.11) and the fact that Pr[xb > 1] ≤ 1, for all

i ∈ {1,2, . . . , 16nk
ln(n)}, we get

δk(n) =

16nk
ln(n)

∑
i=1

Pr[xb > 1]+
n

∑
16nk
ln(n)

Pr[xb > 1]

≤

16nk
ln(n)

∑
i=1

1+
n

∑
16nk
ln(n)

ET TCo

[
1

XT TCo(b)+1

]

≤ 16nk
ln(n)

+
n

∑
b= 16nk

ln(n)

12e8nk/b

b
.

Moreover, by Lemma 2.5.2, we know that g(b) is a decreasing function with respect to b, so

16nk
ln(n)

+
n

∑
b= 16nk

ln(n)

12e8nk/b

b
≤ 16nk

ln(n)
+

n

∑
b= 16nk

ln(n)

12e8nk/
(

16nk
ln(n)

)
(

16nk
ln(n)

)
=

16nk
ln(n)

+
n

∑
b= 16nk

ln(n)

3ln(n)eln(n)/2

4nk

≤ 16nk
ln(n)

+n

(
3ln(n)eln(n)/2

4nk

)

=
16nk
ln(n)

+3
√

n ln(n)
4k

.

Dividing between n, we have that

δk(n)
n
≤ 16k

ln(n)
+

3
4

ln(n)
k
√

n
.

Therefore, the fraction of students with more than one effective school goes to zero as n goes to

infinity, for every length k.

Thickness Condition and Truth-telling at Equilibrium

We have proven that the number of schools with incentives to manipulate tends to zero as the market

size increases. A large market is necessary but not sufficient to guarantee that truth-telling is an
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ε−Nash equilibrium. The following example shows that.

Example 2.5.3. Consider a market (A,O,D,k) such that |A| = |O| = n and D is a probability distri-

bution over O defined as follows:

dω1 = dω2 = dω3 =
1
4
,

dω j =
1

4(n−3)
for all j > 3.

With probability [
dω1dω2dω3

(1−dω1)(1−dω1−dω2)

]3

=
1

243 ,

preferences of students 1, 2 and 3 are given by:

R1 : ω1,ω2,ω3, . . . ,

R2 : ω1,ω2,ω3, . . . ,

R3 : ω1,ω2,ω3, . . . ,

Under the TTCo algorithm, we have that:

T TCo[R] =

 ω1 ω2 ω3

1 2 3

 .

Now, suppose that ω3 reports

R′3 : ω2,3.

Figure 2.6(b) illustrates the maximum ttco ςL(ϒ(G1[R′3,R−3])). Therefore

T TCo[R′3,R−3] =

 ω1 ω2 ω3 · · ·

1 3 2 · · ·

 ,

where ω2P3ω3. In words, student 3 manipulates the T TCo algorithm with a positive probability,

1/(243), regardless the size of the market. �

Note that the tie breaking rule ςL benefits students with the minimum index. Example 2.5.3 shows

that ω1 is too popular with respect to other schools. Students with an index far from 1 are aware that it
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1 2 3 n′ n

ω1 ω2 ωm

(a) True preferences

1 2 3 n′ n

ω1 ω2 ωm

(b) student 3 deviates from her true ranking

Figure 2.6: student 3 has the opportunity to manipulate T TCo, in order to get ω2 regardless the size of the

market.

is impossible to get ω1 and decide to point to some school less popular than ω1 but in a high position

on her preference list. Pointing to an school with a lower popularity implies higher possibilities to be

the student with the minimum index. In Example 2.5.3, student 3 is not the student with minimum

index between the student that point to school ω1. However, if she points first to ω2, she becomes

the student with the minimum index of ω2. Even more, this situation does not change for 3 when the

size of the market increases because new elements have indexes far from ω2, they are greater than

3. Therefore, the deviation R′3 is always profitable to 3 with probability 1/24. Thus, with positive

probability, truth-telling is not the best response of student 3 when others are truth-telling.

Kojima and Pathak (2009) proved that truth-telling is an ε-Nash equilibrium when the sequence of

random markets satisfies the thickness condition. In Example 2.5.3, the relative probability between

ω1 and ωn is
dω1

dωn

=
1/4

1/4(n−2)
= n−2.

So, for each student pointing to ωn, the number of students that points to ω1 tends to infinity, i.e. ω1

is too popular with respect to ωn, for all n ≥ 4. If a market satisfies the thickness condition, then no

school is too popular in comparison with others, relative probabilities are bounded.

Let VT (n) =
{

ω ∈ O
∣∣∣∣ max

ω′∈O

dn
ω′

dn
ω
≤ T

}
the random set that denotes the set of schools sufficiently

popular ex-ante. Below, we present the thickness condition of Kojima and Pathak.

Definition 9. A sequence of random markets is sufficiently thick if there exists T ∈R such that

E[|VT (n)|]→ ∞,
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as n→ ∞.

Example 2.5.4. A particular random market that satisfies the thickness condition is one where D is a

uniform distribution. Consider a sequence of random markets ℵ̃n = (An,On,Dn) such that |An| = n,

|On|= n and dω = 1/n for all ω ∈ O, i.e. D = (1/n,1/n, . . . ,1/n). Now, let s, ω′ ∈ S, the maximum

of the relative probabilities is

max
ω′∈S

{
dω′

dω

}
= max

ω′∈S

{
1/n
1/n

}
= max

ω′∈S
{1}

= 1.

If T = 2, then (ℵ̃n) is a sequence of random markets sufficiently thick.

In large thick markets, the TTCo algorithm covers all market members at the end of its first step.

Proposition 2.5.3. Let (ℵ̃1,ℵ̃2, . . .) a regular sequence of random markets that satisfy the thickness

condition. There exists N ∈N such that the TTCo algorithm removes all schools in ℵ̃n at the end of

its first step, for all n≥ N.

Proof. Consider t[T TCo,ℵ̃n] the step of the TTCo algorithm such that at the end of it there is no

remaining schools in the market. We have to prove that

lim
n→∞

t[T TCo,ℵ̃n] = 1,

in other words, the maximum ttco ςL(ϒ[G1[ℵ̃n]]) covers all schools in ℵ̃n.

We suppose that the sequence of random markets satisfies the thickness condition, then, there exists

T > 0 such that

max
ω′∈On

{dn
ω′}

dn
ω

≤ T ⇒ max
ω′∈On′

{dn
ω′}
T
≤ dn

ω,

and dn
ω > 0, for all n ≥ N. In such markets, this implies that ω is with positive probability the most

preferred school of at least one student.

Let dn
ωM = maxω′∈On{dn

ω′}, then

1 =
dn

ωM

dn
ωM

≤
dn

ωM

dn
ω

≤ T.
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This means that for each student who prefers ωm to any other school ω there exist between 1 and T

students who prefer ω to any other school, ex-ante. Thus, there is a student bω such that (bω,ω) is an

edge of G1[ℵ̃
n], for all ω ∈ On and n≥ N.

Moreover, since we assume a regular sequence of random markets, we have that |On| ≤ |An|. By the

Pigeon-hole principle, there is N′ > N such that bω 6= bω′ for all ω 6= ω′ in On, for all n≥ N′.

Let θ = {(bω1,ω1),(bω2,ω2), . . . ,(bωmn
,ωmn)} and

Θ = θ∪{(b,b) ∈ An | b /∈ θ}.

It is clear that Θ is a subset of edges of G1(ℵ̃n), and no edges in Θ have a node in common. Moreover,

θ covers all schools in On. Therefore, Θ is a maximum ttco of G1(ℵ̃n).

Still ςL[ϒ(G1(ℵ̃n))] is not necessary equal to Θ. However, we have found a maximum top trading

cover that covers all students in ℵ̃n. Consequently, all maximum ttco of G1(ℵ̃n) must cover all

students in ℵ̃n.

Particularly, ςL[ϒ(G1(ℵ̃n))] must cover all students in ℵ̃n for all n≥ N′. Therefore

lim
n→∞

t[T TCo,ℵ̃n] = 1.

In Example 2.5.3 we show that too popular schools can induce profitable deviations of schools from

their true preferences, we call it an opportunity6. The thickness condition ensures that all schools

have a large enough demand, which reduces the possibility to be the the minimum student implying

that the opportunity vanishes. Next lemmas explain in more details what are vanishing opportunities.

Consider an student b, and suppose that her true ranking is represented by

Rb : [ωb1]b, [ωb2]b, . . . , [ωbη]b, [b]b.

Let Rb(ωb j) be the dropping strategy where [ωb j]b is declared as the most preferred class of b and all

her strictly preferred classes are declared not IR,

Rb(ωb j) : [ωb j]b, [ωb( j+1)]b, . . . , [ωbη]b, [b]b.

6Kojima and Pathak in [15] call it market power of colleges.
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Now, let d(Rb(ωb j)) be the probability that the WA outputs a school T TCo[Rb(ωb j), R̃−b](b) strictly

preferred to T TCo[R](b), conditioned to the matching T TCo[R] and Yb(n) > E[Yb(n)]/2, i.e. the

number of schools more popular than T TCo[R](b) that do not appear in any ranking is bounded

inferiorly by E[Yb(n)]/2. So,

d(Rb(ωb j)) = Pr
[

T TCo[Rb(ωb j), R̃−b](b)PbT TCo[R](b)
∣∣∣∣ Yb(n)>

E[Yb(n)]
2

,T TCo
]
.

If this probability tends to zero, the probability to do a profitable manipulation also tends to zero, then

opportunities vanish.

In the next lemma, equivalent to Lemma 9 presented in Appendix B of ([15]), we investigate if the

first step of the WA algorithm results in a profitable manipulation, so, we bound the probability that

reporting Rb(ωb2) is a profitable manipulation.

Lemma 2.5.3. Consider (ℵ̃1,ℵ̃2, . . .) a regular sequence of sufficiently thick random markets. Let T

be such that E[YT (n)]→ ∞ as n→ ∞. Then there is n ∈N large enough such that

d(Rb(ωb2))≤
4Tt

E[YT (n)]
,

where t is the number of schools preferred to T TCo[Rb, R̃−b](p) under Rb.

Proof. In the first step of the WA, student b reports the dropping strategy Rb(ωb2). In a sequence of

thick markets, we know that

pn
ω′(r)≥

pn
ωb2

(r)
T

,

for all ω′ ∈VT (n). The WA algorithm outputs a profitable manipulation at the end of its first step if

T TCo[Rb(ωb2)](b)PbT TCo[Rb](b).

Then, ωb2 is an school that appears in some ranking (Ri) and is assigned. Then, the probability that

[ωb2] is an effective class of b is at least

1− 1
YT (n)/T +1

,

the complement event of some school, more popular than T TCo[R](b), is not picked in any ranking

and remains unassigned. Moreover, we are conditioning to Yb(n) > E[Yb(n)]/2, by definition of
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d(Rb(ωb j)), consequently we have that

1− 1
YT (n)/T +1

> 1− 1
E[YT (n)]/2T +1

.

Now, if all dropping strategies Rb(ωb j) are profitable, for j = 2, . . . ,r−1 < t. Then, there are still at

least YT (n)− r+ 1 schools more popular than T TCo[R](b) that are still unassigned because at most

r− 1 schools in VT (n) have been assigned. Therefore, in step r, ωbr results to be the less preferred

effective school of b with probability of at least

1− 1
E[YT (n)]/2T − (r−1)+1

.

Since the waiting algorithm has t steps, the WA outputs profitable manipulations with probability of

at least
t

∏
r=1

(
1− 1

E[YT (n)]/2T − (r−1)+1

)
≥

(
1− 1

E[YT (n)]/2T − t +2

)t

≥
(

1− 1
E[YT (n)]/4T

)t

.

First and second inequalities hold because n is sufficiently large and the sequence of random markets

satisfies the thickness condition, also because r ≤ t. Therefore we have that

d(Rb(ωb2)) ≤ 1−
(

1− 1
E[YT (n)]/4T

)t

.

By Bernoulli’s inequality we know that 1−yx≤ (1−x)y then 1− (1−x)y ≤ yx for any x ∈ (0,1) and

y≥ 1. We conclude that

d(Rb(ωb2))≤
4Tt

E[YT (n)]
.

To have incentives to deviate from the true ranking is equivalent to xb > 1 at the end of the WA.

Consider δT TCo[R](b)(R) = Pr[WA outputs xb > 1]. We bound this probability in the following lemma,

which corresponds to Lemma 10 in Appendix B of [15].

Lemma 2.5.4. Consider (ℵ̃1,ℵ̃2, . . .) a regular sequence of random markets that satisfies the thick-

ness condition. There exists a large enough n ∈N such that

δT TCo[R](b)(R)≤
4[tT |[ωb2]|+1]

E[YT (n)]
,

for all b ∈ A.
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Proof. First, note that

d(Rb(ωb2)) ≤ ∑
ωb j∈[ωb2]

d(Rb(ωb j))

≤ ∑
ωb j∈[ωb2]

4Tt
E[YT (n)]

=
4Tt

E[YT (n)]
∑

ωb j∈[ωb2]

1

=
4Tt

E[YT (n)]
|[ωb2]|,

where the second inequality follows from Lemma 2.5.3.

Previous inequality is conditioned to the T TCo[R] assignment. The same reasoning can be applied to

all assignments T TCo[Rb, R̃−b]. Hence

∆(ωb j) = Pr
[

xb > 1
∣∣∣∣ Yb(n)>

E[Yb(n)]
2

]
≤ 4Tt|[ωb2]|

E[YT (n)]
.

Remembering what was done in the proof of Affirmation 2.5.3, we know that

Pr
[
Yb ≤

E[Yb]

2

]
≤ Pr

[
Yb ≤

E[Yb]

2

]
+Pr

[
Yb ≥

3E[Yb]

2

]
= Pr

[
|Yb−E[Yb]| ≥

E[Yb]

2

]
≤ Var[Yb]

(E[Yb]/2)2 ≤
4

E[Yb]
.

Consequently

δT TCo[R](b)(R) = ∑
ωb j∈Xb

∆(ωb j)Pr
[
YT (n)≥

E[YT (n)]
2

]
≤ ∆(ωb2)Pr

[
YT (n)≥

E[YT (n)]
2

]
+ ∑

ωb j 6=ωb2

∆(ωb j)Pr
[
YT (n)≥

E[YT (n)]
2

]
≤ Pr

[
YT (n)≥

E[YT (n)]
2

]
4Tt|[ωb2]|
E[YT (n)]

+Pr
[
YT (n)≤

E[YT (n)]
2

]
≤ 4Tt|[ωb2]|

E[YT (n)]
+

4
E[YT (n)]

.

Therefore

δT TCo[R](b)(R)≤
4(Tt|[ωb2]|+1)

E[YT (n)]
.
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In words, Lemmas 2.5.3 and 2.5.4 say that students opportunities vanish as the market size increases.

These bounds imply the ε−Nash equilibrium.

Corollary 2.5.1. Consider a sequence of random markets (ℵ̃1,ℵ̃2, . . .) regular and sufficient thick.

There exists an N ∈N large enough such that truth telling is an ε-Nash equilibrium, given the TTCo

mechanism.

Proof. Fixed a student b, an consider ε > 0. As before, the probability that b profitable manipulates

the TTCo algorithm is δT TCo[R](b)(R). We prove that

E
[
ub
(
T TCo[On,An,(R′b, R̃−b)]

)
(b)
]
−E

[
ub
(
T TCo[A,O,(Ri, R̃−b)]

)
(b)
]
= 0,

as n tends to infinity. We know that

E
[
ub
(
T TCo[R′b, R̃−b](b)

)]
−E

[
ub
(
T TCo[(Rb, R̃−b)](b)

)]
=

E
[
ub
(
T TCo[R′b, R̃−b](b)

)
−ub

(
T TCo[(Rb, R̃−b)](b)

)]
≤

Pr
[
T TCo[R′b, R̃−b](b)PbT TCo[(Rb, R̃−b)](b)

]
≤ δT TCo[R](b)(R)× t sup

n∈N,ω∈On
ub(ω).

Moreover, the sequence of random markets is regular and satisfies the thickness condition. Then,

E[YT (n)]→ ∞, from Lemma 2.5.2, as n tends to infinity. Hence 1/E[YT (n)] tends to zero. Moreover,

considering

ε
′ =

ε

4(Tt|[ωb2]|+1)
1

sup
n∈N,ω∈On

ub(ω)
,

there exists N ∈N such that
1

E[YT (n)]
< ε
′, (2.12)

for all n≥ N. Lemma 2.5.4 and expression (2.12) imply that

E
[
ub
(
T TCo[R′b, R̃−b](b)

)]
− E

[
ub
(
T TCo[Rb, R̃−b](b)

)]
≤

≤ δT TCo[R](b)(R) sup
n∈N,ω∈On

ub(ω)

≤ 4(Tt|[ωb2]|+1)
E[YT (n)]

sup
n∈N,ω∈On

ub(ω)

≤ 4(Tt|[ωb2]|+1) sup
n∈N,ω∈On

ub(ω)ε
′

≤ ε,

58



for all n≥ N. We conclude that truth-telling is an ε-Nash equilibrium.

By Theorem 2.5.1 we know that

δk(n)≤
16nk
ln(n)

+
3
√

n ln(n)
4k

.

So, the number of students that are not truth-telling at equilibrium tends to zero as the market size

increases. Therefore, there exists n ∈N such that truth-telling is the unique ε−Nash equilibrium for

all n≥ N.

2.5.4 The ε−Bayesian Nash equilibrium

The Bayesian game of stage two is described by (A,O, f ,D), where the types are drawn according to

f , D is a probability distribution over the set of schools. Since the final allocation is determined by

the TTCo algorithm, the pay-off function of each student i is

ui(T TCo(i)) =

 vωi +θ((vτ6= j)) if T TCo(i) = ω for some ω,

mi otherwise.

The expected utility function of each student i is

E[ui] = ∑
ω∈O,ωRii

(mi− pω + vωi)Pr(T TCoω[Ri, R̃−i](i) = ω)+miPrω(T TCo[Ri, R̃−i](i) = i).

The ε-Bayesian Nash equilibrium of this stage is a profile of preferences such that a single student

cannot improve substantially her final allocation under the T TCo algorithm.

Definition 10. Given ε > 0, a strategy profile (R∗i (v̂i))i∈B,v̂i∈V̂i
is an ε-Bayesian Nash equilibrium if

there is no Ri(v̂i) ∈ V̂i such that

E[ui(T TCo[R∗i (v̂i)](i))] > E[ui(T TCo[Ri(v̂i)],R∗(v̂)−i](i))]+ ε.

Students’ behaviour at equilibrium is the same as in the complete information case.

Corollary 2.5.2. Assuming a ranking with length k, the number of students with incentives to deviate

from her true ranking tends to zero as the market size increases.
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Proof. This is a direct consequence of Theorem 2.5.1 where we prove this inequality for all possible

fixed types. Making the summation over types we get this corollary.

As before, previous Corollary does not guarantee that truth-telling is an ε−Bayesian Nash equi-

librium. However, Corollary 2.5.1 can be generalized to the case of incomplete information for a

sequence of regular random markets that satisfies the thickness condition.

Theorem 2.5.2. Consider a regular sequence of random markets that satisfies the thickness condition.

For any ε > 0, there exists N ∈ N such that truth-telling by every student is an ε-Bayesian Nash

equilibrium for any market in the sequence with more than N students.

Proof. Let (ℵ̃n)n∈N a regular sequence of random markets that satisfy sufficient thickness condition,

and ε > 0.

From Corollary 2.5.1 there exists n ∈N such that truth-telling is an ε-Bayesian Nash equilibrium of

ℵ̃N , for all N ≥ n.

This results holds for any of students type, then we can find N across types realizations. Therefore

truth-telling is an ε-Bayesian Nash equilibrium.

2.6 Concluding Remarks

The Top Trading Cover algorithm induces a family of Pareto efficient mechanisms that recursively

respect top preferences and deal with indifferences. Its application is not only restricted to school

choice problems. In general, we can use this family of mechanisms whenever we have indivisible

objects and agents. For example, we can determine the allocation of apartments and scholarships

between households and students.
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2.7 Appendix A1

The Existence of Top Trading Covers

To prove the existence of a maximum Top Trading Cover in each quasi-bipartite graph G(S′,B′,π; p,v),

we need more definitions from Graph Theory. Given a top trading cover T of G, a node r ∈ S′∪B′ is

said to be covered if there exists r′ ∈ S′∪B′ such that (r,r′) ∈ T . A path P in G is a succession of

nodes

{r1, t1,r2, t2, . . .rn, tn}

such that (ri, ti) ∈ E(S′∪B′,π; p,v) for all i = 1,2, . . . ,n. We say that r1 and tn are the end points of

P.

Definition 11. Let G = G(S′,B′,π; p,v) a quasi-bipartite graph and a top trading cover T of G. A

path P is an augmenting path for T if:

1. The two end point of P are not covered by T .

2. The edges of P alternate between edges ∈ T and edges /∈ T .

Let R a top trading cover of G, and P and augmenting path of R. We define and denote the operation

between R and P, as

R⊕P = (A∪B)− (A∩B),

i.e., we operate ttco’s and paths through symmetric difference.

The algorithm to find a maximum top trading cover is described below

Step 1. Consider T a top trading cover of G, could be T =∅.

Step 2. While exists an augmenting path P do

2.1 T = T ⊕P.

Step 3. While exists r ∈ G\T such that (r,r) is and edge of G do

3.1 T = T ∪{r}.
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Step 4. Output T .

We have to prove that T is effectively a maximum top trading cover. However, this is clear, because

we delete all possible augmenting paths. We conclude this proof applying Berge’s Theorem: ”The

matching M is maximum if and only if there is no augmenting path”7.

7For more details consult: Claude Berge (1963). Topological Spaces. Oliver and Boyd.
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Chapter 3

On uniqueness of equilibrium prices in large

assignment games

3.1 Introduction

The diversity of approaches and problems is one distinctive characteristic of the literature on real

estate economy. We mention here only a few of them. The fact that properties are heterogeneous has

been addressed through hedonic price modelling, both in academic papers (Rosen (1974), Maclennan

(1977) (1982), Nelson (1978), . . .) and in real life practice, in the U.S., by the Uniform Standards

of Professional Appraisal Practice. While the approach is insightful for measuring the contributions

of determinants (age, rooms, structure type, neighborhood, . . .) in the valuation of a property, it is

outperformed by dynamic models to predict other aspects of housing markets like bargaining (Yavaç

(1992), Muthoo (1999), Merlo and Ortalo-Magné (2004), Di Pascuale and Wheaton (2012), . . .),

the role of list prices, their stickiness, and the optimal acceptance and rejection strategy of sellers

(Salant (1991), Horowitz (1992), Albrecht et al. (2012), Merlo et al (2013)). These works adopt the

tools developed by search theory to model the behavior of one side of the market and do not provide

closed-form solutions for prices. Exceptions are Corominas-Bosch (2004) and Polanski (2007)) who

elaborate a network framework to study bargaining processes.

Our contribution to this vast literature is to re-examine the heterogeneity feature of real estate markets
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by modeling them as large auction markets. More specifically, in the Assignment Game introduced

in Shapley and Shubik (1971), we study the equilibrium prices when buyers and sellers do not know

the valuation of others in large markets. It is intended to capture three features: 1. the stickiness of

selling prices: Horowitz (1992) and Merlo et al (2013) provide empirical evidence where prices do

not change even after houses have remained unsold for a long period of time or in the presence of

different offers; 2. sellers accept to sell to (one of) the first buyers to meet the asking price: Merlo and

Ortalo-Magné (2004) present evidence from England where the difference between the list price and

the sold price is around 2 per cent, i.e. the bargaining is almost insignificant; and 3. households are

not strategic: in an empirical work, Wheaton (1990) shows that buyers search for their favorite house.

We model the problem as a three-stage game. First, nature draws the valuation of each agent, namely

over the good they own for sellers, or the goods on sale for buyers. At stage two sellers simultaneously

set prices, which are observed by buyers before stage three begins, when buyers report their rankings

of houses to the Top Trading Cover (TTCo) algorithm, which determines the payoffs. During this

assignment procedure, each buyer points to her most favorite house in a descending form and sellers

sell their houses to one of the buyers that are willing to pay the list price.

The TTCo algorithm is developed in Chapter 2. The mechanism relies on a graph representation of

the market, where a node is associated to all buyers and sellers, and directed edges represent the top

choices of buyers. A loop represents a buyer that prefers remaining with her original amount to buy

a house. A cover of the graph is selected by a tie breaking rule, transactions between buyers and

sellers take place according to the cover and involved agents are withdrawn from the market. The

procedure is iterated with the remaining agents, analogically to David Gale’s Top Trading Circle;

indeed TTCo also encompasses Hierarchical Exchange rules by Papai (2000). Moreover, in Chapter

2 we also prove that at the third stage of the mechanism, when market is sufficiently thick, it is an

Epsilon Bayesian Nash equilibrium for buyers to report their true ranking to the TTCo. The thickness

condition is reminiscent of the one by Fuhito and Pathak (2009), which specifies that for each seller

the number of buyers is balanced, it implies that TTCo ends at the first iteration of the mechanism.

Our main result establishes that the Bayesian equilibrium of the second stage always exists and is

unique. The Bayesian equilibrium, as far as we know, is the unique approach interested in estab-
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lishing the uniqueness of equilibrium prices in the Assignment Game. In contrast, multiplicity of

competitive equilibria and core allocations are pervasive in the Assignment Game. Assuming that

agents cannot have more than one indivisible good, Quinzii (1984) shows that the core of the econ-

omy is non-empty, and not necessarily unique. Also, she analyses the conditions under which the core

allocations coincide with competitive equilibrium allocations. Similarly, Demange (1984) proves the

existence of at least one competitive equilibrium, which is not always unique, in a model with ex-

ternalities. Demange and Gale (1985) show that the set of equilibria have a lattice structure in the

Assignment game. A generalization of the assignment game is done by Scarf (1990, 1994) through

non-convexities. Moreover, Alkan, Demange and Gale (1991) shows that the set of efficient and envy

free allocations is non-empty. Even in the presence of multiplicity of fair assignments, they show

that it is possible to do some comparative statistics when the amount of money increases. In similar

models with multiplicity of fair assignments, Tadenuma and Thomson (1991) study when fair allo-

cations satisfy consistency and Svensson (2009) characterized the set of fair allocation rules that are

strategy-proof.

We also provide a closed form solution when valuations are exponentially distributed. The assump-

tion echoes empirical works such as Trippi (1977) who estimates the length of time on market of

real estate with data from San Diego, using an exponential distribution. So does I-Chun Tsai (2010)

with data from Taiwan and Horowitz (1992) who studies real estate in Baltimore. Unsurprisingly, the

relation between the price at equilibrium and its corresponding seller valuation is positive; while the

price decreases when the number of sellers and the distribution parameter increases. These results

are robust to the cases where agents’ preferences are exponentially distributed but not identically. We

analyze two cases: different parameter distributions and overlapping valuations.

The paper is organized as follows. The model and the TTCo are presented in Section 2. The anal-

ysis of equilibrium incentives of buyers when the market is large under the thickness condition is

carried out in Section 3. The uniqueness of equilibrium price vector and its closed-form solution is

established in Section 4.
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3.2 The Model

We consider a market with indivisible goods, money, and two disjoint sets of agents: a set of sellers,

S, and a set of buyers, B. Each member of the market initially has a certain amount of money. Only

sellers initially own one and only one indivisible good. A generic amount of money is represented

by ω ∈R, and r is used to represent any agent, so r ∈ S∪B. We use ∅ whenever a member does not

own any indivisible good. Any member owns at most one indivisible good.

Consider S = {s1,s2, . . . ,sm}, the set of m sellers. To identify a generic seller we use s j, or s. Each

seller initially holds only one indivisible good also identified by s j; and an amount of money ω j. By

simplicity we suppose that ω j = 0. Thus, the initial endowment of seller s j is the basket (0,s j). We

suppose that each seller s j has a preference relation represented by the utility function us j(·), defined

over baskets (ω,s) ∈R× ({s j}∪{∅}). We assume the following quasi-linear utility function

us j(ω,s;v j) =

 ω+ v j if s = s j,

ω if s =∅.

The type of s j is the valuation v j ∈R+ of her own good. Let Vj =R+ be the set of all possible types

of s j.

Consider B, the set of n buyers. We identify a generic buyer by i. Each buyer i initially owns only an

amount of money ωi ≥ 0, and no good. The initial endowment of buyer i is the basket (ωi,∅). We

suppose that each buyer i has a preference relation represented by the utility function ui(·) over the

set of baskets (ω,s) ∈R× (S∪{∅}). We assume the following quasi-linear utility function

ui(ω,s; v̂i) =

 ω+ v ji if s = s j,

ω if s =∅.

Each buyer i has a valuation v ji ∈ R of good s j for all j ∈ {1,2, . . . ,m}. The type of buyer i is the

vector v̂i = (v1i, . . . ,vmi,ωi). The set of all possible types of buyer i is denoted by V̂i ⊆Rm+1.

The state of the market is the vector v = (v1, . . . ,vm, v̂1, . . . , v̂n) ∈ Rm
+×Rn. The set of all possible

states of the market is the Cartesian product between all sets Vj and the sets V̂i; let V ≡ ∏
m
j=1Vj×
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∏
n
i=1 V̂i. We suppose that the state of the market v ∈V is drawn according to a probability function f

from V to R, of common knowledge.

An assignment is a function Γ from S∪B to R× (S∪{∅}), i.e Γ assigns to each r ∈ S∪B a bas-

ket composed of money and a good, or not. The allocation of member r is denoted by Γ(r) =

(Γω(r),Γs(r)), so Γω(r) ∈R and Γs(r) ∈ S∪{∅}.

The assignment Γ is feasible if it satisfies the following conditions

1. ∑r∈S∪B Γω(r)≤ ∑
n
i=1 ωi,

2. let r, r′ ∈ S∪B such that Γs(r) = Γs(r′) ∈ S then r = r′, and

3. for all s j ∈ S there exists some r ∈ S∪B such that Γs(r) = s j.

Conditions 2 and 3 tell us that at Γ, any good in the market is assigned to one and only one agent.

We say that a basket (ω,s) is individually rational (I.R.) for agent r if and only if the utility of r by

holding (ω,s) is greater or equal than the utility of r by holding her initial endowment. So, Γ is an

individually rational assignment (I.R.) if each member of the market weakly prefers her allocation

under Γ to her initial endowment.

3.2.1 The Game

A Three-step Game

We consider a three-step game. Nature moves first, determining the type of each member of the

market according to the probability distribution f . All members of the market observe their type, but

do not observe the type of the others. At stage 2, sellers decide simultaneously to set the price of their

good. If a seller s j decides to sell her good, she sets a non-negative price p j. Otherwise, she sets a

price p j = +∞. Thus, A j = R+ ∪{+∞} is the set of actions of seller s j. We define a price vector

p = (p1, p2, . . . , pm) as a vector in A1×A2×·· ·Am. We denote by E(p) the set of baskets on sale, i.e.

E(p) = {(ps,s) ∈R+×S | ps 6= ∞}; a basket (ps,s) in E(p) is denoted by es(p).

At stage three buyers report their preferences over baskets. Each buyer observes the price vector p

of the second stage and sets her preferences πi(p; v̂i) over the set of baskets in E(p) she can afford
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and her initial endowment (mi,∅), we use Ei(p) to represent this set. Naturally, buyers might be

indifferent between different baskets. So, for each buyer i, πi(p; v̂i) is a non-strict list of preferences

over the set of baskets Ei(p). We write es(p) ∼i es′(p) when i is indifferent between buying s and

s′, i.e. mi + vsi− ps = mi + vs′i− ps′ , and es(p)Pies′(p) when i strictly prefers buying s to s′, i.e.

mi + vsi− ps > mi + vs′i− ps′ . Also, not all baskets in Ei(p) are better than the initial basket (mi,∅),

so, we write iπies(p) when i weakly prefers remaining with her initial endowment buying s, i.e.

mi ≥ mi + vsi− ps. The ranking of buyer i is represented by

πi : [esi1
(p)], [esi2

(p)], . . . , [esik
(p)], [i], [esik+1

(p)], [esik+2
(p)], . . . , [esiK

(p)],

where [esi j
(p)] = {es(p)∈Ei(p) | es(p)∼i esi j

} and [i] = {es(p)∈Ei(p) | es(p)∼i (mi,∅)} are called

classes of indifference. Each buyer strictly prefers remaining with her initial basket to being assigned

to some non I.R. basket. Our analysis only focuses on I.R. baskets.

Let Πi(p; v̂i) be the set of all possible rankings πi(p; v̂i), thus, Πi(p; v̂i) is the set of actions of i. The

profile of reported rankings is the vector

π(p;v) = (π1(p; v̂1),π2(p; v̂2), . . . ,πn(p; v̂n)).

Given the profile π(p;v) of reported rankings, the payoffs of each member of the market are induced

by the Top Trading Cover (TTCo) algorithm, to be introduced in the following section.

The TTCo Mechanism and Payoffs

To describe the TTCo algorithm, we must first record some concepts from Graph Theory (see Ap-

pendix A2). In general, the TTCo algorithm removes sequentially maximum top trading covers in

every step. Since the maximum ttco is not always unique, we use tie breaking rules to choose one of

them. Formally, let G be a quasi-bipartite graph and ϒ[G] = {T ⊆ E[G] | T is a ttco of G} the set of

all top trading covers of G. Note that ∅ ∈ ϒ[G], i.e., the picking rule can decide not to pick any cover

in some iterations of the ttco algorithm. The set of elements which are subsets of ϒ[G] is denoted by

2ϒ[G]. A tie breaking rule is a function ς : ϒ[G]→ ϒ[G] such that ς(T ) is a maximum ttco of G, for all

T ∈ 2ϒ[G]\{∅}.
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The following questions immediately arise: how do tie breaking rules affect the final assignment? Do

tie breaking rules modify agent’s behaviour? In Chapter 1, we prove that the assignments produced by

tie-breaking rules are characterized by Pareto efficiency and that recursively respects top Rankings.

Also, we prove that seller’s behaviour at equilibrium is not affected by tie-breaking rules. In other

words, equilibrium prices are invariant with respect to tie-breaking rules.

The above results allow us to fix a tie-breaking rule without loss of generality. The tie-breaking rule

that we use in the assignment procedure is based on the lexicographic order defined over the set of

edges of a quasi-bipartite graph G.

Definition 12. Let G = (S′∪B′,E(S′∪B′, p,π(p;v))) be a quasi-bipartite graph, and (s j, i),(s j′, i′) ∈

E(S′ ∪B′, p,π(p;v))∩ (S×B). The lexicographic order 4L over E(S′ ∪B′, p,π(p;v))∩ (S×B) is

defined as follows

(s j, i)4L (s j′ , i
′) if and only

 j < j′, or

j = j′ and i≤ i′.

We recall that buyers and sellers are indexed by the set of natural numbers, a well-ordered set, which

implies the veracity of the next observation.

Observation 3.2.1. Each subset E of E(S′ ∪B′, p,π(p;v))∩ (S×B) has a minimum element, i.e.

there exists (s, i) such that (s, i)4L (s′, i′) for all (s′, i′) ∈ E. We write (s, i) = minE.

By Proposition 2.3.1 we can ensure the existence of at least one non-empty maximum top trading

cover regardless the quasi-bipartite graph. Thus, we can proceed to define the lexicographic tie-

breaking rule over ϒ[G] using Definition 12 and Observation 3.2.1.

Definition 13. Let G be a quasi-bipartite graph, and T = {Tη | Tη ∈ϒ[G] and Tη is maximum for all 1≤

η ≤ K} a finite subset of maximum top trading covers of G. Consider T ′η = Tη ∩ (S×B) for all

η ∈ {1,2, . . . ,K}. The lexicographic tie breaking rule ςL is the function ςL : 2ϒ[G]→ ϒ[G] such that

ςL(T ) = Tκ if and only if

min

[
T ′κ \

K⋂
η=1

T ′η

]
4L min

[
T ′t \

K⋂
η=1

T ′η

]
,

for all t 6= κ.
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The Top Trading Cover Algorithm

Consider a market (S,B,π(p;v)) and a tie breaking rule ς. The assignment proceed as follows:

Step 0: Let S0 = {s j ∈ S|p j 6= ∞} and B0 = B. If S0 =∅, the algorithm finishes and all agents in the

market receive their original basket. Otherwise, S0 6=∅, the procedure continues to the iterative step

t.

Step t: Let Gt = Gt(St−1,Bt−1, p,π(p,v)) be the t−th quasi-bipartite graph. We choose a maximum

TTCo of Gt according to ς. For all pairs (s, i) ∈ ς(ϒ[Gt ]), seller s sells her good to buyer i. Then,

baskets (ps,∅) and (mi− ps,s) are assigned to s and i, respectively. The maximum ttco ς(ϒ[Gt ]) is

removed from the market. Let St and Bt be the sets of buyers and sellers remaining in the market

after removing this maximum ttco. If both are non-empty, we iterate the procedure. Otherwise, the

algorithm stops.

Agents that sell/buy a good receive a payoff of ps/mb− ps + vsb respectively. Agents that do not sell,

or buy, any good during the assignment procedure are assigned to their initial basket. The payoffs of

these sellers and buyers are v j and mi, respectively.

The final allocation produced by the algorithm described above depends on the price vector p, the

profile of reported rankings π, the state of nature v and the tie breaking rule ς that we use. We some-

times write the final allocation as T TCo[S,B,π; p,v,ς]. We use T TCo[S,B,π; p,v,ς](r) to represent

the assignment given to r ∈ S∪B under the assignment procedure. If there is no confusion we refer

to the assignment only by T TCo.

From now on, we fix the lexicographic tie breaking rule ςL. Below, we provide an example to show

how the T TCo[ςL] algorithm works.

Example 3.2.1. Consider the set of seller S = {s1,s2,s3}, and the set of buyers B = {1,2,3,4}. We

assume that sellers have the same valuation v j = 0 for all j ∈ {1,2,3}, and buyers also have the same

valuation vector:

v̂1 = v̂2 = v̂3 = v̂4 = (5,5,5).

In stage 2, all sellers set the same price, p1 = p2 = p3 = 1; and the amount of money given to each

buyer is m1 = m2 = 2.5 and m3 = m4 = 3.5.
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Suppose buyers report the following rankings at the end of the stage 3 (which are not necessarily

equilibrium strategies):

π1(p, v̂1) : es1(p),es2(p),

π2(p, v̂2) : es1(p),es2(p),

π3(p, v̂3) : es1(p),es2(p),es3(p),

π4(p, v̂4) : es1(p),es2(p),es3(p).

Figure 3.1 illustrates the step 1 of the TTCo algorithm. The dotted line is the maximun ttco chosen

by ςL, so the pair (s1,1) is removed from the market.

1 2 3 4

s1 s2 s3

Figure 3.1: First step of Top Trading Cover algorithm

In the step 2 (Figure 3.2) the set {(2,s2)} is the maximum ttco removed from the market.

2 3 4

s2 s3

Figure 3.2: Second step of Top Trading Cover algorithm

Now, the ttco removed from the market in the Step 3 is {(3,s3)} (see Figure 3.3). Consequently, the

TTCo algorithm stops because there are no sellers remaining in the market after removing s3. So,

buyer 4 is assigned to her original basket.
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3 4

s3

Figure 3.3: Third and last step of Top Trading Cover algorithm

Therefore, the final allocation is

T TCo =

 s1 s2 s3 1 2 3 4

(p1,∅) (p2,∅) (p3,∅) (1.5,s1) (1.5,s2) (2.5,s3) (3.5,∅)

 .

Properties of the TTCo algorithm

Consider π(p;v) a profile of rankings, an assignment Γ and a pair (i,s j) ∈ B× S. We say that Γ is

blocked by (i,sj) with respect to π(p;v), if and only if

• Γ(s j) = (0,s j) and p j 6= ∞, and

• es j(p)Pi(p; v̂i)eΓ(i)(p).

If Γ is blocked by the pair (i,s j), we say that it is a blocking pair of Γ. An assignment Γ is non-

wasteful with respect to π(p;v) if and only if it is individually rational and it is not blocked by any

pair. In words, an assignment is non-wasteful if there is no buyer such that she strictly prefers an

unassigned basket to her allocation.

The non-wastefulness property will be useful in the section of the Large Markets to prove that all

assignments can be generated by the T TCo algorithm through dropping strategies. This in turn

implies that any deviation is identified through effective sellers. Buyers with at most one effective

seller do not have incentives to deviate from her true ranking. Given a profile of reported rankings π,

and a non-wasteful assignment Γ with respect to π, s′ ∈ S is an effective seller for buyer b ∈ B if and

only if Γs[π](b) = s′. Analogously, we define an effective buyer for any seller s.
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We say that an assignment satisfies Pareto efficiency if there is no other assignment that assigns each

agent in the market a weakly preferred basket and at least one agent a strictly preferred basket. So, it

is impossible to make an agent better off without making another agent worse off. An assignment Γ is

Pareto efficient at rankings profile π if there is no other feasible assignment Γ′ such that ur(Γ
′[π](r))≥

ur(Γ[π](r)) for all r ∈ S∪B, with strict preference for some r′. The T TCo[ς] assignment is Pareto

efficient for all tie-breaking rules ς.

Proposition 3.2.1. The assignment T TCo[A,B,π; p,v,ς] is individually rational and non-wasteful.

Proof. See Chapter 1.

3.2.2 Solution Concept

We need some extra concepts and notations. A decision rule of seller s j is a function α j : Vj → A j

mapping a type into an action. A pure strategy for seller s j is an element σ j ∈ S j = {α : α : Vj→ A j}.

Given a price vector p and the realization of her type v̂i, an action of buyer i is a ranking πi(p, v̂i) over

the set of baskets {(ps,s)|ps 6= ∞}∪{(mi,∅)}. A decision rule βi(p, v̂i) for buyer i is a function that

maps a price vector and types into rankings.

Definition 14. Let σ∗ = (σ∗1, . . . ,σ
∗
m) and β∗ = (β∗1, . . . ,β

∗
n) be profiles of strategies for sellers and

buyers respectively, and ε > 0. A ε−sub-game perfect Bayesian Nash equilibrium is a profile of

pure strategies

(σ∗1, . . . ,σ
∗
m),β

∗
1(σ
∗), . . . ,β∗n(σ

∗)) = (σ∗1, . . . ,σ
∗
m,β

∗
1, . . . ,β

∗
n)

such that

1. For all s j ∈ S,

E[us j(T TCo(σ∗j ,σ
∗
− j,β

∗(σ∗j ,σ
∗
− j))(s j)]+ ε≥ E[us j(T TCo(σ j,σ

∗
− j,β(σ j,σ

∗
− j))(s j)].

2. For all i ∈ B,

E[ui(T TCo(σ∗,β∗i (σ
∗),β∗−i(σ

∗))(i)]+ ε≥ E[ui(T TCo(σ∗,β′i(σ
∗),β∗−i(σ

∗))(i)].
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3.3 Equilibrium Analysis of Third Stage

To analyse the set of ε−sub-game perfect Bayesian Nash equilibria, we proceed by backward induc-

tion. We suppose that buyers observe the price vector p set at the end of stage two. Also, we consider

that f = fS fB, where fS is the type distribution of sellers and fB is the type distribution of buyers. In

other words, we assume that buyers behaviour is independent from sellers behaviour.

The third stage is a simultaneous game where each buyers only knows her own preference relation

and reports a ranking of sellers to the TTCo algorithm. Moreover, sellers wait until someone is

interested in buying their good. So, an ε−Bayesian Nash equilibrium of the third stage is a profile of

decision rules such that every buyer does not have incentives to deviate from her equilibrium strategy.

This game coincides with the game described in Chapter 1. In this paper we proved the existence

of a unique ε−Bayesian Nash equilibrium where all agents report their true ranking in large markets

that satisfies the thickness condition. Moreover, the TTCo algorithm ends at step 1 in these kind of

markets, i.e. all sellers sell their good. Before to present previous result, we remember the thickness

condition.

Assume that all sellers want to sell her good, i.e. ps 6= ∞ for all s ∈ S. Consider D = (d1,d2, . . . ,dm)

a probability distribution over S such that, without loss of generality, d j ≥ d j+1 and d j > 0 for all

s j ∈ S. We say that seller s j is more popular than seller s j′ if d j ≥ d j′ , that is to say, s j is top ranked

in more preference list that s j′ .

A random market is a tuple ℵ̃ = (B,S,D,k) with an associated profile of random rankings π̃1. Given

ε > 0, a profile of rankings π
∗ = (π∗i )i∈B is an ε-Nash equilibrium if there is no i ∈ B and π

′
i such that

E[ui(T TCo[S,B,(π∗i , π̃
∗
−i)](i))]+ ε > E[ui(T TCo[S,B,(π′i, π̃

∗
−i)](i))],

1Step 1. Select randomly a seller following distribution D. List this seller as the most preferred seller of i.

Step t. Select randomly a seller following distribution D.

t.1 If this seller has not been previously drawn in steps 1 through t−1, list this seller as the tth most preferred seller of

i, go to t +1.

t.2 Otherwise, we select randomly a seller following distribution D, go to t.1.

The procedure ends at step k.
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where the expectation is taken with respect to random rankings.

A sequence of random markets is denoted by (ℵ̃1,ℵ̃2, . . .), where each ℵ̃n is a random market

(Sn,Bn,Dn,kn; pn)

such that Dn = (dn
1 ,d

n
2 , . . .), |Bn| = n and |Sn| = mn, for all n ∈N. Also, some regularity conditions

over sequences of random markets are necessary to define thickness condition.

Definition 15. A sequence of random markets (ℵ̃1,ℵ̃2, . . .) is regular if there exists a positive integer

k such that

1. kn = k for all n,

2. mn ≤ n for all n.

Let VT (n) =
{

s ∈ S
∣∣∣∣ max

s′∈S

dn
s′

dn
s
≤ T

}
the random set that denotes the set of sellers sufficiently popular

ex-ante. Below, we present the thickness condition of Kojima and Pathak.

Definition 16. A sequence of random markets is sufficiently thick if there exists T ∈R such that

E[|VT (n)|]→ ∞,

as n→ ∞.

Now, we present the results from Chapter 2 that we use to compute the set of ε−Bayesian Nash

equilibria. The first result is a property of the TTCo algorithm. The following proposition establishes

that all sellers sell their good in the first step of the TTCo algorithm, regardless the tie breaking rule,

when the market satisfies the thickness condition.

Proposition 3.3.1. Let (ℵ̃1,ℵ̃2, . . .) a regular sequence of random markets that satisfy the thickness

condition. There exists N ∈N such that the TTCo algorithm removes all sellers in ℵ̃n at the end of

its first step, for all n≥ N.

Finally, with the thickness condition we can ensure the existence of a unique ε−Bayesian Nash equi-

librium where all buyers are truth-telling

Theorem 3.3.1. Consider a regular sequence of random markets that satisfies the thickness condition.

For any ε > 0, there exists N ∈ N such that truth-telling by every buyer is an ε-Bayesian Nash

equilibrium for any market in the sequence with more than N buyers.

77



3.4 Equilibrium Price Vector of Second Stage

To compute the equilibrium of the second stage we assume a large thick market ℵ̃ and we sup-

pose that agents’ types are drawn according to a probability function f of common knowledge. The

Bayesian Nash equilibrium of this stage is a profile of decision rules (ps(vs))s∈S such that each seller

s maximizes her expected utility function. Remember, a decision rule maps sellers’ types into prices.

3.4.1 Invariance with respect to tie breaking rules

We prove that the equilibrium price is independent of the tie breaking rule used in the TTCo algorithm.

For a market (S,B;v), the payoff function of each seller s is the following:

us =

 ps if s sells her good,

vs otherwise.

Moreover, the expected utility function of s is:

E[us](ps, p−s;ς) = psPr[Selling]+ vsPr[not selling] = (ps− vs)Pr[Selling]+ vs, (3.1)

for all type vs ∈Vs. At equilibrium, each seller s maximizes E[us].

Now, we know that seller s sells her good if and only if there exists a buyer i such that T TCos(i) = s,

then

Pr[Selling] = Pr[T TCo[π;(ps(vs), p−s(v−s)),ς](s) = i, for some i ∈ B].

The decision rule at equilibrium can be written as

p∗s = p∗s (T TCo[S,B,π; p∗i , p∗−i,v,ς]).

Proposition 3.4.1. Invariance with respect to the tie breaking rule. Let s ∈ S, then

p∗s = p∗s (T TCo[S,B,π;(p∗s , p∗−s),v,ςL]) = p∗∗s (T TCo[S,B,π;(p∗∗s , p∗−s),v,ς]) = p∗∗s ,

for all tie breaking rules ς.
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Proof. By definition, p∗s is the decision rule that maximizes E[us] when the algorithm uses the tie

breaking rule ςL, then

E[us](p∗s , p∗−s;ςL)≥ E[us](ps, p∗−s;ςL),

for all ps ∈ Ss, and p∗−s denotes the decision rules at equilibrium of sellers different from s. Particu-

larly

E[us](p∗s , p∗−s;ςL)≥ E[us](p∗∗s , p∗−s;ςL),

where p∗∗s is the decision rule at equilibrium when the TTCo algorithm uses ς. Substituting equation

(3.1) in the above inequality, we have that

(p∗s − vs)Pr[T TCo[π;(p∗s , p−s),v,ςL](s) = i]+ vs ≥

(p∗∗s − vs)Pr[T TCo[π;(p∗∗s , p−s),v,ςL](s) = i]+ vs.

So

(p∗s − vs)Pr[T TCo[π;(p∗s , p∗−s),v,ςL](s) = i]≥

(p∗∗s − vs)Pr[T TCo[π;(p∗∗s , p∗−s),v,ςL](s) = i]. (3.2)

Analogously, for any tie breaking rule ς we get that

(p∗∗s − vs)Pr[T TCo[π;(p∗∗s , p∗−s),v,ς](s) = i]≥

(p∗s − vs)Pr[T TCo[π;(p∗s , p∗−s),v,ς](s) = i]. (3.3)

We claim that

Affirmation 3.4.1. For any price vector p, we have that

Pr[T TCo[π, p;v,ςL](s) = i] = Pr[T TCo[π, p;v,ς](s) = i],

for any tie breaking rule ς.

Proof. In Chapter 1 we prove that the assignment T TCo[ς] partitions the quasi-bipartite graph G[S,B,π; p,v]

in disjoint subsets T TCo[ς]k such that

(s,b) ∈ T TCo[ς]k if and only if s is the most preferred seller of b in Gk,
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i.e. seller s sells her good if and only she belongs to some T TCo[ς]k for k ∈ {1,2, . . . ,Kς}. Conse-

quently

Pr[selling] =
Kς

∑
k=1

Pr[ selling | s ∈ T TCok] ·Pr[s ∈ T TCok]

=
Kς

∑
k=1

1 ·Pr[s ∈ T TCok]

=
Kς

∑
k=1

Pr[(s,b) ∈ T TCok]

=
Kς

∑
k=1

Pr[vsi− ps = {vs′b− ps′ | s′ ∈ S}(k) ≥ 0]

= Pr[T TCos[π : (p∗s , p−s),v,ς](b) = s for some b],

where {vs′b− ps′ — s′ ∈ S}(k) is the statistic of order k and Kς is the number of elements in the

partition induced by T TCo[ς]. However, seller s does not know buyers rankings in stage two, whereby

she does not know Kς, then we must consider Es[Kς], the expectation of Kς, to compute the expected

utility E[us].

Let lmax the maximum length of buyers rankings (if S = m, then lmax ≤m). It is clear that the number

of elements in the partition is equivalent to the number of steps of the TTCo algorithm, consequently

1≤ Kς
s ≤ lmax, (3.4)

the TTCo algorithm can terminate in the first step, the maximum ttco of G1 covers all agents in the

market, or the algorithm can finish in lmax iterations. Then

Es[Kς] =
lmax

∑
k=1

kPr[TTCo terminates in Kς steps.]. (3.5)

It is important to note that expression (3.4) holds for any tie breaking rule ς, that is to say

Es[Kς] = Es[KςL ].

Moreover

Pr[T TCo[π, p;v,ςL](b) = s] = Pr[(s,b) ∈ T TCok[ςL]]

=
|{T ∈ ϒ[Gk] | (s,b) ∈ T and T is maximum ttco}|

|ϒ[Gk]|
= Pr[(s,b) ∈ T TCok[ς]

= Pr[T TCo[π, p;v,ς](b) = s]. (3.6)
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Therefore, expressions (3.5) and (3.6) imply that

Pr[T TCo[π;(p∗s , p∗−s),v,ςL](s) = i] = Pr[T TCo[π;(p∗s , p∗−s),v,ς](s) = i] = X (3.7)

and

Pr[T TCo[π;(p∗∗s , p∗−s),v,ςL](s) = i] = Pr[T TCo[π;(p∗∗s , p∗−s),v,ς](s) = i] = Y, (3.8)

for all tie breaking rules ς. Using expressions (3.2), (3.3), (3.7) and (3.8) we have that

(p∗s − vs)X ≥ (p∗∗s − vs)Y and

(p∗s − vs)X ≤ (p∗∗s − vs)Y.

Above expression implies

(p∗s − vs)X = (p∗∗s − vs)Y,

for all vs ∈Vs. By the Bapat-Beg Theorem (see Appendix C2), the probabilities X and Y are polyno-

mials from the variable vs because we use the permanent to compute it. Thus, the equality between

polynomials implies that X = Y . Therefore, p∗s = p∗∗s for all tie breaking rule ς.

Summarizing, we use the TTCo assignment procedure because the assignment T TCo[ς] is non-

wasteful and Pareto efficient for any tie breaking rule ς. Even more, Proposition 3.4.1 allows us

to fix the tie breaking rule ςL without loss of generality. In Chapter 1 we characterize the TTCo

mechanism and study other properties that satisfies it.

3.4.2 Sellers Behaviour at equilibrium

Indifferences are pervasive in the market. Moreover, in large markets, effective buyers are assigned

their favourite good (Proposition 3.3.1). We show that under the thickness condition, the expected

utility of sellers is independent on the pattern of indifferences.

We assume a quasi-linear utility function for each seller s and we consider that buyers report non-

strict rankings over baskets es(p), at the end of stage three. So, a buyer i can be indifferent between
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seller s and at most m− 1 other sellers. This motivates the introduction of tie breaking rules during

the TTCo assignment procedure to choose only one maximum top trading cover. To compute the ex-

pected utility E[us j ] we need to describe the situation where the buyer that is assigned s j is indifferent

between s j and other sellers. Suppose that i buys s j, we define the following events to consider the

case of indifferences.

• Ai
j0 = {(v, p) | v ji− p j ≥max{vti− pt}> 0}.

• Let there be s j1 ∈ S \ {s j}, we define the set Ai
j1 = {(v, p) | v ji− p j = v j1i− p j1 ≥ max{vti−

pt}> 0 and v j > v j1}.

• Let κ ∈ N such that κ ≤ m− 1 and s j1 , s j2 , . . ., s jκ ∈ S. Also, suppose that s jτ 6= s j for each

τ= 1, . . . ,κ. We define the set Ai
jκ = {(v, p) | v ji− p j = v j1i− p j1 = . . .= v jκi− p jκ ≥max{vti−

pt}> 0 and v j > v jτ for all τ}.

So, the event Ai
jκ is the set of all pairs (v, p), a state of the market v and a price vector p, that satisfy:

1. es j(p) is the most preferred basket of buyer i, and

2. there exists κ sellers in S such that i is indifferent between s j and s jt , for all t = 1, . . ., = κ.

The payoff function of s j is

us j(ω,s;v j) =


p j if T TCo(i) = s j and (p,v) ∈

m−1⋃
κ=0

Ai
jκ for some i,

v j otherwise.

Seller s j earns p j if the basket es j(p) is assigned to some buyer i in the first step of the TTCo algo-

rithm.

A pair (v, p) belongs to Ai
jκ if and only if es j(p) is the most preferred basket of i and she is indifferent

between s j and κ different sellers. Then, the first condition ensures that (v, p) ∈ Ai
j0. Therefore,

Ai
jκ ⊆ Ai

j0 for all κ ∈ {1,2, . . . ,m−1}. This implies that

m−1⋃
κ=0

Ai
jκ = Ai

j0.
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So, the payoff function is

us j(ω,s;v j) =

 p j if T TCo(i) = s j and (p,v) ∈ Ai
j0, for some i,

v j otherwise.

In order to simplify the algebra, we consider the following monotonic transformation of the payoff

function us j

us j(ω,s;v j) =

 p j− v j if T TCo(i) = s j and (p,v) ∈ Ai
j0, for some i,

0 otherwise.

In other words, us j = us j−v j. Then, to maximize the expected utility of seller s j, we simply maximize

the expected utility E[us j ], which is

E[us j ] =
(

p j− v j
)

Pr
[

v ji− p j ≥max
sτ∈S
{vτi− pτ} ≥ 0

]
. (3.9)

To find the decision rule at equilibrium, we proceed computing the best response correspondence of

each seller. To do that, we first compute the probability that es j(p) is the I.R. most preferred basket of

i, the probability indicated in expression (3.9). Remember that, by Proposition 3.3.1, buyers get their

most preferred good in large markets that satisfy the thickness condition. Since sellers set simulta-

neously the price of their good and only know their own type, we compute this probability following

an Auction Theory technique. We investigate if there is a symmetric Bayesian Nash equilibrium in

which all sellers set a linear price

pτ = αvτ,

where α is a non-negative constant, for all τ 6= j. Consequently

Pr[Ai
j0] = Pr

[
v ji− p j ≥max

sτ∈S
{vτi− pτ} ≥ 0

]
= Pr

[
v ji− p j ≥max

sτ∈S
{vτi− pτ},v ji− p j ≥ 0

]
= Pr

[
v ji− p j ≥max

sτ∈S
{vτi− pτ}

]
Pr
[
v ji− p j ≥ 0

]
.

On the other hand, we know that the probability of the largest order statistic is defined as

Pr[maxx≤ x0] = Pr[x1 ≤ x0,x2 ≤ x0, . . . ,xn ≤ x0].
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To simplify it, we assume that random variables Vτ and Vτi are statically independent and identically

distributed for all sτ ∈ S and i ∈ B. Then

Pr[Ai
j0] = ∏

τ 6= j
Pr
[
vτi−αvτ ≤ v ji− p j

](
1−Pr

[
v ji ≤ p j

])
= Pr

[
vτi−αvτ ≤ v ji− p j

]m−1 (1−Pr
[
v ji ≤ p j

])
.

So, the expected utility function can be written as follows

E[us j ] = (p j− v j)Pr
[
vτi−αvτ ≤ v ji− p j

]m−1 (1−Pr
[
v ji ≤ p j

])
. (3.10)

Moreover, we assume that agents types are drawn according to the distribution

f (v) = f (v1, . . . ,vm, v̂1, . . . , v̂n),

thus, we denote by fvτ
and fvτi the marginal distributions of variables Vτ and Vτi for all τ∈{1,2, . . . ,m}

and i ∈ {1,2, . . . ,n}, respectively.

Now, consider the random vector

g j,τ,i =


Vτi−αVτ−Vji

Vτi

Vτ

=


Z

X

Y

 .

It is clear that g j,τ,i is a linear transformation of the random vector (Vτi,Vτ,Vji). The inverse transfor-

mation g−1
j,τ,i is given by 

Vτi

Vτ

Vji

=


X

Y

X−αY −Z

= g−1
j,τ,i.

Since the inverse transformation exists, the Jacobian of the transformation g j,τ,i is not zero.

Observation 3.4.1. Let X = (X1,X2, . . . ,Xp) be a continuous random vector with joint distribu-

tion fX(x1, . . . ,xp). Let h = (h1(x1, . . . ,xp), . . . ,hp(x1, . . . ,xp)) be a one-to-one transformation of

X . Consider A = {(x1, . . . ,xp) ∈ Rp | fX(x1, . . . ,xp) > 0}, the domain of distribution f , and B =

{(u1, . . . ,up) ∈ Rp | ul = hl(x1, . . . ,xp) ∀l = 1,2, . . . , p, and (x1, . . . ,xp) ∈ A} = h(A), the image of
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A under transformation h. Since we assume that h is one-to-one, its inverse transformation exists

and is denoted by xl = Hl(u1, . . . ,up), for all l ∈ {1,2, . . . , p}. The Jacobian of the transformation

H = (H1, . . . ,Hp) is defined as

J(H) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1
∂u1

∂x1
∂u2

. . . ∂x1
∂up

∂x2
∂u1

∂x2
∂u2

. . . ∂x2
∂up

...
... . . . ...

∂xp
∂u1

∂xp
∂u2

. . .
∂xp
∂up

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

the determinant of a matrix of partial derivatives. The Jacobian of H is not zero because h is a one-

to-one transformation. Therefore, the joint probability distribution of U = (U1,U2, . . . ,Up) on the set

B is given by

fU(u1, . . . ,up) = fX(H1(U),H2(U), . . . ,Hp(U))|J(H)|.

Observation 3.4.1 and the independence assumption imply that the probability distribution of g j,τ,i(V)

is

fg j,τ,i(x,y,z) = fv ji(x−αy− z) fvτi(y) fvτ
(z)|J(g j,τ,i)|

= fv ji(x−αy− z) fvτi(y) fvτ
(z).

Let X j,τ,i ≡ Xτi−αXτ−Vji, the probability distribution of X j,τ,i is given by

fvτi−vτ−v ji(x) =
∫ ∫

y,z
fv ji(x−αy− z) fvτi(y) fvτ

(z)dydz, (3.11)

where FX j,τ,i and FV ji denote the cumulative densities functions of variables X j,τ,i and Vji, respectively.

Rewriting the expected utility in (3.10), we have that

E[us j ] = (p j− v j)FX j,τ,i(−p j)
m−1 (1−FV ji(p j)

)
. (3.12)

Sellers problem is to compute the price of her good that maximises her expected utility, function

(3.12). Assuming that FX j,τ,i and FV ji are differentiable on an open interval, the first order condition is

∂E[us j ]

∂p j
= FV ji(p j)FX j,τ,i(−p j)

m−1 +(p j− v j)FX j,τ,i(−p j)
m−1F ′V ji

(p j) +

−(m−1)(p j− v j)FV ji(p j)FX j,τi(−p j)
m−2F ′X j,τ,i

(−p j) = 0. (3.13)
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Consider γ(p j) = ∂E[us j ]/∂p j, which is not necessarily a linear function from R to R.

The Theory of Non-Linear Equations define a root of γ as a point x∗ ∈R such that γ(x∗)= 0. Newton’s

method, that we describe below, is used to find these roots.

Newton’s Method.

Assume that γ(x) has at least one real root.

Step 0. Start with an initial guess x0 ∈R, for the location of the root.

Step t. Finding a root is given by iterating repeatedly next expression

xt+1 = xt−
γ(xt)

γ′(xt)
.

A root of the equation γ(x) = 0 is x∗ = lim
t→∞

xt .

If the Newton’s succession {xt}t∈N converges, the Newton’s method implies that

x∗ = x∗− f (x∗)
f ′(x∗)

.

In other words, the Newton’s method computes a fixed point of function

g(x) = x− f (x)
f ′(x)

.

However, the convergence of this succession is not generally guaranteed and there is not a unique

criteria to choose the starting point.

There exist functions that ensure the convergence of the Newton’s succession regardless the starting

point. Even more, extra conditions guarantee the uniqueness of the root. One of these is the Lipschitz

condition, defined below.

Definition 17. Assume that g(x) is a continuous function in [a,b]. Then g(x) is a contraction if there

exists a constant L such that 0 < L < 1 for which any x,y ∈ [a,b]:

|g(x)−g(y)| ≤ L|x− y|.

The constant L is the Lipschitz constant.
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Above condition ensures the existence of a unique zero of the equation g(x) = x and the converges to

the Newton’s succession to it, regardless the starting point.

Theorem 3.4.1. (Contracting Map) Let g : [a,b] → R a continuous function. Assume that g(x)

satisfies the Lipschitz condition (17), and that g([a,b]) ⊂ [a,b]. Then g(x) has a unique fixed point

x∗ ∈ [a,b]. Also, the Newton’s succession converges to x∗ as n→ ∞ for any x0 ∈ [a,b].

We impose some conditions to the distribution f to guarantee the existence of a unique price vector.

To maximize the expected utility of seller s j, we have to compute her best response through the first

order condition
∂E[us j ]

∂p j
= 0.

To solve this problem is the same as finding the fixed point of

∂E[us j ]

∂p j
+ p j = p j.

Let

γ(p j) =
∂E[us j ]

∂p j
+ p j.

To get a unique fixed point, γ must satisfy the Lipschitz condition in (17). Consequently, the first

derivative of E[us j ] must satisfy

∂E[us j ]

∂p j
(x)−

∂E[us j ]

∂p j
(y) ≤ L|x− y|, (3.14)

for some 0 < L < 1 and any x,y ∈ [a,b], where [a,b] is an interval where γ(x) is continuous. The

following theorem summarizes previous discussion.

Theorem 3.4.2. Let f ∈ C[a,b]. If the first derivative of E[us j ] satisfies condition (3.14), then the

Newton’s succession

xn+1 = xn−
γ(xn)

γ(xn+1)

converges to a unique root from every starting point.

Proof. This is an immediate consequence of Theorem 3.4.1 and the discussion made in above para-

graphs.

Theorem 3.4.2 implies the existence of a unique best response for every seller. In next subsection we

show that the exponential distribution satisfies the Lipschitz condition established in (3.14).
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3.4.3 Equilibrium Characterization for the Exponential Case

The price p j is implicitly defined in the non-linear equation (3.13). Theorem 3.4.2 establishes the

conditions over the probability function f to compute a unique price vector, even more, we have a

method to compute it (Newton’s Method).

Assume that all random variables Vj, Vji are independent and exponentially distributed with parameter

λ > 0. So, their probability distributions are

fV ji(x) = fV j(x) =

 λe−λx if x > 0,

0 otherwise.

For all j ∈ {1,2, . . . ,m} and i ∈ {1,2, . . . ,n}.

We compute the probability distribution of the random variable X j,τ,i assuming that α > 1, i.e. sellers

do not set a price lower than its valuation. To do that, we follow the methodology described in

Observation 3.4.1. We know that g j,τ,i(Vτi,Vτ,Vji) is a linear transformation of the vector
Vτi

Vτ

Vji

= g−1(X j,τ,i,Y,Z),

where each probability is exponentially distributed with parameter λ > 0. Then, the joint distribution

of g−1
j,τ,i is

fVτi,Vτ,X j,τ,i(vτi,vτ,x) = λ
3e−λ(x−2vτi+(α−1)vτ).

By Observation 3.4.1 and expression (3.11), the probability distribution of X j,τ,i is

fX j,τ,i(x) =
∫

∞

0

∫
∞

αvτ+x
λ

3e−λ(2vτi−x+(1−α)vτ)dvτidvτ.

If x≤ 0, we have that

fX j,τ,i(x) =
λ(1+α)e−λx

2(1+α)
.

Otherwise,

fX j,τ,i(x) =
∫

∞

0

∫
∞

αvτ+x
λ

3eλ(2vτi−x+(1−α)vτ)dvτidvτ

=
λ(1+α)e−λx

2(1+α)
.
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Therefore,

fX j,τ,i(x) =
λe−λ|x|

2

where X j,τ,i ∈ (−∞,∞). Then

Prob[X j,τ,i ≤−p j] = Prob[−X j,τ,i ≥ p j]

=
∫

∞

p j

λe−λx

2
dx

=
e−λp j

2
.

Consequently, the expected utility is given by

E[us j ] = (p j− v j)e−λp j

(
e−λp j

2

)m−1

. (3.15)

Before to solve the first order condition, we verify that E[us j ] satisfies the uniqueness condition (3.14)

of Theorem 3.4.2, and the thickness condition.

Observation 3.4.2. (Leibnitz Condition.) First, since each random variable is exponentially dis-

tributed, it is clear that ∂E[us j ]/∂p j is bounded and differentiable on an interval [a,b], because

0≤ e−λp j ,

(
e−λ(p j+r)

2

)m−1

≤ 1,

then
∂E[us j ]

∂p j
([0,β])⊂ [0,β],

for β large enough, where

∂E[us j ]

∂p j
=−eλr(−1+λm(p j− v j))

(
e−λp j

2

)
.

Since we are searching the best response of s j we can assume that a ≥ 0. Then, for any x,y ∈ [a,b]

we have that ∣∣∣∣E[us j ]

∂p j
(x)−

E[us j ]

∂p j
(y)
∣∣∣∣

|x− y|
=

E[us j ]

∂p j
(x)−

E[us j ]

∂p j
(y)

x− y

= 2
(1− xλm)

(
e−λx

2

)m
− (1− yλm)

(
e−λy

2

)m

x− y
.
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Moreover, we know that

e−λx,e−λy < e−λ0 = 1, and x > y,

then

2
(1− xλm)

(
e−λx

2

)m
− (1− yλm)

(
e−λy

2

)m

x− y
<

2
(1+ xλm)

(1
2

)m− (1+ yλm)
(1

2

)m

x− y
=

2λm
2m−1 .

Let

L≡ 2λm
(2+2α)m−1 ,

for α≥ λm and m > 1, we have that 0 < L < 1. So,∣∣∣∣E[us j ]

∂p j
(x)−

E[us j ]

∂p j
(y)
∣∣∣∣< L|x− y|,

i.e., the expected utility satisfies the condition (3.14).

Also, it is important to note that the exponential function satisfies the thickness condition.

Observation 3.4.3. (Thickness Condition.) Since valuations are independent and identically dis-

tributed, we have that d j = e−nλp j , then

d j

dk
=

e−nλp j

e−nλpk

= e−nλ(p j−pk).

If s j is the most popular seller, then d j ≥ dk implies that p j ≤ pk, i.e p j− pk ≤ 0. Moreover, we have a

finite set of sellers that set prices in the second stage, then d j
dk

is bounded by e−nλ(p j−pmax), where pmax

is the highest price set at the second stage. Therefore, the exponential function satisfies the thickness

condition.

Therefore, sellers problem has a unique solution given by the first order condition

0 =
∂E[us j ]

∂p j

= −eλr(−1+λm(p j− v j))e−λp j .
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The best response of s j when other sellers set a linear price is

p∗j =
1+λmv j

λm

= v j +
1

λm
.

Verifying the second order condition, we have that

∂2E[us j ]

∂p2
j

∣∣∣∣∣
p j=p∗j

= 2λmeλr(−2+λm(p j− v j)

(
e−λ(p j+r)

2

)m∣∣∣∣∣
p j=p∗j

= −2λmeλr

e
−λ

(
r+

1+λmv j
m

)
2


m

< 0.

Therefore p∗j is the price of s j at equilibrium. Previous discussion is summarized in the following

theorem.

Theorem 3.4.3. Suppose that Vj and Vji are independent and exponentially distributed with parame-

ter λ > 0. For the second stage, the price vector at symmetric equilibrium exists and is unique. Even

more, the price that each seller s j sets at equilibrium is

p∗j = v j +
1

mλ
,

for all s j ∈ S.

By the above theorem, we have shown that the price vector at equilibrium is unique. Consequently,

we can do some comparative statics.

Corollary 3.4.1. Let p∗j be the unique price at the symmetric equilibrium found. Then

• The relation between p∗j and v j is positive, and

• The relation between p∗j and m is negative.

Proof. Note that

p∗j =
1

λm
+ v j.
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Its derivative with respect to v j is

∂p∗j
∂v j

= 1 > 0.

The derivative of p j∗ with respect to m is

∂p∗j
∂m

= − 1
λm2 +

v j

m
−

v j

m

= − 1
λm2 < 0.

We compute in Appendix D2 two extensions that shows the robustness of previous results: the case

where parameters of the exponential distributions vary, then we assume that valuations overlap. Fi-

nally, in the Appendix E2 we discuss the uniform distribution case and computational difficulties that

it entails.

Concluding Remarks

3.4.4 Small Markets

When markets are small, uniqueness of equilibrium price vector is not guaranteed any more, as shows

the following example.

Example 3.4.1. Consider a market such that S = {s1,s2,s3,s4} and B = {1,2, . . . ,n}, with n < ∞;

and the random variables Vτi, Vτ are independent and exponentially distributed with parameter λ > 0.

Note that Proposition 3.3.1 is not necessarily true because we do not have a large thick market. So,

the top trading cover algorithm can stop in four steps. Denote by X i
(k) the statistic of order k. So,

if vτi− pτ = X i
(k), this means that sτ is the k−most preferred good given de price vector p, where

k ∈ {1,2,3,4}. Note that X(1) = max{vτi− pτ} and X(4) = min{vτi− pτ}. Consequently, the payoff

function of each seller is the following.

us j =

 p j if v ji− p j = X i
(k) and X i

(1) ≥ 0,∀k ∈ {1,2,3,4} and for some i ∈ B,

v j otherwise.
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As before, in order to simplify the algebra, we consider the linear transformation us j = us j − v j.

Hence, the expected utility function of s j is

E[us j ] = (p j− v j)Pr[v ji− p j ≥ 0]
4

∑
k=1

Pr[X(k) ≤ v ji− p j].

Using the random variable X j,τ,i, we know that the cumulative density function of the statistic of order

k is given by

F(k)(x) =
3

∑
r=k

 3

r

FX j,τ,i(x)
r(1−FX j,τ,i(x))

3−r.

On the other hand, a well-known result is that

m

∑
τ=t

 m

τ

 pτ(1− p)m−τ = Ip(t,n− t +1)

=

∫ p
0 rk−1(1− r)m−kdr∫ 1
0 rk−1(1− r)m−kdr

,

where Ip(t,m− t +1) is the incomplete beta function defined as follows.

By previous discussion, the expected utility E[us j ] is given by

E[us j ] = (p j− v j)Pr[v ji ≥ p j]
4

∑
k=1

IFX j,l,i(−p j)(k,n− k+1)

= (p j− v j)e−λp j

(
3
2

e−λp j +
3
8

e−2λp j +
15
8

e−3λp j − 47
64

e−4λp j

)
.

The first order condition is the following

e−5λp j

64

(
(24−72λ(p j− v j))e2λp j

− 96(−1+2λ(p j− v j))−120(−1+4λ(p j− v j))eλp j

+ 47(−1+5λ(p j− v j))
)
= 0.

Note that the expression

24−72λ(p j− v j))e2λp j − 96(−1+2λ(p j− v j))e3λp j

− 120(−1+4λ(p j− v j))eλp j47(−1+5λ(p j− v j))

can be seen as a polynomial of degree 3 with respect to z = eλp j . This implies that it is not bounded,

consequently, it does not satisfy the Lipschitz condition. Therefore, we cannot guarantee that the

Newtons succession converges to a unique price p j.
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3.4.5 Public Policies

Mexican government has included strengthening the housing sector as a public policy priority since

2000. Public housing policy is outlined in National Housing Programs (Programas Nacionales de

Vivienda, PNV), which aim to help those most in need by providing access to mortgages and loans,

and by encouraging the construction of affordable housing. To achieve this goal, Mexican government

provides credits to both buyers and sellers through different institutions. For example, home-builders

can request support from the Federal Mortgage Society (Sociedad Hipotecaria Federal, SHF), en-

courages construction through direct loans and guarantee of bank loans; and the National Institute

of Worker Housing (Instituto Nacional de la Vivienda para los Trabajadores, INFONAVIT) provides

loans to workers to build, purchase or repair a house. Moreover, there exists institutions like the

National Fund for Popular Housing (Fideicomiso Fondo Nacional de Habitaciones Populares, FON-

HAPO) subsidizes the purchase or the construction of low income housing.

Public intervention affects both valuations and prices. It is not clear, especially in stressed market,

which side of the market benefits more from public spending. Establishing a closed-form solution is

first step to empirically answer the question.
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3.5 Appendix A2

Graph Theory Concepts

Consider a set of sellers, S′ ⊆ S; a set of buyers, B′ ⊆ B; and a profile of rankings at p, π(p;v) =

(πi1(p;v), . . . ,πik(p;v)), where i j ∈ B′ for all j = 1, . . . ,k. We define the bipartite directed graph

G(S′,B′, p,π(p;v)) as a pair (S′ ∪ B′,E(S′ ∪ B′, p,π(p;v))), where S′ ∪ B′ is the set of nodes; and

E(S′∪B′, p,π(p;v)) is the set of all directed edges (s, i) ∈ S′×B′, such that (s, i) ∈ E if and only if

buyer i prefers buying the basket es(p) to any other basket (ps,s) in Ei(p). The reported rankings are

non-strict; the most preferred basket of a buyer i is not necessarily unique. Thus, there are more than

one edge from i to the set of sellers, which represents indifference between baskets.

We represent the case where a buyer i prefers her initial endowment to any basket es(p) by a loop

(i, i), which is an edge from B′ to B′. Loops, however, are not admitted in bipartite graphs, that is

why the TTCo makes use of quasi-bipartite graphs. We define a quasi-bipartite directed graph

G(S′,B′, p,π(p;v)) as a pair (S′ ∪ B′,E(S′ ∪ B′, p,π(p;v))), where S′ ∪ B′ is the set of nodes; and

E(S′ ∪B′, p,π(p;v))) is the set of all directed edges (s, i) ∈ S′×B′ and loops ( j, j) ∈ B′×B′, such

that:

• buyer i prefers the basket es(p) to any other basket, and

• buyer j prefers her initial endowment (mi,∅) to any basket es(p).

An arbitrary element of E(S′∪B′, p,π(p;v))) is denoted by~a.

The quasi-bipartite graph G(S′,B′, p,π(p;v)), or only G whenever there is no confusion, represents

the situation when each buyer i in B′ points to the owner of her favorite basket. The following example

shows the construction of a quasi-bipartite graph.

Example 3.5.1. Consider S = {s1,s2,s3}, B = {1,2,3}. For some p ∈
3
∏
j=1

A j and v ∈V , suppose that
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the rankings reported by 1,2 and 3 are the following:

π1(p;v) : [es1,es3],es2,1,

π2(p;v) : [es2,2],

π3(p;v) : es3,3.

Figure 3.4 shows the quasi-bipartite graph G(B,S,π;v).

1 2 3

s1 s2 s3

Figure 3.4: A Quasi-bipartite Graph

Given G(S′,B′, p,π(p;v)), a Top Trading Cover (ttco) is a subset

T = {~a1,~a2, . . . ,~ak}

of E[G], such that no two edges in T have a common node. In particular, the empty set is top trading

cover.

A ttco T is maximal1 if it is no longer a ttco when an edge, not in T, is added to T. In other words, a

maximal ttco is not a proper subset of any other ttco of the quasi-bipartite graph G. A maximum top

trading cover is a ttco that covers the largest possible number of nodes. It is clear that all maximum

top trading covers are also maximal; however, a maximal ttco is not always maximum. Figure 3.5

shows four different top trading covers in dotted lines for the same quasi-bipartite graph. The ttco in

3.5(a) is maximal, because if an extra edge is added to it, the resulting subset of edges is not a ttco;

3.5(a) is not a maximum ttco because there exists 3.5(c), which covers the largest possible number
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of nodes, 6, a number larger than the number of nodes cover by 3.5(a), 4. On the other hand, in

3.5(b) we can add the edge (1,s3) and get a larger top trading cover, so 3.5(b) is non-maximum and

non-maximal.

1 2 3 4

s1 s2 s3

(a) Maximal TTCo

1 2 3 4

s1 s2 s3

(b) Non-Maximum and Non-Maximal TTCo

1 2 3 4

s1 s2 s3

(c) Maximum TTCo 1

1 2 3 4

s1 s2 s3

(d) Maximum TTCo 2

Figure 3.5: Top Trading Covers in dotted lines for the same Quasi-Bipartite Graph

We can ensure the existence of at least one maximum ttco for any quasi-bipartite graph.

Proposition 3.5.1. Let G(B′,S′,π; p,v) a quasi-bipartite graph, a maximum T TCo always exists.

Proof. See Appendix B2.

Note that the maximum top trading cover is not unique. Figure 3.5(d) shows a ttco that covers the

same number of nodes than the ttco in 3.5(c), but does not have the same edges. That is, in 3.5(d) we

have a maximum ttco different from the maximum ttco in 3.5(c).

3.6 Appendix B2

The Existence of Top Trading Covers
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To prove the existence of a maximum Top Trading Cover in each quasi-bipartite graph G(S′,B′,π; p,v),

we need more definitions from Graph Theory. Given a top trading cover T of G, a node r ∈ S′∪B′ is

said to be covered if there exists r′ ∈ S′∪B′ such that (r,r′) ∈ T . A path P in G is a succession of

nodes

{r1, t1,r2, t2, . . .rn, tn}

such that (ri, ti) ∈ E(S′∪B′,π; p,v) for all i = 1,2, . . . ,n. We say that r1 and tn are the end points of

P.

Definition 18. Let G = G(S′,B′,π; p,v) a quasi-bipartite graph and a top trading cover T of G. A

path P is an augmenting path for T if:

1. The two end point of P are not covered by T .

2. The edges of P alternate between edges ∈ T and edges /∈ T .

Let R a top trading cover of G, and P and augmenting path of R. We define and denote the operation

between R and P, as

R⊕P = (A∪B)− (A∩B),

i.e., we operate ttco’s and paths through symmetric difference.

The algorithm to find a maximum top trading cover is described below

Step 1. Consider T a top trading cover of G, could be T =∅.

Step 2. While exists an augmenting path P do

2.1 T = T ⊕P

Step 3. While exists r ∈ G\T such that (r,r) is and edge of G do

3.1 T = T ∪{r}

Step 4. Output T .
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We have to prove that T is effectively a maximum top trading cover. However, this is clear, because

we delete all possible augmenting paths. We conclude this prove applying Berge’s Theorem: ”The

matching M is maximum if and only if there is no augmenting path”2.

3.7 Appendix C2

Bapat-Beg Theorem

The permanent of a matrix of 2×2 is denoted and defined by

Perm

 a b

c d

= ad +bc.

Let A = (ai j) a matrix of n×n, then

Perm(A) = ∑
σ∈Sn

n

∏
i=1

ai,σ(i).

Theorem 3.7.1. Bapat-Beg Theorem X1,X2, . . . ,Xn be independent random variables with distri-

butions functions F1, . . . ,Fn respectively. Then the distribution function of the statistic of order r,

1≤ r ≤ n, is given by

P[Yr ≤ y] =
n

∑
i=r

1
i!(n− i)!

Per



F1(y) 1−F1(y)
...

...

Fn(y)︸ ︷︷ ︸ 1−Fn(y)︸ ︷︷ ︸
i times n− i times


,−∞ < y < ∞. (3.16)

3.8 Appendix D2

A Unique Fixed Point

We explain some concepts from the theory of non-linear equations what we use to get the uniqueness

of the price vector. In the main text we use the one dimensional Newton method given by the iteration

xn+1 = xn−
f (xn)

f ′(xn)
, x0 ∈ [a,b] n≥ 0 (3.17)

2For more details consult: Claude Berge (1963). Topological Spaces. Oliver and Boyd.
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assuming f ′ 6= 0 on [a,b].

First, we must guarantee the existence of at least one root. This is possible by Browser’s Theorem:

Theorem 3.8.1. (Brouwer’s Fixed Point Theorem) Assume that g(x) is continuous on the closed

interval [a,b]. Assume that the interval [a,b] is mapped to itself by g(x), i.e., for any x ∈ [a,b],

g(x)∈ [a,b]. Then there exists a point c∈ [a,b] such that g(c) = c. The point c is a fixed point of g(x).

Definition 19. Assume that g(x) is a continuous function on [a,b]. Then g(x) is a contraction on

[a,b] if there exists a constant L such that 0 < L < 1 for which for any x and y in [a,b]:

|g(x)−g(y)| ≥ L|x− y|. (3.18)

The equation (3.18) is referred to as a Lipschitz condition and the constant L is the Lipschitz constant.

Indeed, if the function g(x) is a contraction, i.e., if it satisfies the Lipschitz condition (3.18), we

can expect the iterative Newton’ method converges. This is established in the Contraction Mapping

Theorem.

Theorem 3.8.2. (Contraction Mapping) Assume that g(x) is a continuous function on [a,b]. Also,

suppose that g(x) satisfies the Lipschitz condition (3.18), and that g([a,b]) ⊆ [a,b]. Then g(x) has a

unique fixed point c ∈ [a,b]. Also, the sequence {xn} defined in (3.17) converges to c as n→ ∞ for

any x0 ∈ [a,b].

Proof. By the Brower’s Theorem, we know that g(x) has at least one fixed point. So, to prove the

uniqueness, we assume that there are two fixed points c1 and c2. We will prove that these two points

must be identical. We know that

|c1− c2|= |g(c1)−g(c2)| ≤ L|c1− c2| and 0 < L < 1,

consequently, c1 must be equal to c2.

Finally, we need to prove that the succession described in (3.17) converge to c, for any x0 ∈ [a,b].

note that

|xn+1− c|= |g(xn)−g(c)| ≤ L|xn− c| ≤ . . .≤ Ln+1|x0− c|.

Since 0 < L < 1, we have that |xn+1− c| → 0, as n→ ∞. The succession converges to the fixed point

of g(x), independently of the starting point x0.
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Non-identically Distributed Random Variables
In previous section we compute the price vector at equilibrium when Vj and Vji are independent

random variables exponentially distributed with parameter λ > 0. In this section, we assume that

buyers and sellers are statistically independent but not identically distributed. We analyse the case

where random variables are exponentially distributed with different parameters.

In the exponential distribution, the parameter λ represents the occurrence of a rare event. In our

housing model, we interpret this parameter parameter as the occurrence of selling a house. Naturally,

this parameter changes according to the seller, for example: a construction company decides to sell a

house every month in a year, i.e. λ = 1. On the other hand, a professor decide to sell a house one time

in five years, λ = 60. So, the mean of the distribution of variable Vs, 1/λ, can be understanding as the

number of times that seller s decides to sell her house. In buyers case, first note that each buyer has a

vector of parameters λ̂i = (λ ji) j∈S, each parameter represents the occurrence of buying a house from

seller j. For example, if λ ji = 10, this means that every 10 months buyer i buys a house from seller s j.

However, we assume that each buyer can have at most one indivisible good, and, more important, we

do not analyse a dynamic problem. Hence, we interpret 1/λ j as the expected time of sale her house,

for each s j ∈ S, and 1/λ ji as the interest of buying the house of s j, for all i ∈ B.

Consider S = {s1,s2, . . . ,sm} and B = {1,2, . . . ,n}. Given that v̂i = (v1i,v2i, . . . ,vmi) is a random

vector, we suppose that random variables v ji and v j are independent. We assume that variables v j are

exponentially distributed with parameter λ j > 0. Thus, the mean and the variance of Vj are denoted

by µ j = 1/λ j and σ2
j = 1/λ2

j . Variables v ji are exponentially distributed with parameter λ ji, for all

j = 1, . . . ,m and i = 1, . . . ,n. We write µ ji and σ j2 to describe the mean and the variance of Vji. So,

the joint distribution of (Vτi,Vτ,Vji) is

fVτVτiV ji(vτ,vτi,v ji) = λτλτiλ jie−λτvτ−λτivτi−λ jiv ji.

Applying Observation 3.4.1 for the random variable X j,τ,i, we have that

fX j,τ,i(x) =
∫

∞

0

∫
∞

αvτ+x
λτλτiλ jie−λτvτ−λτivτi−λ ji(vτi−αvτ−x)dvτidvτ

=
λτλτiλ jie−λτix

(λτi +λ ji)(λτ +αλτi)
.
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Then

Pr[X j,τ,i ≤−p j] = Pr[−X j,τ,i ≥ p j]

=
∫

∞

p j

λτλτiλ jie−λτix

(λτi +λ ji)(λτ +αλτi)
dx

= λ jie−λ ji p j ∏
τ6= j

λτe−λτi p j

(λτ +αλτi)
.

Since we assume that random variables are independent and exponentially distributed with different

parameters, the expected utility E[us j ] is given by

E[us j ] = (p j− v j)λ jie−λ ji p j ∏
τ6= j

λτe−λτi p j

(λτ +αλτi)
.

The first order condition is

0 =
∂E[us j ]

∂p j

= −
λ

m−1
ji ∏

τ6= j
λτe
−p j

m
∑

τ=1
λτi
(
−1+(p j− v j)

m
∑

τ=1
λτi

)
∏

τ 6= j
(λτi +λ ji) ∏

τ6= j
(λτ +αλτi)

.

The best response of s j when others set a linear price is

p∗j =
1

λ ji + ∑
τ 6= j

λτi
+ v j.

The second order condition evaluated in p∗j is

∂2E[us j ]

∂p2
j

∣∣∣∣∣
p j=p∗j

=

λ
m−1
ji ∏

τ6= j
λτ

m
∑

τ=1
λτi

(
−2+(p j− v j)

m
∑

τ=1
λτi

)
e
−p j

m
∑

τ=1
λτi

∏
τ6= j

(λτi +λ ji) ∏
τ6= j

(λτ +αλτi)

∣∣∣∣∣∣∣∣∣∣
p j=p∗j

=

−
λ

m−1
ji ∏

τ6= j
λτ ∑

τ6= j
λτie

−1−v j
m
∑

τ=1
λτi

∏
τ6= j

(λτi +λ ji) ∏
τ6= j

(λτ +αλτi)
< 0.

Therefore p∗j is the equilibrium price.

102



Theorem 3.8.3. Suppose that Vj and Vji are independent and exponentially distributed with param-

eters λ j and λ ji, respectively, for all s j ∈ S and i ∈ B. Let p∗j be the unique price at the symmetric

equilibrium. Then

• The relation between p∗j and v j is positive,

• The relation between p∗j and λτi is negative for all τ 6= j.

• The relation between p∗j and µτi is positive τ = 1,2, . . . ,m.

Proof. Note that

p∗j =
1

λ ji +(m−1)λτi
+ v j.

The respecting derivatives are:

∂p∗j
∂v j

= 1.

The relation with her own valuation is positive.

∂p∗j
∂λτi

= − 1
(λ ji + ∑

τ6= j
λτi)2 < 0.

Finally

∂p∗j
∂λ ji

= − 1
(λ ji + ∑

τ6= j
λτi)2 < 0.

On the other hand, we can compute the relation between the price at equilibrium and the mean µτi for

all sτ ∈ S. First, note that

p∗j =
1

µ−1
ji + ∑

τ6= j
µ−1

τi
+ v j.

Then

∂p∗j
∂µ ji

=
1

µ2
ji

(
1

µ ji
+ ∑

τ 6= j

1
µτi

)2 > 0,
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and

∂p∗j
∂µτi

=
1

µ2
τi

(
1

µ ji
+ ∑

τ6= j

1
µτi

)2 > 0.

Overlapping Valuations
To analyse overlapping valuations, we assume that each variable Vj and Vji has a minimum value r j

and r ji, respectively. Then, their probability distributions are

fV j(v j) =

 λ je−λ j(v j−r j) if v j > r j,

0 Otherwise.
and fV ji(v ji) =

 λ jie−λ ji(v ji−r ji) if v ji > r ji,

0 Otherwise.

The probability distribution of X j,τ,i is given by

fX j,τ,i(x) =
λ jiλτλτieλ ji(r ji−rτ)−λτi(rτ+αrτ−rτi+x)

(λ ji +λτi)(αλτi +λτ)
.

Consequently, the expected utility is

E[us j ] = (p j− v j)e−λ ji(p j−r ji) ∏
τ6= j

λ jiλτeλ ji(r ji−rτ)−λτi(p j+rτ+αrτ−rτi)

(λ ji +λτi)(αλτi +λτ)
.

The first order condition is

0 =
∂E[us j ]

∂p j

=

λ
m−1
ji ∏

τ6= j
λτe

λ ji(p j+r ji− ∑
τ6= j

rτ)− ∑
τ6= j

λτi(p j+rτ+αrτ−rτi)

(1+λ ji(v j− p j)+ ∑
τ6= j

λτi(v j− p j))

∏
τ6= j

(λ ji +λτi)(αλτi +λτ)
.

we get that

p∗j =
1

m
∑
j=1

λ ji

+ v j.

Verifying the second order condition, we have that

∂2E[us j ]

∂p2
j

∣∣∣∣∣
p j=p∗j

= λ
m−1
ji ∏

τ6= j
λτ

e
− ∑

τ6= j
λτi(p j+rτi+αrτ−rτi)−λ ji(p j−mr ji+ ∑

τ 6= j
rτ)

∏
τ6= j

(λ ji +λτi)(αλτi +λτ)

∣∣∣∣∣∣∣
p j=p∗j

= −λ
m−1
ji ∏

τ6= j
λτ

e
−1− ∑

τ6= j
λτi(rτ+αrτ−rτi+v j)−λ ji(−mr ji+v j+ ∑

τ6= j
rτ)

∏
τ6= j

(λ ji +λτi)(αλτi +λτ)
< 0.
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Therefore, when we assume overlapping valuations, the unique price set at equilibrium is

p∗j =
1

m
∑
j

λ ji

+ v j.

This equilibrium price coincides with the equilibrium price vector when we use that random variables

are independent and exponentially distributed with different parameters.
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3.9 Appendix E2

Uniform Case

To characterize the price vector at equilibrium we assume that random variables are independent and

uniformly distributed. Without loss of generality, we assume that variables Vτ and Vτi are independent

and uniformly distributed over [0,1]. Thus, its probability distribution is:

fv j(x) = fV̂i
(x) =

 1 if x ∈ [0,1]/x ∈ [0,1]n,

0 otherwise.
(3.19)

We compute the probability distribution of the random variable

X j,τ,i ≡Vτi−αVτ−Vji,

assuming that α > 1, i.e. sellers do not set a price lower than its valuation. To do that, we follow the

methodology described in Observation 3.4.1.

Vector g j,τ,i is a linear transformation of the vector
Vτi

Vτ

Vji

 ,

where each probability is uniformly distributed over [0,1], we have that their joint distribution is

fVτi,Vτ,V ji(x,y,z) =
1
α

for all (x,y,z) ∈ [0,1]× [−α,0]× [0,1] = ∆.

We know that αVτ is uniformly distributed over [0,α] and Vji is uniformly distributed over [0,1]. Then

−1−α≤ X j,τ,i ≤ 1, consequently

fX j,τ,i(x) =
∫ ∫

∆

1dvτidvτ

=


∫ 1

0
∫ x

α

0
1
α

dvτidvτ 0≤ x≤ 1,∫ 1
0
∫ 1

x
α
−1−α

1
α

dvτidvτ −1−α≤ x≤ 0.

=


x

α2 0≤ x≤ 1,

α+α2−x
α2 −1−α≤ x≤ 0.
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When other sellers have a linear behaviour, we calculate the best response of each seller analysing

the following cases:.

A. |S|= 1 and |B|= n, with n ∈N, and

B. |S|= m and |B|= n, with n, m ∈N and 2 < m≤ n.

Both cases satisfy the second condition of a regular sequence of markets, required for the veracity of

Theorem 3.3.1.

Case A. |S|= 1, and |B|= n

Consider S = {s1} and B = {1,2, . . . ,n}. Seller s1 sets the price of her good strategically, she wants

to maximize her expected utility. Moreover, since the TTCo algorithm ends at its first step in large

thick markets, the payoff function of seller s1 is:

us1(ω,s;v1) =

 p1 if v1i− p1 > 0 for some i ∈ B,

v1 otherwise.

Then, the expected utility function for seller s1 is

E[us j(ω,s;v1)] = p1Pr[v1i > p1]+ v1Pr[v11 ≤ p1],

for some i ∈ B. Also, we assume that v1i is a random variable uniformly distributed over [0,1], for all

i ∈ B. This implies that

E[us j(ω,s : v1)] = p1Pr [v1i > p1]+ v1Pr [v1i ≤ p1]

= p1(1− p1)+ v1 p1.

The first order condition is

0 =
∂E[us j ]

∂p1

= 1−2p1 + v1.

The best response is

p∗1 =
1+ v1

2
.
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The second derivative evaluated in p∗1, we have that

∂E[us1 ]

∂p1

∣∣∣∣
p1=p∗1

=−2.

Therefore, the price that maximizes E[us1] is p∗1.

Case B. 2≤ |S|= m≤ |B|= n

Let there be S = {s1,s2, . . . ,sm} and B = {1,2, . . . ,n}. Given that v̂i = (v1i,v2i, . . . ,vmi) is a random

vector, we suppose that the random variables v ji and v j are independent and uniformly distributed

over [0,1] for j = 1, . . . ,m and i = 1, . . . ,n. As before, we maximize the expected utility of s j through

the transformation us j of her payoff function:

us j(ω,s;v1) =

 p j− v j in Ai
j0 for some i,

0 otherwise.
(3.20)

We consider that s j assumes that seller sτ sets a price pτ = αv j, for all τ 6= j. So, the expected utility

function is

E[us j ] = (p j− v j)Prob[X j,τ,i ≤−p j]
m−1(1−Pr[v ji ≤ p j]). (3.21)

where Prob[X j,τ,i ≤−p j] =
5
2 +

1
2α2 +

2
α
+α− p j−

p j
α
− p2

j
2α2 . Since Vji is uniformly distributed over

[0,1], we have that FV ji(p j) = p j. Replacing it in (3.21), the expected utility is

E[us j ] = (p j− v j)

(
5
2
+

1
2α2 +

2
α
+α− p j−

p j

α
−

p2
j

2α2

)
(1− p j).

Clearly, above expression induces an equation of degree at least 2m, so, the uniform distribution is

not useful to do comparative statistics.
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Chapter 4

The subsidized housing problem in Paris

4.1 Introduction

The French tradition in subsidized housing aims at ”mixité sociale”, namely promoting social diver-

sity in all districts. In Paris, according to the Atelier Parisien d’Urbanisme, 70% of the households

are eligible to one of the many existing programs. Institutions promoting social housing are diverse;

the main City Hall, City Halls of all districts, ministries, the Societé National des Chemins de Fer

(national railways), La Poste (national mail service), . . . . The diversity of involved institutions is

financially profitable to the programs. They apply, however, very different eligibility criteria and the

conflict between them to allocate a common pool of subsidized housing is solved by the institutions

in Committees. The assignment process, thus, is not transparent, which raises criticisms over its

discretionality.

In contrast, the anglo saxon tradition is focused on low income households, which allows a systematic

approach to allocate subsidized apartments. Consider the case of Toronto1. The households register

on the internet filling a form where they describe their family situation: number of members, age

of each member, income, working status, health condition, . . . . Every two months the pool of free

apartments and the score of each household are updated, which determines the ranking of all eligible

households for each apartment2. Then, parallel serial dictatorships are performed. Is it possible to

1http://www1.toronto.ca/wps/portal
2http://www.torontohousing.ca/
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adopt such systematic method in the context of Paris subsidized housing? Is there a mechanism that

copes with ”mixité sociale” and deals with different scoring schemes fairly and efficiently?

Our problem casts similarities with the one of affirmative action in the school choice problem. One

stream of papers interprets affirmative action as ”leveling the playing field”, like in Kojima (2010)

and Hafalir, Yanmez and Yildirim (2011). Students from less privileged ethnic groups, independently

of their effort, have lower chance to incorporate the schools which are academically most demanding.

It is fair to give priority to these students with criteria less demanding than those required to stu-

dents belonging to privileged groups. Kominers and Sönmez (2013) generalize Hafalir, Yanmez and

Yildirim (2011) to allow for slot-specific priorities in a model with contracts. The consequence on

welfare is that assignments with affirmative action should be Pareto superior for minority students to

assignments without affirmative action. We are closest to the ones for which affirmative action is an

objective per se, formalized by the existence of quotas of agents to be fulfilled like in Abdulkadiroglu

(2003), Ehlers (2010) and Ehlers, Hafalir, Yanmez and Yildirim (2011). Affirmative action might hurt

agents, individually, who do not take into account the externalities generated by affirmative action.

The consequence on welfare is that the Pareto criteria are only used to compare assignments where

affirmative action is implemented. Unlike these papers, however, we do not consider the existence of

lower and upper bound for each category. In a different approach, Echenique and Yenmez (2013) and

Erdil and Kumano (2012) study the diversity as a policy goal focused on schools priorities.

We model the subsidized housing problem in Paris as a three sided market with households, institu-

tions and apartments. Households are assigned apartments through programs operated by institutions

and might qualify to different programs. What matters for them is the apartment they are assigned to,

not the institution that promote them, that is why preferences of households are only defined over the

set of apartments. Our approach requires formalizing the following. First, institutions have priorities

defined over: 1. apartments, and 2. households. Priorities over apartments are motivated by the

amount of financing to the real estates (the more an institution spends in a building, the stronger its

interest in using it), or because it is closest to its headquarters. Priorities over households are gener-

ated by a scoring method which can be different from one institution to another. Second, apartments

have priorities over institutions: the more an institution has spent in financing a building, the highest
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its priority.

The literature of three sided markets focuses on the existence of a stable matching, where a matching

is a set of disjoint families with three agents, commonly of the form (man, woman, dog). A matching

is stable if there is no blocking family that is preferred by all its members to their current families in

the matching. Chuang (2007) considers a model where each agent has two preference lists over the

other two sets. Since a stable three sided matching does not always exists, he introduces indifferences

and defines a hierarchy of stabilities. Under these structure he proves that a stable matching always

exists but is NP-complete regardless the definition of stability. On the other hand, Biró and McDer-

mind (2010) consider a model with cyclic preferences, i.e. men only care about women, women only

care about dogs and dogs only care about men. They prove that to find a three sided stable matching

is a NP-complete problem.

To deal with the subsidized housing problem, we introduce the Nested Deferred Acceptance (NDA)

algorithm. This assignment procedure nests two Deferred Acceptance algorithms. During the first

one, each household asks for her most preferred apartment, i.e. the demand of each household is

elicited. Then, we run the nested DA between institutions and those apartments that are demanded by

a household of its type. Institutions choose a set of apartments that maximizes its priority and does

not exceed its vector of quotas. If more than one institution is interested in assigning an apartment, the

apartment priority breaks the tie. After that, each apartment is temporarily assigned to the household

with the highest priority among the households with the same type that demand it. The rejected

households ask for their next preferred apartment and the procedure continues until no household is

rejected.

However, the NDA alone fails to cope with mixité sociale and fairness for the same type. We identify

that these problems arise due to interrupters. As Kesten (2010), we say that some institutions make

interruptions and define two types of interrupters, one for each problem. The ”mixité sociale” condi-

tion is not reached given that households can have more than one type. Thus, some institutions assign

an apartment to a household that should receive the same apartment from a different institution so as

the ”mixité condition” to hold. On the other hand, the NDA assignment is not fair for households of

the same type because there are institutions that tentatively hold an apartment during some steps, but
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this apartment is not included in their final assignment. So, this can induce justified envy for the same

type because the institutions that assign such apartments do not consider again households rejected

from these apartments.

The NDA with Interrupters (NDAI) improves the NDA by dropping apartments from the priority of

the interrupter institutions. Assuming a the market that admits at least one fair for the same type

assignment that satisfies mixité sociale, our main result shows that the output given by the NDAI

is fair for households of the same type, Pareto undominated by an assignment fair for households

of the same type and satisfies mixité sociale. Even more, telling the truth is a dominant strategy

in the induced revelation game for households. On the opposite, the Efficiency Adjusted Deferred

Acceptance Mechanism (EADAM) by Kesten is manipulable because students are interrupters and

make offer during the DA, while our interrupters receive offers during the NDA.

Previous result assumes the compatibility between mixité sociale and fairness for the same type.

However, this is not always true. Analysing the relation between these two concepts, we find a

condition to guarantee the existence of an assignment that satisfies the mixité condition. Moreover,

we explain the behavior of the NDAI mechanism in markets where mixité social and fairness for the

same type are not compatible.

The present work is organized as follows. Section 2 introduces formally the subsidized housing

model. Section 3 presents the Nested DA and Section 4 the interrupters discussion. In Section 5 we

present or main result for the NDAI mechanism. Section 6 analyses the existence issues related with

mixité sociale and fairness for the same type.

4.2 Model

A subsidized housing market with mixité is (I,Hτ,D,Q,A,δ,P,�,π) where:

1. I = {1,2, ...,N} is the finite set of institutions, a generic institution is i;

2. H = {h1, ...,hH} is the finite set of Households, a generic household is h;
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3. τ : H→ 2I is the type function, where the types of household h are τ(h); Hi = {h∈H | i∈ τ(h)}.

4. D = {d1, ...,dD} is the finite set of districts, there are D districts, a generic district is d;

5. Q = ((qd j
i )N

i=1)
D
j=1 is the vector of quotas, where qd

i is the quota of households of type i in

district d, a generic quota is q;

6. A = {a1, ...,aA} is the finite set of apartments, a generic apartment is a;

7. δ : A→ D is the district function, where the district of apartment a is δ(a); the number of

apartments in district d is #d,
N
∑

i=1
qd

i = #d for all districts d;

8. P = (Ph1, ...,PhH ) is the vector of households’ preferences, Ph is the strict preferences of house-

hold h ∈ H over A∪ {h}, aPha′ means that households h prefers a to a′, an apartment a is

acceptable for household h if a �h h. Let Ph : a1h ,a2h, . . .aAh , and consider Rh be the antisym-

metric preference list where aPhb and bPha if and only if a = b.

9. �= (�i)i∈I is the vector of institutions’ priorities

�i= (�i
A,(�i

a1
, . . . ,�i

aA
)),

we assume that priorities are lexicographic in:

9.a �i
A the priority of institution i over apartments A, ar �i

A as means that department ar is

prioritized over apartment as by institution i; and

9.b �i
a the strict priority of apartment a ∈ A over Hi, it is generating by the score of house-

holds, h �i
a h′ means that household h has priority over household h′ at apartment a; an

household h is acceptable for apartment a if h�i
a a, else h is unacceptable;

9.c We suppose that for all acceptable apartments a for institution i, at least one household is

acceptable.

10. πa is a priority of institutions over apartment a.

To design an assignment procedure for the subsidized housing problem, we consider that this problem

is: 1. a many-to-one matching problem between apartments and institutions, and 2. a ono-to-one
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matching problem between households and pairs composed by one apartment and one institution.

Such assignment is formalized in the following definition.

An assignment µ = (θ,ϕ) is a duple such that:

i. θ : A∪ I→ 2A∪ I∪{∅} where

i.a θ(a) ∈ I∪{∅},

i.b θ(i) ∈ 2A,

i.c θ(a) ∈ θ(i) if and only if θ(a) = i.

ii. ϕ : A× I∪H→ (A× I)∪H ∪{∅}, where

ii.a ϕ(h) ∈ A× I∪{∅},

ii.b ϕ(a, i) ∈ H ∪{∅},

ii.c ϕ(h) = (a, i)⇔ ϕ((a, i)) = h. The corresponding projections are ϕA(h) = a and ϕI(h) = i,

iii. θ(a) = i if and only if ϕ(h) = (a, i).

Conditions i. a, b and c refer to the many-to-one matching problem between apartments and institu-

tions. Conditions ii. a, b and c refers to the one-to-one matching problem between institutions and

pairs composed by one apartment and one institution. Condition 3 says that a household cannot be

assigned a pair of one apartment and one institution apartment if the apartment is not assigned to the

institution.

The match of k ∈H is ϕ(k)∈ (A× I)∪{∅}, k is unmatched if ϕ(k) =∅. The match of i∈ I is θ(∈ 2A,

i is unmatched if θ(i) =∅.
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Let (I,H,τ,D,Q,A,δ,P,�,π) a subsidized housing market with ”mixité sociale”, an assignment rep-

resentation is

µ =

 h3 h5

ϕ(h3) ϕ(h5)

h1

ϕ(h1)

h2 h4 ϕ−1[∅]

ϕ(h2) ϕ(h4) ∅



=



h3 h5

a2 a4

i2 i2︸ ︷︷ ︸
θ(i2)

h1

a3

i3︸︷︷︸
θ(i3)

∅

∅

i1︸︷︷︸
θ(i1)

h2 h4 ∅

∅ ∅ a1

∅ ∅ ∅︸ ︷︷ ︸
θ−1[∅]


.

An assignment µ is individually rational if

i. for all h ∈ H either ϕA(h)Phh or ϕ(h) =∅, and

ii. for all i ∈ I, a �i
A ∅ for all a ∈ θ(i) and h �i

a a for all household h such that ϕ(h) = (a, i) and

i ∈ τ(h).

We assume that the set of individually rational matchings is not empty.

For any individually rational assignment µ, let Hd
i (µ) be the set of households of type i assigned at

district d, formally Hd
i (µ) = {h ∈H | ϕI(h) = i and δ(ϕA(h)) = d}. An assignment µ respects mixité

whenever #Hd
i (µ) = qd

i for all i ∈ I and d ∈ D.

An assignment µ is non-wasteful if no household justifiably claims an empty apartment, i.e. there is

no i, h and a such that:

i. aPhϕA(h),

ii. θ(a) =∅,

iii. a�i
A ∅ and h�i

a ∅.

Household h has justified-envy over household h′ at individually rational assignment µ if
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i. ϕA(h′)PhϕA(h) and

ii. h�i
ϕA(h′)

h′ for some institution i ∈ I.

Institution i has justified-envy over institution i′ at individually rational assignment µ if there exists

a ∈ θ(i′) such that

i. a�i
A a′, for some a′ ∈ θ(i), and

ii. iπai′.

An assignment µ is fair if it is individually rational, non wasteful and there is no justified envy. A

matching µ is fair for households of the same type if it is individually rational, non-wasteful, there is

no justified envy over institutions and there is no justified envy for households of the same type, i.e.

when i = ϕI(h).

An assignment µ is Pareto efficient if there is no matching µ′ such that all households prefer µ′

to µ, with strict inequality for at least one household. An assignment µ′ Pareto dominates other

assignment µ if µ′(h)Rh(h) for each h ∈ H, and µ′(h′)Ph′(h′) for at least one h′ ∈ H.

A mechanism χ associates a profile of preference list with an assignment µ. Let Rh be the true

preference list of each household h. The set of all possible preference lists of household h is denoted

by ℜh. A profile of preference list is a vector R′ = (R′h1
,R′h2

, . . . ,R′hH
) ∈ℜh1×ℜh2×·· ·×ℜhH = ℜ.

As usual, R−h is the profile of all preference list except Rh. A mechanism is strategy proof if telling

the truth is a dominant strategy, i.e.

ϕA[Rh,R∗−h](h)RhϕA[R′h,R
∗
−h](h) for all R′h ∈ℜh and R∗−h ∈ℜ−h.

119



4.3 The Nested Deferred Acceptance Mechanism

In this section we present a mechanism that deals with the subsidized housing problem. We intro-

duce the Nested Deferred Acceptance (NDA) to find an assignment µ = (θ,ϕ). The idea behind this

assignment procedure is to compute simultaneously a many-to-one matching, θ, and a one-to-one

matching, ϕ. To do that, the NDA mechanism nests two deferred acceptance (DA) algorithms: in the

first one, each household asks for her most preferred apartment, i.e. the demand of each household is

elicited. Then, we run the nested DA between institutions and those apartments which are demanded

by a household of its type. Formally the NDA proceed as follows:

Initialization

For all households h ∈ H, let At
h := A. and t := 1.

A. Eliciting the demand of households

All unassigned households h ask for the most preferred apartment in At
h, denoted Dt

h, while matched

households h′ iterate their demand to their match, Dt
h′ = ϕ

t−1
A (h).

For all i∈ I and a∈A define the set of households that demand apartment a and i is one of her possible

types:

H it
a = {h ∈ H | (Dt

h = {a}) and i ∈ τ(h)}.

For all i ∈ I define the set of apartments to which i can be assigned to an household at an individually

rational matching:

At
i = {a ∈ A | (∃h ∈ H it

a }), (a�i
A ∅) and (h�i

a ∅)}.

B. Assignment of apartments to institutions

B.1 All institutions i demand apartments in

Chi(At
i,�i

A) = {s ∈ 2At
i | #s≤ qi and s is maximal for �i

A in At
i }.

Moreover

It
a = {i ∈ I | a ∈Chi(Ai,�i

A)}.
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B.2 For all apartments a which received a demand from some institution, the apartment a is tenta-

tively assigned to the institution highest ranked in πa, i.e. a ∈ θt(maxπa It
a).

C. Assignment of households to institutions and apartments

Each institution i assigns an apartment a ∈ θt(i) to the household with the highest priority, that is to

say ϕt(a, i) = max�ix
a

H it
a .

For all unassigned household, h, let At+1
h := At

h�maxPh At
h, t := t + 1, go to A. Else stop, if each

household has been rejected from all the apartments in her preference list or is matched.

The tentative matching is the outcome assignment. Each household tentatively matched with a pair

composed by one apartment and one institution at the last step is assigned that apartment by the

corresponding institution in the pair. Other households are assigned the null object ∅.

We denote by µNDA = (θNDA,ϕNDA) the assignment given by the NDA. Note, that the NDA algorithm

has a finite number of steps because each DA ends in polynomial time. In the following example we

show how the NDA mechanism works.

Example 4.3.1. Consider A = {a1,a2}, H = {h1,h2,h3}, I = {i1, i2}. Assume only one district,

δ(a1) = δ(a2) = 1, households type function is given by τ−1(1) = {1,2} and τ−1(2) = {h2,h3}. The

quota for both institutions is equal to 1. Households preferences are

P =


Ph1 Ph2 Ph3

a1 a2 a2

a2 a1 a1

 .

The priorities of institutions and apartments are the following

�1=


�1

A �1
a1
�1

a2

a1 h2 h2

a2 h1 h1

 , �2=


�2

A �2
a1
�2

a2

a2 h3 h2

a1 h1 h3

 and π =


πa1 πa2

1 2

2 1

 .

Running the NDA, the demand elicited by households at Step 1 is the following

• Apartments demanded by type 1 households are: H1
a1
= {h1} and H1

a2
= {h2},
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• Apartments demanded by type 2 households are: H2
a1
=∅ and H2

a2
= {h2,h3}.

Consequently A1
1 = {a1,a2} and A1

2 = {a2}. According to the vector of quotas and the vector of

priorities �A, the set of apartments that each institution chooses is

Ch1
1(A

1
1,�1

A) = {a1} and Ch1
2(A

1
2,�2

A) = {a2}.

Therefore, we get tentatively the triads

(h1,a1,1) and (h2,a2,2).

We have that h3 was rejected from apartment h2. Then, the demand elicited by households at Step 2

is

• Apartments demanded by type 1 households are: H1
a1
= {h1} and H1

a2
= {h2},

• Apartments demanded by type 2 households are: H2
a1
= {h3} and H2

a2
= {h2}.

Consequently A1
1 = {a1,a2} and A1

2 = {a1,a2}. Note that institution a1�1
A a2 and a2�1

A a2; moreover,

the quota of each institution is equal to one. Then, each institution chooses the following set of

apartments

Ch1
1(A

1
1,�1

A) = {a1} and Ch1
2(A

1
2,�2

A) = {a2}.

Therefore, we get tentatively the triads

(h1,a1,1) and (h2,a2,2).

We have that household 3 has been rejected from all her acceptable apartments Thus, the algorithm

stops, and final assignment is

µNDA =


h1 h2 h3

a1 a2 ∅

1 2 ∅

 .

122



4.4 Interrupters

In this section we show that the assignment produced by the NDA algorithm fails to cope with the

mixité condition and fairness for the same type. The following example show that these problems

arise because some institutions turn out to be interrupters as defined by Kesten (2010). We identified

two types of interrupters.

Example 4.4.1. (There is justified envy for households of the same type). Let I = {i1, i2}, A =

{a1,a2,a3} and H = {h1,h2,h3,h4}, where households type function is given by τ−1(1) = {h1,h2}

and τ−1(2) = {h3,h4}. The vector of quotas is q = (2,1). The priorities for the institutions are

�1=


�1

A

a1

a2

a3

�1
a1
�1

a2
�1

a3

h1 h1 h1

h2 h2 h2


, �2=


�2

A

a2

a1

a3

�2
a1
�2

a2
�2

a3

h3 h3 h3

h4 h4 h4


.

Households preferences and apartments priorities are

P =


Ph1 Ph2 Ph3 Ph4

a1 a2 a1 a1

a2 a1 a2 a2

a3 a3 a3 a3


, π =


πa1 πa2 πa3

2 2 1

1 1 2

 .

At Step 1 of the NDA algorithm, we have that:

• the type 1 households that demand an apartment are H1
a1
= {h1} and H1

a2
= {h2},

• the type 2 households that demand an apartment are H2
a1
= {h3,h4} and H2

a2
=∅.

Under the priority πa1 , institution 2 assigns apartment a1. Then, we tentatively get the triads

(h3,a1,2), (h2,a2,1).

During Step 2, we have that
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• the type 1 households that demand an apartment are H1
a2
= {h1,h2},

• the type 2 households that demand an apartment are H2
a1
= {h3} and H2

a2
= {h4}.

The priority of apartment a2 implies that institution 2 assigns apartment a2. However, its quota is 1

and apartment a2 is preferred to a1 under �2
A. Therefore, we get temporarily the triad

(h4,a2,2).

That is to say, the triads (h3,a1,2) and (h2,a2,1) are dissolved at the end of Step 2.

Since each household makes an offer to those apartments such that she has not been rejected, at Step

3, we have that:

• the type 1 households that demand an apartment are H1
a1
= {h2} and H1

a3
= {h1},

• the type 2 households that demand an apartment are H2
a2
= {h3,h4}.

According to the quotas, institutions 1 and 2 choose the set {a1,a2} and a3, respectively. Since

h3 �2
a3

h4, the tentative assignment is

µ3 =


h1 h2 h3 h4

a3 a1 a2 ∅

1 1 2 ∅

 .

Thus, household h4 is rejected from a3. During the final Step 4, h4 asks for apartment a3. However,

1πa32 and h1 ∈H1
a3

. Therefore, h4 does not get this apartment and the algorithm stops. Therefore, the

final assignment is

µNDA =


h1 h2 h3 h4

a3 a1 a2 ∅

1 1 2 ∅

 .

Note that ϕNDA
A (h2) = a1Ph1a3 = ϕNDA

A (h1), h1 �1
a1

h2 where 1 = ϕNDA
I (h1) = ϕNDA

I (h2). Therefore,

household h1 justifiably claims the apartment a1 to household h2, i.e. there is justify envy for house-

holds of the same type.
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Previous example illustrates the interruption of type 1. The NDA does not satisfy fairness for the

same type because institution 2 tentatively assigns a1, so household h1 and institution 1 are displaced

from it at Step 1. However, institution 2 does not assign a1 at the end of the mechanism due to

a2 �2
A a1 and q2 = 1, i.e. a1 is displaced from θ(2) at Step 2. We define formally type 1 interrupters.

Given a problem to which the NDA is applied, we say that i is a type 1 interrupter for a if it exists

1. Steps t to t +n such that a ∈ θt ′(i) for all t ′ ∈ {t, t +1, . . . , t +n} but a /∈ θt ′(i) for all t ′ > t +n,

and

2. institution j 6= i such that a ∈Ch j(Al
j,�

j
A) but a /∈ θl( j) for some l ∈ {t, t +1, . . . , t +n}.

Now, we show an example where the NDA algorithm does not output an assignment that respects

mixité sociale.

Example 4.4.2. (Mixité Condition) Consider I = {1,2}, A = {a,b,c}, H = {h1,h2,h3} where the

households function type is given by τ−1(1) = {h1,h2,h3} and τ−1(2) = {h2}. The vector of quotas

is q = (q1,q2) = (2,1). The of households preferences is

P =


Ph1 Ph2 Ph3

a a a

b b b

c c c


.

Institutions priorities over households is

�1=


�1

A

a

b

c

�1
a �1

b �1
c

h1 h1 h1

h2 h2 h2

h3 h3 h3


and �2=


�2

A

a

b

c

�2
a �2

b �2
c

h2 h2 h2


−

Priorities over apartments and apartments are

π =


πa πb πc

1 1 1

2 2 2

 .
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Running the algorithm, at Step 1 we have that:

• type 1 households that demand an apartment are H1
a = {h1,h2,h3},

• type 2 households that demand an apartment are H2
a2 = {h2}.

So, following the priorities, we tentatively get the triad

(h1,a,1).

At Step 2, the elicited demand by households implies that

• type 1 apartments that demand an apartment are H1
a = {h1}, H1

b = {h2,h3},

• type 2 apartments that demand an apartment are H2
b = {h2}.

The priority vector π determines that

(h1,a,1), (h2,b,1).

At Step 3, household h3 asks for apartment a3. So, a1,a2,a3 ∈ A3
1. Since a1,a2 are preferred to a3

under �1
A, and 1πa22, we have that institution 1 assigns apartments a1, a2 to households h1,h− 2,

respectively. Consequently, h3 is rejected from a3 and the algorithm stops. The assignment produce

by the NDA algorithm is

µ =


h1 h2 h3

a b ∅

1 1 ∅

 .

On the other hand, the assignment

µ′ =


h1 h3 h2

a c b

1 1 2


is a feasible assignment that respects mixité sociale condition. In other words, the market described in

previous example satisfies the over-demand condition. However, the output of the NDA mechanism
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does not satisfy the mixité condition because #θ(2) = 0 < q2. This interruption is caused because

institution 1 assigns the apartment a2 to household h2, where h2 has the possibility to receive the

same apartment by institution 2. whose quota is not fulfilled. We define formally type 2 interrupters.

Given a problem to which NDA is applied, we say that i is a type 2 interrupter of the NDA algorithm

if

1. ϕNDA(h) = (a, i),

2. #τ(h)≥ 2, i.e., there exists j ∈ τ(h)−{i},

3. iπa j ,and

4. #θNDA( j)< q j.

The triad (h,a, i) is a type 2 interrupting triad for the triad (h,a, j).

Observation 4.4.1. Note that assignment µ′ satisfies mixité condition and does not have type 2 inter-

rupters. However, institution 1 justifiably claims apartment a2 to institution 2.

4.5 Nested Deferred Acceptance with Interrupters

We have shown that the NDA assignment is not always fair for households of the same type and it does

not always respects the mixité condition. Moreover, these problems are caused given the existence

of type 1 and 2 interrupters. Following the Efficiency Adjusted Deferred Acceptance Mechanism

(Kesten, 2010), we modify the NDA introducing a second stage where we search for all the interrupter

institutions. Then, these institutions delete the apartment where they caused the interruption from

their priority defined over apartments. That is to say, we define a delete operation on priorities �i
A .

Let Λ be the set of all possible priorities�i
A, for all i ∈ I. The delete operation over Λ is the function

\ : Λ×A→Λ such that \(�,a), or simply�\a, is the priority that declares apartment a unacceptable

for i only if a�∅. In other words, the priority�\a drops a from� and holds the original order in�.

Otherwise, � \a =�. Note that Kesten defines this operation over students preferences, the agents
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who makes the proposal, because he identifies that students causes the loss of efficiency during the

Deferred Acceptance mechanism. In our case, institutions, the agents who ”receive” the proposal,

cause a loss in fairness and non-wastefulness because the mixité condition is not satisfied.

Now, we introduce the Nested Deferred Acceptance with Interrupters (NDAI). Each step if this mech-

anism has two stage: in the first we run the NDA algorithm, and the second stage actualizes the

priorities of all interrupters. Formally, the NDAI proceed as follows.

Initialization

Counter of iterations over interrupter institutions, x := 0.

STEP 0. This step is divided in the following stages:

Stage 0.1 NDA Phase. Let�0
A= (�i

A)i∈I . Run the NDA algorithm using the profile of priorities and

preferences (�0
A,((�i

a)a∈A)i∈I,P).

Stage 0.2 Priorities Actualization. Find the last step of the NDA phase in which an interrupter is

rejected from the apartment which she is an interrupter. For each interrupting triad (h,a, i), do

�i1
A=�i0

A �a, and � j1
A =� j0

A if j is not an interrupter. If there is no interrupters, the algorithm

stops.

STEP x. The stages are the following.

Stage x.1 NDA Phase. Run the NDA algorithm with the profile of priorities and preferences (�x
A

,((�i
a)a∈A)i∈I,P).

Stage x.2 Priorities Actualization. Find all the interrupting triads (of any type) in the last step of

the NDA phase in Round x− 1. For each interrupting triad (h,a, i), do �ix+1
A =�ix

A �a, and

� jx+1
A =� jx

A if j is not an interrupter. If there is no interrupters, the algorithm stops.

The output of the previous mechanism is denoted by µNDAI[H,A,P, I,�,πA,q]. We know that the

NDA phase is solvable in polynomial time and there are at most #I interrupters in each stage x.2.

Also, priorities �i
A have a finite length. Therefore, the NDAI is solvable in polynomial, i.e. the

128



number of iterations x is finite. This implies the existence of an iteration x∗ such that there is no

interrupters in its corresponding NDA phase (Stage x∗.1)

Before to present our main result about the NDAI mechanism, it is important to note that µNDAI is not

fair because there is justified envy between institutions. For an example see Observation 4.4.1, where

the assignment µ′ is equal to µNDAI . The justified envy between institutions is a direct consequence

of the definition of type 2 interrupter. For this mechanism it is not possible to get mixité sociale and

fairness for institutions.

Also, if there is a unique institution in the market, it is easy to see that all the apartments are assigned

by this institution i. Moreover, each pair (i,a) has associated the priority �i
a. Hence, we only have

to solved a one-to-one matching problem between pairs (i,a) and households. In other words, the

NDAI coincides with the Deferred Acceptance mechanism when there is a unique institution. Thus,

the NDAI can be understood as a generalization of the DA.

We present our main results about the NDAI mechanism in the following theorem.

Theorem 4.5.1. Consider a subsidized housing market ℵ = (I,H,τ,D,Q,A,δ,P,�,π). We have the

following cases

1. Suppose the existence of at least one assignment that satisfies mixité sociale under ℵ.

A. If mixité sociale and fairness for the same type are compatible, then the assignment µNDAI

satisfies both properties. Moreover, there is no fair for the same type assignment that

satisfies mixité sociale that Pareto dominates µNDAI.

B. Otherwise, the assignment µNDAI only satisfies the mixité condition. Moreover, there is no

assignment that satisfies mixité that Pareto dominates µNDAI .

2. If there does not exist an assignment that satisfies mixité sociale under ℵ, then µNDAI is fair for

the same type.

3. The NDAI mechanism is strategy-proof.
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Proof. Consider x∗ the NDAI last iteration where there is no interrupters.

We know that the corresponding Stage x∗.1 is solvable in polynomial time, i.e., the corresponding

NDA phase ends at Step t∗. By construction, we have that

• θNDAI(i) =Chi(At∗
i ,�i

A |qi,πA) for all i ∈ I, then θNDAI(a) = i if and only if a ∈ θNDAI(i),

• The function ϕNDAI(·) is defined as ϕNDAI(h)= (a, i) if and only if h=ϕNDAI(a, i)=max�ix∗
a

H it∗
a

for all (a, i) ∈Chi(At∗
i ,�i

A |qi,πA)×{i}. So, i ∈ τ(h).

Therefore, µNDAI = (θNDAI,ϕNDAI) where θNDAI : I ∪A→ I ∪ 2A ∪ {∅} and ϕNDAI : H ∪ I×A→

H ∪ (I×A)∪{∅}. Moreover, ϕI(h) ∈ τ(h) for all h ∈ H. That is to say µNDAI is feasible.

Mixité Condition. We have to prove that #Hd
i (µ

NDAI) = qd
i for all i ∈ I.

By definition, we know that θNDAI(i) = Chi(At∗
i ,�i

A |qi,πA), then institution i chooses its highest

ranked apartments such that its quota in each district is not violated. So, #Hd
i (µ

NDAI)≤ qd
i .

Now, we need to prove that #Hd
i (µ

NDAI)≥ qd
i . We proceed by contradiction assuming that #Hd

i (µ
NDAI)<

qd
i . Consequently, institution i does not fulfilled its quota, #θ(i)< qi, and we have that ∑i∈I #θNDAI(i)<

∑i∈I qi = #A. This implies the existence of at least one apartment a that remains unassigned, θNDAI(a)=

∅. Moreover, we assume the existence of at least one assignment that satisfies the mixité. Such as-

signment ensures the existence of a household h such that ϕNDAI(h) = ∅ and τ(h) = i because we

consider that µNDAI does not satisfy the mixité condition. Since Ph is a strict preference list of all

apartments, we have that h ∈ H it
a and a ∈ At

i, for some Step t, at iteration x∗. We have two cases:

- First case, institution i is not an interrupter of apartment a, that is to say, a �ix∗
A ∅. Thus, we have

the following subcases:

I.A Institution i does not choose this apartment at Step t, i.e. a /∈Chi(At
i,�i

A |qi,πA). Moreover, we

know that #θ(i)< qi and a ∈ At
i. Consequently, there must exists an institution j 6= i such that

apartment a belongs to Ch j(At
j,�

j
A |q j,πA). So, some household h′ = max� j

a
H jt

a is tentatively

assigned to a by institution j. However, apartment a remains unassigned at the end of the NDAI

algorithm, this means that the triad (h′,a, j) was deleted in some later Step. We conclude that

institution j is a type 1interrupter for apartment a, which contradicts the election of x∗.
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I.B Institution i chooses this apartment at Step t, i.e. a ∈Chi(At
i,�i

A |qi,πA), we have two possibili-

ties: h = max�i
a
H it

a or not. Let h′ the household assigned to a under i. Since θNDAI(a) =∅ and

#θNDAI(i)< qi, we conclude that h′ was displaced in some later step by an institution j with a

higher priority under πa. At the end of the algorithm, j does not assigned apartment a. That is

to say, the institution j is a type 2 interrupter, which contradicts the election of x∗.

- Second case, institution i is an interrupter of apartment a, that is to say ∅ �ix∗
A a. So, we analyze

each type of interruption in the following subcases:

II.A Institution i is a type 1 interrupter for a in some iteration x′. By definition, institution i tentatively

assigns a to some household h′ at Step t, but the apartment a is not assigned by i at the end of the

NDAI algorithm. Then there exists institution i′ 6= i interested in apartment a in {t, t+1, . . . , t+

n} and iπai′ because a /∈ Cht ′
i′(A

t
i′;�

i′
A,qi′) On the other hand, institution i rejects apartment a

because its quota its fulfilled or there exists an institution j 6= i with a higher priority than i

under πa. The first case is not possible because we assume that #θ(i) < qi. Then, we have

that jπaiπai′. Since θ(a) = ∅ we conclude that j is a type 1 interrupter for apartment a and

the interruptions occurs after the interruption made by institution i at iteration x′. Therefore,

the last interruption does not occur at Step t of the stage x′.1. This is a contradiction with the

election of x′ and t.

II.B Institution i is a type 2 interrupter for a in some iteration x< x∗. Then there exists an institution j

and a household h such that the quota of j is not fulfilled, i has a higher priority than j under πa,

both institutions belong to the type set of h and institution i assigns the apartment a to h. Since

the apartment a remains unassigned, the apartment a was displaced from j because its quota is

fulfilled with a higher ranked apartment than a under � j
Aor by the existence of an interrupter.

The first case is not possible because j needs the apartment a to fulfilled its quota. So, deleting

a from all the interrupters of (a,h, j), we conclude that a must belong to θ( j). Otherwise, we

will have that x∗ is not the last iteration.

We get a contradiction in any case. Hence, #θNDAI(i)≥ qi. Therefore, the mixité condition is satisfied

#θNDAI(i) = qi for all i ∈ I.
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Non-wastefulness. We proceed by contradiction. Suppose the existence of a triad (h,a, i) such that

aPhϕNDAI
A (h), θNDAI(a) = ∅ and the institution i can assign the apartment a to the household h, i.e.

#θNDAI(i) < qi, h �i
a ∅ and i ∈ τ(h). As before, let x∗ be the last iteration where no institution is an

interrupter. So, at stage x∗.1, in some Step t of the NDA phase we have that

h ∈ H it
a and a ∈ At

i.

Moreover, we know that #θNDAI(i)< qi and Chi(At
i,�i

A) = {s ∈ 2At
i | #s≤ qi and s is maximal for �i

A

in At
i. Thus, It

a 6=∅, particularly i ∈ It
a.So, consider i′ ∈ It

a such that a ∈Chi′(At
i′,π

i′).

On the other hand, θNDAI(a) = ∅,then a is displaced from θNDAIt(i′) by some i′′, but she does not

assign it. This means that i′′ is a type 1 interrupter, which contradicts the election of x∗. Therefore,

µNDAI is non-wasteful.

There is no justified envy. Let x∗ be the last iteration of the NDAI algorithm. Consider households

h, h′ such that

ϕ
NDAI
I (h) = ϕ

NDAI
I (h′) = i and a = ϕ

NDAI
A (h′)Phϕ

NDAI
A (h).

So, apartment a is acceptable for both households.

Consequently

h ∈ H it
a and h′ ∈ H it ′

a

for some Steps t, t ′ during the NDA phase at Stage x∗.1. Since there are not interrupters at iteration

x∗ and a ∈ θNDAI(i), we have that

a ∈Chs
i (A

s
i ,�i

A) for all s≥min{t, t ′}.

Moreover, h′ = max�i
a
H is

a for all s≥ t ′ because a = ϕNDAI
A (h′). We analyze the following cases:

Case I. Consider t ′ ≤ t. We know that h′ = max�i
a
H is

a for all s ≥ t ′ and h ∈ H it
a . Then h is not

assigned to a because h′ �i
a h.

Case II. Suppose that t < t ′. Since h ∈ H it
a and a ∈ θ(i), we have two possibilities: household h is

the household in H it
a with the highest priority under �i

a or not. In any case, institution i assigns

the apartment a to some household h′′ at Step t. By definition, h′′ = max�i
a
H it

a , then h′′ �i
a h.

However, h′ = max�i
a
H it ′

a at Step t ′ and ϕ(h′) = (a, i). That is to say, h′′ is displaced from a by

an household with a higher priority under �i
a. By transitivity, we conclude that h′ �i

a h.
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In any case, h′ �i
a h. Therefore households does not have justified envy under µNDAI . So, the assign-

ment µNDAI is fair for households of the the same type.

Pareto Undominated. Now, we prove that there is no fair for households the same type assignment

that Pareto dominates assignment µNDAI .

We proceed by contradiction. Let µ be a fair for households of the same type assignment that Pareto

dominates the assignment µNDAI . Thus, ϕA(h) = ϕNDAI
A (h) for all h ∈ H, but exists at least one

household h∗ such that strictly improves under ϕ, that is to say ϕA(h∗)Ph∗ϕ
NDAI
A (h∗).

Now, let hα be the household that is assigned to the apartment α under the NDAI algorithm. So,

ϕNDAI
A (hα) = α for all α ∈ A. Particularly, we have that

ϕ
NDAI
A (ha) = a = ϕA(h∗)

Moreover, denote by ϕI(h∗) = i, ϕNDAI
I (h∗) = i∗, ϕI(ha) = j and ϕNDAI

I (ha) = j∗, the corresponding

institution that assigns an apartment to the households h, ha.

We define and denote the set of households that improve (and remain equal) under the assignment µ

as follows:

H+ = {h ∈ H : ϕA(h)Phϕ
NDAI
A (h)} and H= = {h ∈ H : ϕA(h) = ϕ

NDAI
A (h)}.

It is easy to note that H+∩H= =∅ and H+∩H= = H.

In the spirit of the decomposition lemma, consider h ∈ H+ and b = ϕA(h). We know that exists the

household hb because µNDAI is non-wasteful and respects the mixité condition. Since µ is a fair for

households of the same type assignment, we have that ϕA(hb) 6= ϕNDAI
A (hb). So, hb /∈H=, this implies

that hb must belong to H+. In words, the assignment µ re-allocates all the apartments in ϕNDAI
A (H+)

between the elements in H+.

We know that h∗ ∈ H∗. Then there exists household ha ∈ H∗ such that we have the following cycle:

aPh∗ϕ
NDAI
A (h∗), ϕ

NDAI
A (h∗)Phaa = ϕ

NDAI
A (ha) and ϕA(ha) = ϕ

NDAI
A (h∗) = a∗.

This cycle arises during the last iteration of the NDAI algorithm because there exist households h′a

and h′
β

that are tentatively assigned to (a, j′) and (ϕNDAI
A (h∗), i′) at Steps ta, tβ, respectively, but are

rejected in later steps. We analyse the next cases
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Case I. Suppose that i = i∗ = j = j∗. Since µ is fair for households of the same type, previous cycle

implies that assignment µNDAI is not fair for households of the same type.

Case II. Otherwise. Without loss of generality, consider that ta < tβ. We conclude that institution j′

is a type 1 interrupter of (h∗,a, i). This is a contradiction because there is no interrupters at iteration

x∗. Analogously for larger cycles.

In any case we get a contradiction by assuming that µNDAI is Pareto dominated.

To prove the strategy-proofness, we need the following concepts.

Definition 20. Consider that Rh is the true preference list of each household h. A dropping strategy

is a preference list R′h such that

1. R′h preserves the order of the true preference list. Thus, aR′hb =⇒ aRhb, and

2. All unacceptable apartments under Rh are also unacceptable under R′h. So, ∅Rha =⇒ ∅R′ha,

for all a, b ∈ A.

For each apartment a, let Ra
h be the dropping strategy where all the apartments preferred to a under

Rh are declared unacceptable, i.e. if bPha then ∅Ra
hb. As Kojima and Pathak (2009), we have that

dropping strategies are exhaustive, that is to say, every possible apartment for a household h can be

gotten through a dropping strategy, when other preference list remain unchanged.

Lemma 4.5.1. (Dropping strategies are exhaustive) Fix a household h. Suppose that h reports R̄h and

other households preference profile is R̄−h. Also, consider that ϕ[R̄](h)= (a, i). Then ϕA[Ra
hR̄−h](h)=

a = ϕA[R̄](h), for all R̄h ∈ℜh.

Proof. We proceed by contradiction, suppose that ϕa[Ra
h, R̄−h](h) 6= a. Consider x∗ the last iteration

of the mechanism with the profile (Ra
h, R̄−h). By assumption, household h was rejected from a at

some Step t ≥ 1 during the NDA phase at Stage x∗.1. Consequently, there exists a household h′ such

that ϕ[Ra
h, R̄−h](h′) = (a, j). We have the following cases:

Case I. If j = i, the allocation ϕ[Ra
h, R̄−h](h′) = (a, j) implies that h′ �i

a h. On the other hand, we

know that each household of type i makes an offer to apartment a during the last iteration
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because there is no interrupter institutions. Since ϕa[R̄](h) = a, we conclude that h �i
a h′. We

get a contradiction.

Case II. If j 6= i, we know that h was rejected from a at some Step ta
h ≥ 1, then jπai because

ϕ[Ra
h, R̄−h](h′) = (a, j) and a ∈ θ[R̄](i), institution i prefers assign a by the mixité condition.

In other words, is not possible that i does not assign a to h by quota restrictions. On the other

hand, the output of the NDAI[Ra
h, R̄−h] procedure also satisfies the mixité condition. Conse-

quently there exists an apartment b such that

b 6= θ[Ra
h, R̄−h]( j) and b ∈ θ[R̄]( j),

in words, the apartment a displaced the apartment b from institution j. Moreover, other house-

holds do not change their preference lists, then a,b ∈ At
j and #At

j > q j at some Step t during

the last NDA phase under the profile (Ra
h, R̄−h). We have that a� j

A b because ϕ[Ra
h, R̄−h](h′) =

(a, j). However, a /∈ θ[R̄]( j) although h′ ∈ H jth′
a at some step th′ . Since there is no interrupter

institutions at last NDA[R̄] iteration, we conclude that iπa j. This is a contradiction with jπai.

In any case we get a contradiction by assuming that ϕa[Ra
h, R̄−h](h) 6= a.

Strategy Proofness. Let R′−h ∈ ℜ−h. and ϕNDAI
A [Rh,R′−h](h) = ash Since dropping strategies are

exhaustive, we will show that h cannot get an apartment with a higher rank that ash , i.e., there is no

strategy R′h such that ϕNDAI
A [R′h,R

′
−h](h) = arh for all r = 1,2, . . . ,s−1. We proceed by induction over

s, the rank of ϕNDAI
A [Rh,R′−h](h).

Induction Base. For s = 1, we have that ϕNDAI
A [Rh,R′−h](h) = ash is the most preferred apartment of

h. Therefore, h cannot get a better apartment.

If s = 2, during the NDA phase at Stage x∗.1 we have that household h was rejected from her most

preferred apartment because. 1) there exists household h′ such that ϕNDAI(h′) = (a1h, i) and h′�i
a h, 2)

apartment a1h is assigned by an institution jπa1h
i, for all i ∈ τ(h) or 3) (h,a1h, i) is a type 1 interrupter

triad for some i ∈ τ(h).Therefore, h cannot get her most preferred apartment.

If s = 3, it is clear that h cannot get her most preferred apartments by the same reasons exposed in

previous case.. Now, we show that apartment a2h is not possible for h when R′−h is fixed. We proceed

by contradiction, suppose that a2h is possible. First, we know that ϕNDAI
A [Rh,R′−h](h) 6= a2h , there
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exists h′ such that ϕNDAI
A [Rh,R′−h](h

′) = a2h . This implies that h′ does not get a1h by one of the same

reasons that h. Since in the last iteration there is no interrupter institutions and other households

report the same preference list, we have that h ∈H it
a2h

, h′ ∈H jt ′
a2h

at some Steps t, t ′ respectively. Then

a2h is assigned to h′ because: jπa2h
i or h′ �i

a2h
h.

On the other hand, if a2h is possible for h, the exhaustiveness of dropping strategies implies that

ϕNDAI
A [R

a2h
h ,R′−h](h) = a2h . Hence, there exist Steps t, t ′ at Stage x∗.1 of the NDA[R

a2h
h ,R′−h] such that

h ∈ H it
a2h

, h′ ∈ H jt ′
a2h

. Then a2h is assigned to h because: iπa2h
j or h�i

a2h
h′. We get a contradiction in

any case.

Hypothesis of Induction. If ϕNDAI
A [Rh,R′−h](h) = anh , then apartments arh are not possible for h, for

all r ∈ {1,2, . . . ,n−1}.

Induction Step. For s = n+ 1, we have to prove that apartments arh are not possible for h, for

all r ∈ {1,2, . . . ,n}. We proceed by contradiction, i.e., suppose that apartment ar∗h is possible for

some r∗ ∈ {1,2, . . . ,n}. By the induction hypothesis, we have that apartments arh are not possible

for h for all r ∈ {1,2, ...,r∗− 1}. Analogously to the case s = 3, we get a contradiction because

ϕNDAI
A [Rh,R′−h](h) 6= ar∗h .

Then, household h cannot get an apartment preferred to ϕA[Rh,R′−h](h), for all fixed profile R′−h.

Therefore, the NDAI mechanism is strategy-proof.

Suppose that an assignment that satisfies mixité sociale does not exist. During the last iteration

of the NDAI, we have that #Cht
i < qi for all step t of the NDA phase. Consequently, the assignment

µNDAI is fair for the same type because in the last step there are not interrupters, and each institution

assigns an apartment according to {Cht
i}tN.

Suppose that mixité sociale and fairness for the same type are not compatible We proceed anal-

ogously to the proof of mixité sociale. Justify envy arises because the algorithm is forced by type

2 interrupters to reach mixité sociale even if the household in the interrupting triad does not get the

same apartment. Moreover, if we assume that µNDAI is Pareto dominated by a mixité assignment, then

we find interrupters during the last iteration of the NDAI algorithm.

Therefore, the interrupters of the NDAI algorithm can determine the compatibility between fairness

for the same type and mixité sociale.
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Previous theorem establishes that the assignment µNDAI is fair for the same type and satisfies the

mixité condition in markets where these two concepts are compatible. However, we can not generalize

the existence of such assignments for all markets. Even more, there are markets where an assignment

that satisfies mixité does not exist. The following section focuses on these problems.

4.6 Existence issues

It is important to recall that a fair for the same type assignment that respects the mixité condition does

not always exists.

Example 4.6.1. Consider a subsidized market such that H = {h1,h2}, I = {i1, i2} and A = {a1,a2}.

The type function is described by τ−1(i1) = τ−1(i2) = {h1,h2}. Households preferences and institu-

tions priorities are

P =


Ph1 Ph2

a2 a2

a1 a1

 and �=


�i1

A �i1
a1 �

i1
a2 �

i2
A �i2

a1 �
i2
a2

a2 h1 h1 a2 h1 h1

a1 h2 a1 h2

 .

The priorities of apartments over institutions are πa1 = πa2 : i1, i2.

Note that the only individually rational assignments that satisfies the mixité condition are

µ =


h1 h2

a1 a2

i1 i2

 and µ′ =


h1 h2

a1 a2

i2 i1

 .

In both cases, we have that

a2Ph1a1 and h1 �
i j
a2 h2, for all j = 1,2.

So, household h1 has justify envy over the household of the same type h2.

4.6.1 Analysis of Mixité

Mixité sociale is not guaranteed

An assignment that respects mixité does not always exists.
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Example 4.6.2. Let H = {h1,h2,h3}, A = {a1,a2,a3} and I = {1,2}. The type function is described

as follows τ−1(1)= {h1,h2,h3} and τ−1(2)= {h1}. The quotas are q1 = 2 and q2 = 1. The institutions

priorities are

�1=


�1

A �1
a1
�1

a2
�1

a3

a1 h1 h1 h1

a2 h2

a3 h3


and �2


�1

A �1
a1
�1

a2
�1

a3

a1 h1 h1 h1

a2

a3


.

Since h1 is the unique household of type 2, in order to satisfy the mixité condition, we have that ϕI(h1)

for all assignment µ. So, h2, h3 must be assigned through institution 1. This condition generates a

non-individually rational assignment because∅�a j h2,h3 for all j ∈ {1,2}. Therefore, in this market

it does not exist an IR assignment that respects the mixité condition.

The NDAI and the existence of mixité sociale

The NDAI algorithm is also useful to identity the compatibility between fairness for the same type

and mixité sociale. According to Theorem 4.5.1 we have that

1. Mixité sociale and fairness for the same type are compatible if during the last iteration of the

NDAI algorithm there is no interrupters,

2. Suppose that a mixité sociale assignment exists. Fairness for the same type and mixité sociale

are not compatible if during the last iteration of the NDAI there are type 2 interrupters, and

3. An assignment that satisfies mixité sociale does not exist if some institution never reaches its

quota in the last iteration.

A condition for the existence of mixité sociale

A hyper-graph Ŷ is an ordered pair Ŷ = (V [Ŷ ],HE[Ŷ ]) where V [Ŷ ] is the set of nodes; and HE[Ŷ ] is

the set of hyper-edges ê⊆V [Ŷ ].

Considering a subsidized housing market ℵ=(I,H,τ,D,Q,A,δ,P,�,π), let H i
a = {h∈H | aPh∅ and i∈
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τ(h)} be the households of type i that prefers the apartment a to remain unassigned. With this infor-

mation, we can infer a demand matrix.

Definition 21. A demand matrix is a matrix D = (∆αβ) such that ∆αβ = Hα

β
where α ∈ I and β ∈ A.

Since I∩A=∅ and institutions are not interested in other institutions, the demand matrix is in fact the

matrix of adjacency3 of a bipartite hyper-graph. Formally, the bipartite hyper-graph induced by ℵ

is a hyper-graph Y = (V [Y ],HE[Y ]) where the set of nodes is V [Y ] = I∪A, and the set of hyper-edges

HE[Y ] is a subset of ∪i∈I2{i}×A. We say that ê ∈ HE[Y ] is a hyper-edge if it satisfies the following

two conditions:

1. ê⊆ {i}×A, so |ê∩ I|= 1, and

2. H i
a 6=∅ for all (i,a) ∈ ê.

Condition (1) says that hyper-edges must not contain more than one institution. Condition (2) is about

the relation between an institution and an apartment; that is to say, the institution i is interested in the

apartment a, both nodes in the same hyper-edge, if some household of type i demands the apartment

a.

A subset C ⊆ HE[Y ] is a matching if no pair of hyper-edges in C has nodes in common. A node

v∈V [Y ] is covered by the matching C if v is element of a pair in some hyper-edge of C. An institution

i fills its quota whenever it is covered by a hyper-edge ê with cardinality qi. A matching is perfect if it

covers all the nodes in the bipartite hyper-graph Y . Consider S⊆V [Y ], the neighbourhood of S is the

set NY (S) = {v ∈ V [Y ] | if there exist ê ∈ HE[Y ] that covers v and an element s ∈ S,s 6= v}. We say

that x is a neighbour of y if there exists a hyper-edge ê that covers x and y. Since we do not consider

the existence of loops4, a single node is not its own neighbour. Therefore, S is not necessarily a subset

of it neighbourhood.

Example 4.6.3. Consider the hyper-graph Y with nodes V [Y ] = {i, j}∪{a1,a2,a3,a4,a5} and hyper-

edges HE[Y ] = {ê1, ê2} where ê1 = {(i,a1),(i,a2),(i,a3)} and ê2 = {( j,a4),( j,a5)}. Now, let S1 =

3Consider x, y nodes in V [Ŷ ], the matrix of adjacency is a matrix (axy) such that axy 6= ∅ if and only if there is a

hyper-edge that contains x and y.
4For a node v ∈V [Y ], a loop is the hyper-edge ê = {(v,v)}.
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{i,a2} and S2 = {i, j}. The corresponding neighbourhoods are

NY (S1) = {i,a1,a2,a3} and NY [S2] = {a1,a2, . . . ,a5}.

Note that S1 ⊆ NY (S1) and S2 * NY (S2).

The following example shows the construction of a bipartite hyper-graph.

Example 4.6.4. Consider the market H = {h1,h2,h3,h4,h5}, I = {1,2,3} and A = {a1,a2,a3,a4}.

The type function is described by τ−1(1)= {h1,h2}, τ−1(2)= {h3,h4} and τ−1(3)= {h3,h5}. House-

holds preferences are the following

P =


Ph1 Ph2 Ph3 Ph4 Ph5

a1 a2 a4 a3 a1

a2 a3 a2 a4 a3

a3 a4 a1 a1 a4


.

The corresponding demand matrix is:

D =


a1 a2 a3 a4

1 h1 h1,h2 h1,h2 h2

2 h3,h4 h2 h3 h3,h4

3 h3,h5 ∅ h3,h5 h3,h5


.

Consequently, an hyper-graph is V = I∪A and HE = {ê1, ê2, ê3, ê4} where

ê1 = {(1,a1),(1,a4)}

ê2 = {(1,a1),(1,a2),(1,a3),(1,a4)}

ê3 = {(2,a1),(2,a2),(2,a4)}

ê4 = {(3,a1),(3,a3)}.

Previous hyper-graph is represented in the Figure 4.1.

Observation 4.6.1. In the previous example, all hyper-edges have a1 as a common node and only a1.

Therefore there is no matching with cardinality more than 1. So, each hyper-edge is a matching.

140



Figure 4.1: The institutions and apartments are represented by a node. The hyper-edges are illustrated as a

box with its corresponding nodes.

Now, finding an assignment that satisfies the mixité condition is equivalent to finding a matching

1. that covers all the nodes in V [Y ]∩ I, and 2. such that the cardinality of the hyper-edge ê that

covers each i is equal to qi +1. Our objective is finding a condition that guarantees the existence of a

matching with cardinality I.

Recall that a bipartite hyper-graph includes hyper-edges of all cardinalities. Then, perfect matchings

in a bipartite hypergraph cover all the institutions, but cannot satisfy the mixité condition. In order to

avoid this problem, we focus our attention on a specific bipartite hyper-graph.

Definition 22. Considering a subsidized housing problem (I,H,τ,D,Q,A,δ,P,�,π), a subsidized

housing hyper-graph ∆ is an ordered pair (V [∆],E[∆]) such that V [∆] = I∪A is the set of nodes, and

the set of hyper-edges is E[∆] = {ê⊆ ∪i∈I2{i}×A | #(ê∩A) = qi if i ∈ ê}.

Remark 1. The subsidized hyper-graph does not always exist. For example, consider a market with

only one institution, three households and two apartments. If an apartment is not acceptable for all the

households, all the hyper-edges in the induced hyper-graph cover the institution and the acceptable

apartment. So, there are no hyper-edges such that #(ê∩A) = 2, that is to say, the subsidized hyper-

graph does not exist. Moreover, the mixité condition is never reached.
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We need some condition over the size of the market to guarantee the existence of hyper-edges that

cover the quota of each institution.

A subsidized housing market satisfies the hyper-edge condition if for all apartments b 6= a, there

exists a household hi
a ∈ H i

a such that hi
a /∈ H i

b.

Proposition 4.6.1. If a subsidized housing market satisfies the hyper-edge condition, then the subsi-

dized hyper-graph exists.

Proof. For each institution i, we have to prove the existence of at least one hyper-edge ê such that

i ∈ ê and #(ê∩A) = qi.

Consider an apartment a and an institution i. Since the market satisfies the hyper-edge condition,

there exists a household hi
a ∈ H i

a such that hi
a /∈ H i

b for all b 6= a. In other words, H i
a∩H i

b =∅ for all

a 6= b, there exists ha ∈H i
a such that ha ∈H i

a and ha /∈H i
b for all apartment b 6= a. Moreover, it is clear

that H i
a 6= ∅. Consequently, all the apartments are demanded by the institution i. Therefore, there

exist |A|!
(|A|−qi)!q!

hyper-edges ê that covers institution i and #(ê∩A) = qi. That is to say, the subsidized

hyper-graph exists.

For simple graphs, the Hall’s theorem5 establishes a necessary and sufficient condition to guarantee

the existence of a perfect matching in simple bipartite graphs. The generalization of the Hall’s Theo-

rem for hyper-graphs remains as an open question. However, there exist sufficient, but not necessary,

conditions that determine the existence of a perfect matching in a hyper-graph.

A transversal is a subset T ⊆V with the property that E∩T 6=∅ for all E ⊆HE. We denote by η[Y ]

the maximum cardinality of a matching in Y , and τ[Y ] the maximum cardinality of a transversal of Y .

Remark 2. Let r ≥ 2. A bipartite hyper-graph satisfies the Haxell’s condition if |ê∩ I| = 1 and

|ê∩A| ≤ r−1 for all ê ∈ HE.

5Hall’s Theorem. Consider a bipartite hyper-graph Y such that |ê| = 1 for all ê ∈ E[Y ]. A perfect matching exists if

and only if #S≤ NY (S) for all S⊆ N[Y ].
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It is important to note that subsidized hyper-graphs satisfies the Haxell’s condition by definition: an

hyper-edge ê is a subset of {i}×A for some i ∈ I and its cardinality is equal to qi. So, |ê∩ I|= 1 and

|ê∩A| ≤ q∗+1−1 for all ê ∈ HE, where q∗ is the highest quota.

Theorem 4.6.1. If Y = (V,HE) is a subsidized hyper-graph that satisfies the hyper-edge condition

and τ(YC)> (2r−3)(|C|−1) for every C ⊆ I, then a perfect matching exists.

Proof. This is the application of Theorem 3 in Haxell (1995) for subsidized hyper-graphs.

Previous theorem ensures the existence of a permutation of apartments such that each institution i

is assigned qi apartments. However, we have not solved the subsidized housing problem. We need

to ensure the existence of enough households to be assigned one apartment from one and only one

institution.

A subsidized market satisfies the labelled condition if there exists a household hi
a ∈ H i

a such that

hi
a /∈ H j

b for all apartments b ∈ A and j 6= i.

Therefore, to guarantee the existence of at least one assignment that satisfies mixité, a subsidized

housing market must satisfy the following condition.

A subsidized housing market satisfies Mixité Existence Condition if there exists hi
a ∈ H i

a such that

1. hi
a /∈ H i

b for all apartment b 6= a.,

2. hi
a /∈ H j

a for all a ∈ A and j ∈ I \{i}, and

3. τ(YC) > (2q∗− 3)(|C| − 1) for every C ⊆ I, where Y in the correspondent subsidized hyper-

graph.

The subsidized housing market described in Example 4.3.1 does not satisfy the Mixité Existence

Condition because τ1(1) = {h2} and h2 ∈ τ−1(1). That is to say H1
a ∩H2

a 6=∅.
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4.6.2 Analysis of Fairness

We can ensure the existence of at least one fair for the same type assignment.

Proposition 4.6.2. There always exist at least one fair for the same type assignment.

Proof. Randomly, we can choose a matching θ between institutions and apartments such that no

apartment remains unassigned. Then, as in a School Choice problem, we run the following Deferred

Acceptance algorithm:

For each household h, consider Ah = {a ∈ A : θ−1(a) ∈ τ(h)}.

Step 1. Each household demands her most preferred apartment in Ah. Among the households that

demand each apartment a, the pairs (θ−1(a),a) tentatively accept the highest priority household under

�θ−1(a)
a . The pair rejects the other households.

Step t. Each household that was rejected in the previous step demands her most preferred apartment in

Ah that has not rejected her. Among the households that demand each apartment a and the households

tentatively accepted in the previous step, the pairs (θ−1(a),a) tentatively accept the highest priority

household under �θ−1(a)
a . The pair rejects the other households.

The assignment produced by previous procedure in denote by µSDA. For some household h, suppose

the existence of a household h′ such that

ϕA(h′)PhϕA(h) and ϕI(h′) ∈ τ(h).

By construction of the algorithm, the households h and h′ demand the apartment ϕA(h′) in some steps

t, t ′ ∈ N. Without loss of generality, we assume that t < t ′. Consequently, the institution θ−1(a)

assigns the apartment a to the highest household under �θ−1(a)
a . Thus, we conclude that

h′ �θ−1

a h.

Therefore, µSDA is a fair for the same type assignment.

The existence of interrupters induces loss in fairness.

Proposition 4.6.3. If there are not interrupters, the µNDAI is fair.
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Proof. We proceed by contradiction. Consider the existence of a blocking pair triad (h,a, i) such that

1. aPhϕNDA
A (h),

2. a%i
A b, form some b ∈ θNDA(i),

3. iπa(θ
NDA)−1(a), or i = (θNDA)−1(a),

4. h�i
a ∅, or h�i

a ϕ−1(a, i).

Case I. If a = b, we have that a ∈ θ(i). By construction of the NDAI, we know that

(ϕt(a, i))−1 = max
�i

a

H it
a

for all t ∈ {1, . . . , tlast}. Moreover, the apartment a is acceptable for household h and i∈ τ(h), so there

exists step t∗ such that h ∈ H it∗
a . Since ϕ(h) 6= (i,a), we conclude that

ϕ
−1(a, i)�i

a h.

Since there is no Type 1 interrupters, previous paragraph induces a contradiction because h �i
a

ϕ−1(a, i).

Case II. If a 6= b, since aPh∅ and i ∈ τ(h), there exists step t∗ such that

h ∈ H it∗
a and a ∈ At∗

i .

Moreover, a ∈ θ( j), for some institution j 6= i, because a /∈ θ(i). By construction of the NDAI

algorithm, in some step t ′ ≥ t∗ we have that

a ∈Chi(At ′
i ,�i

A)∩Ch j(A j,� j
A).

This implies that

jπai,

which is a contradiction because we assume that iπaθ−1(a) = j and there are not type 2 interrupters.

In any case the contradiction arises because we assume the existence of a blocking triad. Therefore,

the assignment µNDAI is fair.

Conversely statement is not always true, that is to say, there are interrupters even if the µNDAI is fair.
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Example 4.6.5. Let H = {h1,h2}, I = {1,2} and A = {a1,a2}. Households preferences are

P =


Ph1 Ph2

a1 a1

a2 a2

 .

The type function is described by τ−1(1) = {h1,h2} and τ−1(2) = {h2}. The institutions quotas are

q1 = q2 = 1, and priorities institutions are

�1=


�1

A �1
a1
�1

a2

a2 h1 h2

a1 h2 h1

 and �2=


�2

A �2
a1
�2

a2

a2 h2 h2

a1

 .

Finally, we assume the following apartments priorities πa1 = πa2 : 1,2.

Running the NDAI algorithm, in first step of the NDA phase we have that

H11
a1

= {h1,h2},H21
a1

= {h2}, and H11
a2

= H21
a2

=∅.

Since 1πa12, we tentatively get the triad

(h1,a1,1).

Consequently, household h2 is rejected from apartment a1.

At second step, households that demand an apartment, according to its type, are

H12
a1

= {h1},H22
a1

=∅, and H12
a2

= H21
a2

= {h2}.

Since a2 �1
A a1, household h1 is rejected. The tentatively triad is

(h2,a2,1).

At step 3, after eliciting households demand, we have that

H13
a1

= H23
a1

=∅,H13
a2

= {h1,h2} and H23
a2

= {h2}.
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Since 1πa22 and h2 �1
a2

h1, the final assignment in the first NDA stage is

µNDA
1 =


h1 h2

∅ a2

∅ 1

 .

Previous assignment does not satisfy the mixité condition. Moreover, institution 2 can assign apart-

ment a2 to household h2. Therefore, (h2,a2,1) is a type 2 interrupter triad. Consequently, we actualize

institutions priorities

�21
A =�20

A \a2,�11
A =�10

A .

Running a second round of the NDA phase with priorities �1= (�11,�21), the final assignment is

µNDA2 =


h1 h2

a1 a2

1 2

= µNDAI.

Also, note that µNDAI is fair and satisfies the mixité condition, even in the presence of type 2 inter-

rupters.

4.7 Concluding Remarks

We model the subsidized housing problem in Paris as a three sided market. Specifically, we assume

that institutions have priorities over the total pool of subsidized apartments, and apartments have pri-

orities over the set of institutions. However, both assumptions are not formalized in the real problem

and can be not necessary. We would like to investigate if a fair for the same type assignment that

respects mixité sociale exists in a simpler model that do not consider these priorities.
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