

MAESTRÍA EN ECONOMÍA

TRABAJO DE INVESTIGACIÓN PARA OBTENER EL GRADO DE MAESTRO EN ECONOMÍA

VALORACIÓN DE LOS ATRIBUTOS DE LA PLAYA TURÍSTICA: EL CASO DE ACAPULCO

KARLA CUILTY ESQUIVEL

PROMOCIÓN 1998-2000

ASESOR:

ANTONIO YÚNEZ NAUDE

ABRIL DE 2001

PÁGINA DE AGRADECIMIENTOS

A Dios

A mis padres por su amor y apoyo incondicional en los momentos difíciles

A Iván Arias Gallegos por el amor y la felicidad que me regala diariamente

A mis asesores Antonio Yunéz y Cuauhtémoc León por el tiempo invertido en este trabajo

A mis maestros

A toda mi familia, especialmente a mi tío Rodolfo, por el apoyo y cariño

A mis amigos y compañeros

RESUMEN

En este trabajo aplico una de las varias opciones del método de valuación de precios hedónicos, y tiene el propósito de encontrar métodos adecuados para poder estructurar objetivamente las tarifas de derecho de uso en la Zona Federal Marítimo Terrestre.

El trabajo se divide en dos secciones. La primera contiene un análisis teórico, en la que se adapta el método de precios hedónicos, para que la valuación de la playa contenga una base teórica rigurosa. En la segunda parte se discute la función de precios hedónicos usada para lograr obtener el valor de la playa mediante un modelo econométrico. Esta parte del trabajo valúa la playa turistica del Puerto de Acapulco mediante dos regresiones, una lineal y la otra semilogarítmica. Según el tipo de regresión que se use, estimo dos tipos de valores de la playa. La regresión lineal muestra que el valor de la playa en Acapulco es de 210.47 pesos por habitación, mientras que la semilogarítmica da un incremento del 23 por ciento al precio del cuarto, si éste tiene acceso directo a la playa. Un resultado adicional del estudio econométrico es que la forma de la función de precios hedónicos más adecuada para estimar el valor de la playa de Acapulco es la de tipo semilogarítmico.

INTRODUCCIÓN:

En los últimos años se le ha dado una mayor importancia a la conservación de la naturaleza como un medio de mejorar y preservar la vida de las generaciones presentes y futuras. Siendo la economía "el estudio de cómo la sociedad distribuye sus recursos escasos entre las relativamente ilimitadas necesidades de los miembros de la sociedad" y observando que la naturaleza está compuesta por una serie de recursos limitados que sirven al ser humano como medios de subsistencia (frutas y verduras) o de lujo (pieles de animales), la economía debe entonces tomar parte en la discusión de la conservación o no del medio ambiente.

El alterar de manera significativa el entorno ambiental afecta, generalmente en el largo plazo, a los seres humanos. Así que tenemos un dilema entre el uso o no uso de la naturaleza para el desarrollo del ser humano. Dicho dilema podría ser resuelto mediante una adecuada valuación del uso y del no uso de los recursos naturales.

La valuación económica de estos recursos nos conducirá a entender su importancia, sobre todo para quienes se encargan de implantar políticas de desarrollo, ya que con esta valuación tomamos en cuenta el "costo de oportunidad" de la naturaleza.

El presente trabajo pretende encontrar el valor de un tipo de uso, el turístico, a una clase de entorno ambiental, la playa. Es decir, valuar económicamente un recurso natural.

La idea del trabajo surge por la falta de criterios objetivos para elaborar una estructura tarifaría adecuada, donde se integre el valor que le da el turista a la playa, basándose en la disponibilidad a pagar por parte de los visitantes, y el ingreso extra obtenido por el hotel al brindar este servicio.

En otras palabras, el estudio pretende mostrar una forma objetiva de elaborar tarifas en las superficies turísticas de la Zona Federal Marítimo Terrestre de México.

¹ Holahan, William "Microeconomía" México, Iberoamérica, 1983, pp. 17

La valuación de los atributos naturales (vista, arena, etcétera) es cuantificada monetariamente para la playa de Acapulco, mediante la obtención del valor monetario adicional que el acceso directo a la playa da al precio de la habitación de un hotel.

Acapulco fue elegido debido a la cantidad de hoteles concentrados en este puerto, además de la diversidad de atributos existente dentro de los hoteles.

Se considera que la investigación puede ser la base para elaborar estudios aplicables a otras zonas turísticas costeras, así como para realizar investigaciones más detallados que den como resultado una estructura adecuada de cobro de impuestos a los usuarios de tales zonas, o por lo menos que los usuarios conozcan el valor real de la playa.

Para formalizar el análisis utilicé el método de precios hedónicos o hedonistas, ya que el cuarto del hotel puede analizarse como un bien compuesto, es decir, una mercancía cuyo precio final se forma por todos los servicios prestados por ella al consumidor.

Los métodos alternativos que podría haber usado son el de Costo de Transporte o el de Valuación Contingente. No usé el método de Valuación Contingente porque este procedimiento tiene el inconveniente de basarse en el levantamiento de encuestas a los turistas, lo cual tendería a sobrestimar el valor o precio de la playa debido a que el turista no tiene realmente que efectuar el desembolso monetario. Tampoco usé el método de Costo de Transporte ya que no incluye el valor que le da el hotel a la playa. Incluir este aspecto es de importancia, por que la playa es, para los hoteleros un insumo de su producción y son ellos quienes pagan las tarifas de uso. En contraste, con el método de precios hedónicos se estima el valor que le da el turista a todos los servicios que presta la zona o ciudad (restaurantes, bares, zonas arqueológicas, etcétera) junto con la aproximación del valor de la playa para el hotel.

Para el estudio empírico obtuve precios y características de 99 hoteles, 34 de los cuales tienen acceso directo a la playa. Debido a que especifiqué el valor de la habitación del hotel a partir de los servicios que presta, fue posible estimar cuales son los servicios que ofrecen los hoteles que tienden a aumentar el precio del cuarto.

Inicio el trabajo con el apartado "Antecedentes", en donde discuto la motivación para elaborar la investigación. En la sección "Métodos de Valuación" detallo los principales métodos para valuar y explico las razones que me llevaron a utilizar el modelo de precios hedonistas. En la sección "Modelo Teórico" presento el análisis teórico del consumidor para valuar la playa como un atributo del hotel. En la sección "Teoría de Precios Hedónicos" modelo el método de precios hedónicos para los hoteles y en que le precede, "Estimación Del Precio Implícito Marginal de la Playa", expongo la forma econométrica propuesta en el modelo. En las secciones "Análisis Empírico" y "Análisis Econométrico" llevo a cabo el estudio para estimar el valor de la playa de Acapulco. Finalizo el trabajo con una sección de conclusiones.

I. ANTECEDENTES

La playa y la Zona Federal Marítimo Terrestre (ZFMT, en adelante), por ser considerados bienes públicos, no tienen un precio de mercado. Sin embargo, la ZFMT tiene un sistema de permisos especiales de uso, con los cuales el área puede ser ocupada en tres diferentes usos:

- 1. <u>Protección y ornato</u>: es el uso que se da en las superficies que mantengan un estado natural del área concesionada, no realizando construcción alguna ni actividades lucrativas. Pueden existir obras de ingeniería civil, pero sin cimentación, que estén destinadas al embellecimiento del lugar o esparcimiento.
- 2. Agricultura, ganadería, acuacultura y pesca: área dedicada a estas actividades.
- 3. <u>General</u>: el que se dé en aquellas superficies ocupadas en las cuales se hayan realizado construcciones con cimentación o se lleven a cabo actividades con fines de lucro, excepto aquellas construcciones realizadas para protección ante fenómenos naturales².

Cada uso tiene una estructura tarifaría diferente presentada en la siguiente tabla:

Cuadro 1

Tarifas y Zonificación de la Zona Federal Marítimo Terrestre

ZONAS	USOS			
	Protección y orna (\$/m²)	to A gricultura, ganaderia, pes acuacultura (\$)m	cay General (\$/m²)	
ZONAI	0.21	0.072	0.66	
ZONAII	0.44	0.072	1.35	
ZONAIII	0.92	0.072	2.74	
ZONAIV	1.40	0.072	4.10	
ZONAV	1.88	0.072	5.50	
ZONAVI	2.87	0.072	8.26	
ZONA VII	3.84	0.072	11.01	
ZONA VIII	7.21	0.072	20.68	
ZONAIX	9.63	0.072	27.60	
ZONAX	19.29	0.072	55.21	

Fuente: Ley Federal de Derechos, 2000

² Gutiérrez-Villaseñor, Carlos, Quijano-Poumian, Martín, León D., Cuauhtémoc "Usuarios ocultos de la costa: Diagnóstico y Tendencia a través de las concesiones de la Zona –Federal" Resumen presentado en conferencia, Huatulco, 2000.

La tabla anterior presenta las diez zonas contempladas en la Ley Federal de Derechos, 2000. Estas zonas están compuestas por los siguientes municipios:

1) **ZONA I**:

Campeche: Calkiní, Escárcega, Hecelchakán, Palizada y Tenabo.

<u>Chiapas:</u> Acapetahua, Arriaga, Huixtla, Mapastepec, Mazatán, Pijijiapan Suchiate y Villa Comaltitlán.

Guerrero: Cuajinicuilapa, Coyuca de Benítez, Florencio Villareal y San Marcos.

Oaxaca: San Dionisio del Mar, San Francisco del Mar, San Francisco Ixhuatán, San Mateo del Mar, San Miguel del Puerto, San Pedro Huamelula, San Pedro Huilotepec, San Pedro Tapanatepec, San Pedro Tututepec, Santa María Huazolotitlán, Santa Ma. Tonameca, Santa Ma. Sadani, Santiago Astata, Santiago Jamiltepec, Santiago Pinotepa Nacional, Santiago Tapextla, Santo Domingo Armenta, Santos Reyes Nopala, Santo Domingo Tehuantepec y Santo Domingo Zanatepec.

<u>Sinaloa</u>: Angostura, Elota, Escuinapa de Hidalgo, Guasave, Rosario y San Ignacio. <u>Sonora:</u> Bacum, Benito Juárez. Cajeme, Empalme, Etchojoa, Pitiquito, San Ignacio Río Muerto y San Luis Río Colorado.

Tabasco: Cárdenas, Centla y Paraíso.

2) **ZONA II**:

Guerrero: Azoyu, Copala, Benito Juárez y Tecpan de Galeana.

Jalisco: Cabo Corrientes y Tomatlán.

Michoacán: Aquila.

Nayarit: Santiago Ixcuintla.

Oaxaca: Jachitán de Zaragoza y Santa Ma. Colotepec.

Q. Roo.: Felipe Carrillo Puerto.

Sinaloa: Culiuacán.

Tamaulipas: Aldama, Matamoros, San Fernando y Soto la Marina.

Veracruz: Tamalín, Tantima y Pánuco.

3) ZONA III:

Campeche: Champotón.

Colima: Armería y Tecomán.

Chiapas: Tapachula y Tonalá.

Guerrero: Petatlán y La Unión.

Jalisco: La Huerta.

Michoacán: Coahuayana y Lázaro Cárdenas.

Oaxaca: Salina Cruz y San Pedro Pochutla.

Sinaloa: Ahome.

Sonora: Caborca, Hermosillo y Huatabampo.

Tamaulipas: Altamira, Ciudad Madero.

Veracruz: Martínez de la Torre, Medellín de Bravo y Pueblo Viejo.

Yucatán: Hunacma, Sinanche, Yabain, Dzidzantun, Dzilam de Bravo y Tizimin.

4) ZONA IV:

Campeche: El Carmen.

Navarit: Tecuala.

Q. Roo: Lázaro Cardenas y Othón P. Blanco.

Veracruz: Angel R. Cabada, La Antigua, Lerdo de Tejada, Mecayapan, Ozuluama,

Pajapan, Papantla, Tatahuicapan, y Tampico Alto.

Yucatán: Telchac Puerto, Río Lagartos y San Felipe.

5) **ZONA V**:

Baja California: Mexicali.

Campeche: Campeche.

Nayarit: San Blas.

Sinaloa: Novolato

<u>Veracruz:</u> Vega de Alatorre, Tamiahua, Nautla, Alto Lucero, Cazones de Herrera,

San Andrés Tuxtia, Catemaco, Actopan,. Ursulo Galván, Agua Duice y Tuxpan.

Yucatán: Celestum e Ixil.

6) ZONA VI:

Baja California: Ensenada.

Baja California Sur: Comondú.

Veracruz: Alvarado y Tecolutla.

Yucatán: Progreso.

7) ZONA VII:

Baja California: Tijuana.

Baja California Sur: Mulege.

Jalisco: Cihuatlán.

Nayarit: Compostela.

Q. Roo: Isla Mujeres

Sonora: Guaymas.

Veracruz: Coatzacoalcos.

8) ZONA VIII:

Baja California: Playas de Rosarito.

Baja California Sur: Loreto.

Colima: Manzanillo.

Oaxaca: San Pedro Mistepec.

Navarit: Bahía de Banderas.

Q. Roo: Cozumel.

Sinaloa: Mazatlán.

Sonora: Puerto Peñasco.

Veracruz: Boca del Río y Veracruz.

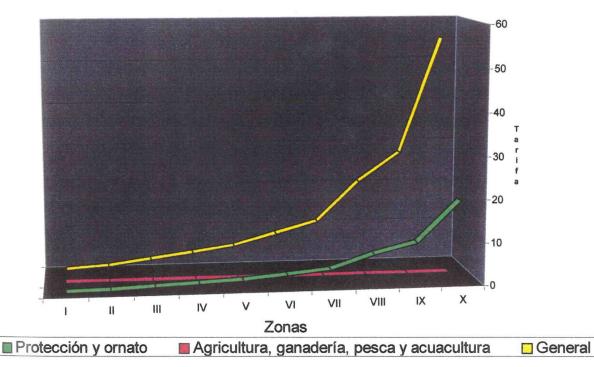
9) **ZONA IX**:

Baja California Sur: La Paz.

Guerrero: José Azueta.

Oaxaca: Sta. Ma. Huatulco.

Q. Roo: Solidaridad.


10) **ZONA** X:

<u>Baja California Sur</u>: Los Cabos. Guerrero: Acapulco de Juárez. <u>Jalisco</u>: Puerto Vallarta. Q. Roo: Benito Juárez.

El primer (protección y ornato) y el tercer (general) uso muestran una tarifa inicial que se incrementa exponencialmente conforme subimos de zona (ver gráfica 1). No es claro a que obedece este incremento exponencial de la tarifa.

Gráfica 1.

Como se puede observar gráficamente, en el segundo uso (agricultura, ganadería, pesca y acuacultura) se tiene la misma tarifa independientemente de la zona en donde se realice esta actividad. Nótese que para este uso independientemente de la infraestructura instalada (aeropuertos, carreteras, etcétera) se les cobra la misma tarifa y carece de un criterio de progresividad en la tarifa actual.

Podría pensarse que la zonificación persigue algún criterio de selección. Sin embargo, existe una alta heterogeneidad geográfica, social, económica o sectorial al interior de cada zona.

Por todo lo anterior, es necesario buscar formas de zonificar la ZMFT con criterios objetivos y elaborar tarifas adecuadas a la capacidad de pago de los usuarios o al valor de mercado del lugar.

El principal reto en esté aspecto es la heterogeneidad de usos y usuarios.

Si alguien está dispuesto a pagar dicha tarifa por usar la playa y la ZFMT, para ese individuo ésta extensión territorial tiene un valor igual o mayor a la tarifa, por esto se le impone un "precio" a quien desea utilizarla. La pregunta ahora es ¿cuál es ese valor?

En el presente trabajo pretendo hallar el valor de la playa para el uso general. Aunque sabemos que no es el único uso dado a la playa y ZFMT, este uso representa el 54% de la superficie utilizable en la ZFMT. Por lo tanto, el tener una aproximación del valor que le dan a la playa los turistas y hoteleros, conducirá a la elaboración de una tarifa más adecuada en las playas turísticas, a comparación con la actual y tomará en cuenta la disposición a pagar de los hoteleros. Además, dicho uso transforma rápidamente la naturaleza, ya que al poner cimientos altera las condiciones naturales, por lo que es necesario adecuar la tarifa para que estas alteraciones puedan generar tecnología alternativa de preservación.

El uso general está compuesto por diferentes actividades, la hotelería entre ellas. En este trabajo se valuará el acceso a la playa en un complejo turístico, específicamente el de Acapulco.

La hotelería costera tiene como un insumo la playa, la ZFMT y sus atributos naturales; porque sin ellos el precio de su bien tiende a ser inferior. Es un insumo a la producción, porque dentro de la función producción tenemos la tierra como uno de los insumos. La playa es un pedazo de tierra, el cual produce goce y recreación para los consumidores de las habitaciones de los hoteles. Por lo tanto es un insumo de la producción hotelera.

En el presente trabajo se pretende obtener el valor de la ZFMT para el uso general, a través de la obtención del valor que le dan los turistas, lo cual provoca que los hoteleros se encuentren, posiblemente, dispuestos a pagar una tarifa mayor a la establecida. Es decir, los turistas valoran la playa y están dispuestos a pagar por ella, luego entonces los hoteleros tienen en la playa un insumo para su

producción, por el cual también podrían estar dispuestos a pagar una cierta cantidad según el valor que le den los turistas.

Si la playa y la ZFMT no fueran un bien para los turistas y los hoteleros, esta extensión no tendría valor para ninguno y como consecuencia no pagarían precio alguno por gozar de ella.

Este trabajo se realizará usando el método de precios hedónicos.

El modelo de precios hedónicos evalúa cual es el aporte de un "atributo" en el precio o calidad del bien final. Esta valuación depende de la importancia dada por el consumidor a ese atributo. En otras palabras, el modelo de precios hedónicos busca encontrar el valor de cada uno de los "atributos" que conforman al bien final.

El bien final para este trabajo es la habitación del hotel, pero el precio de la habitación contiene una serie de servicios (atributos) que los consumidores aprecian y están dispuestos a pagar por ellos. Como ejemplo de estos servicios tenemos: el acceso directo a la playa, albercas, aire acondicionado, restaurantes, bares, televisión, entre otros. Estos servicios son procurados por el hotel y están incluidos en el precio del cuarto. Adicionalmente, la calidad y servicio de los hoteles difieren. Entonces podemos afirmar que el cuarto del hotel es un bien diferenciado para el consumidor, supuesto necesario para formar la función de precios hedónicos.

³ Atributo: cada una de las cualidades de un ser.

II. MÉTODOS DE VALUACIÓN⁴

En la actualidad, y en general, existen dos tipos de métodos de valuación: directos e indirectos.

• El método de valuación contingente.- es el más empleado dentro de la valuación directa y pretende valuar los bienes ambientales por la cantidad de dinero que cualquier persona este dispuesta a pagar por ellos. Dicho método valúa el bien ambiental preguntando a las personas ¿cuánto estarían dispuestos a pagar por los bienes ambientales?.

Los métodos más ocupados para valuar indirectamente⁵ los bienes ambientales son:

- Costos de transportación.- este método busca encontrar el valor de los atributos en una cierta área, por medio de saber cuanto están dispuestos a gastar los individuos por conocer los atributos de esa zona.
- <u>Precios hedónicos.</u>- se basa en los valores o precios de los bienes adquiridos en el mercado y que incluye al precio por los bienes ambientales que rodean a ese bien.

Los tres métodos tienen ventajas y desventajas. Sin embargo no es conveniente, para el presente análisis, aplicar el método de "Costo de Transporte", ya que con él no se calcula la importancia de cada uno de los atributos del área a visitar, es decir con el método se obtiene el valor total del área sin especificar el peso de cada atributo, y para el presente trabajo requerimos conocer uno de ellos: el valor de la playa para los turistas.

El método de "Valuación Contingente" tampoco es empleado, porque tiende a caer en dos tipos de sesgos. El primero es estratégico: los individuos perciben el experimento y pueden no dar sus preferencias reales. El segundo tipo de sesgo es

⁴ Definiciones obtenidas de los siguientes fuentes:

Bowbrick. Peter "A Critique of Economic Man Theories of Quality" www.prima.net. /bowbrick/Critique.htm Folmes, H. & Van Ierland E. "Valuation Methods and Policy Making in Environmental Economics" Studies in Environmental Science 36, Elsevier, septiembre 1987

Freeman, A. Myrick "The Measurement of Environmental and Resource Values" Resources for the future, EU, 1993

www.ecosystemvaluation.org/hedonic-pricing.htm

⁵ Los métodos son indirectos ya que los individuos no dan la valuación de forma explícita, sino buscamos bienes donde los atributos ambientales sean determinantes de su precio y entonces valuar estos atributos.

informático: los individuos cambian su valuación según el enfoque adoptado para obtener los datos (por ejemplo, sí a un individuo se le realiza un cuestionario su valuación será distinta a sí se le hace un juego de subasta).

El método de precios hedónicos tiene como desventaja el supuesto de que no hay distorsiones en el mercado del bien indirecto, porque la estimación de la función de precios hedónicos debe contener todos los atributos que conforman el precio. En la práctica es difícil saber todos los servicios que presta un bien para poderlos integrar en una regresión. Además de la existencia de atributos generadores de utilidad para los individuos, pero difíciles de contabilizar.

No obstante, en este trabajo, usaré el método de precios hedónicos porque depende de precios observados en el mercado, haciéndolo un método más objetivo que el de valuación contingente. Asimismo el hecho de permitir medir cada uno de los atributos que conforma el bien final, lo hace un método adecuado para este estudio, porque sólo deseamos cuantificar el valor de la playa.

En el presente trabajo no se utiliza el método convencional de precios hedónicos, el cual se basa en el precio de las propiedades. Lo que hago es una adaptación usando el precio de la habitación de distintos los hoteles como el bien de mercado que nos aproximará a la valuación del bien no comerciable (la playa). Una justificación para este cambio, es que los turistas son los que valoran la playa y muestran lo que están dispuestos a pagar por ella mediante lo que pagan por el cuarto del hotel.

Dentro del método de precios hedónicos existen muchas aplicaciones, basadas principalmente en el artículo de Rosen, 1974. Dicho artículo ha tenido arreglos para aplicarlo en modelos de valuación residencial, ambiental, farmacéutica, agrícola e industrial. En todos estos casos hay un común denominador: la existencia de un bien final que toma su precio de muchos bienes intermedios que tienen un valor para el consumidor, pero cuyo valor no es mostrado explícitamente en el precio del bien final.

Al mismo tiempo la gran disponibilidad de datos descriptivos y numéricos ayudan a que el modelo de precios hedónicos sea utilizado y adaptado en estudios de diferente índole.

III. MODELO TEORICO⁶

Supongamos que la función de utilidad de los turistas es una Cobb-Douglas, definida de la siguiente manera:

$$U(c, b)=c^{\alpha}b^{\beta} (1)$$

c: representa todos los atributos de la zona turística (discotecas, ruinas, etc.) excepto los atributos del hotel

b: representa los atributos del hotel, considerando a la playa como uno de ellos.

Suponemos lo usual, que $U_c>0$ y $U_b>0$, es decir, a mayor consumo de ambos tipos de bienes mayor será la utilidad que obtenga el consumidor; y que $U_{cc}<=0$ y $U_{bb}<=0$.

La función de utilidad está sujeta a la siguiente restricción presupuestal:

$$Y-c-P=0$$
 (2)

Donde Y representa el ingreso que el individuo empleará en el viaje a la zona turística; c son los atributos de la zona turística y su precio (ya que suponemos que tal precio es igual a 1); P es el precio del cuarto del hotel, incluyendo a los atributos del hotel, junto con los de la playa.

El problema de maximización será, pues:

Maximizar U(c, b)

tal que Y=c+P

y, usando el Lagranjeano:

$$L = U(c,b) - \lambda (Y - c - P)$$

las condiciones de primer orden son:

$$\partial \mathbf{L} = U_C + \lambda = 0$$

 ∂C

 $U_c = -\lambda$

⁶ El presente capítulo es una adaptación de los siguientes artículos:

Folmes, H. & Van Ierland E. "Valuation Methods and Policy Making in Environmental Economics" Elsevier, Studies in Environmental Science 36, septiembre 1987

Jones, Larry E. "The Characteristics Model, Hedonic Prices and the Clientele Effect" Journal of Political Economy (1988) vol. 96 no. 3 pp. 551-567

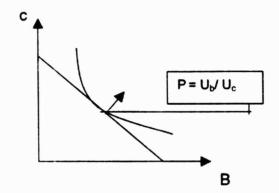
Polinsky, Mitchell A. & Shavell, Steven "Amenities and Property Values in a Model of an Urban Area" Journal of Public Economics (1976) pp. 119-129

$$\frac{\partial L}{\partial b} = U_b - \lambda P = 0$$

$$U_b = \lambda P$$

La solución interior es:

$$U_C = \underbrace{U_b}_{P}$$


$$P = \frac{U_b}{U_C}$$
 (3)

Aplicando la función de utilidad (1) tendríamos:

$$P = \frac{\beta c^{\alpha} b^{\beta - 1}}{\alpha c^{\alpha - 1} b^{\beta}} = \frac{\beta c}{\alpha b}$$
 (4)

Graficando esta maximización tenemos:

Gráfica 2.

Este resultado es frecuentemente encontrado y utilizado en estudios de valuación ambiental.

El resultado indica que un turista "racional" pagará por el cuarto de hotel, la tasa marginal de sustitución entre los atributos del hotel y de la zona turística. Es decir, lo que el turista paga por el cuarto del hotel se compone de dos partes:

- Todos los servicios que el turista goza al hospedarse en un hotel.
- Todos los atractivos que se encuentran en la zona turística (en nuestro caso, los que se encuentran en Acapulco)

En este modelo la cantidad de atributos que ofrece el hotel no afecta el precio de la habitación del hotel. El modelo cambia si tomamos a P como el

gradiente del valor del cuarto (el cual depende de los atributos del hotel) y si permitimos al individuo alojarse en el hotel que contenga sus atributos preferidos. Con lo anterior se le concede al turista afectar indirectamente el precio de la habitación del hotel mediante su demanda. Con la modificación, P depende de los atributos del hotel, por lo que se reescribe a esta variable como P_b. Debido a que mi objetivo se circunscribe a obtener el valor de la playa, supondré que el único atributo que le interesa al turista es que el cuarto del hotel tenga acceso directo a la playa.

Al incluir P_b el problema de maximización será el siguiente.

Maximizar U(c, b)

Tal que: Y=c+Pb

Nuevamente ocupamos un Lagranjeano y obtenemos:

$$L = U(c,b) - \lambda (Y - c - P_b)$$

Las condiciones de primer orden son:

$$\frac{\partial L}{\partial c} = U_c + \lambda = 0$$

$$U_C = -\lambda$$

$$\frac{\partial L}{\partial b} = U_b + \lambda \frac{\partial P_b}{\partial b} = 0$$

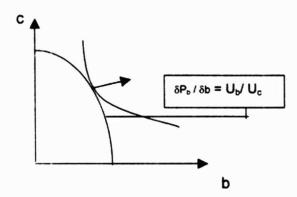
$$U_b = \lambda \frac{\partial P_b}{\partial b}$$

La solución interior es:

$$\frac{\partial P}{\partial b} = \frac{U_b}{U_a}$$
 (5)

Aplicando, nuevamente, la función de utilidad tipo Cobb-Douglas tenemos:

$$\frac{\partial P}{\partial b} = \frac{\beta c^{\alpha} b^{\beta-1}}{\alpha c^{\alpha-1} b^{\beta}} = \frac{\beta c}{\alpha b}$$
 (6)


En esta ecuación, la derivada del precio de la habitación del hotel respecto a la playa nos muestra que los gustos y preferencias de los turistas determinan el precio de la habitación del hotel. En otras palabras, entre más aprecie un turista la

playa como atributo del hotel, el precio de la habitación del hotel que contenga dicho atributo tenderá a ser mayor.

El signo de la ecuación (6) es positivo, debido a que los parámetros β y α se definen como parámetros positivos en la función Cobb –Douglas inicial, en lo que respecta a los parámetros c y b, estos nos indican el nivel de consumo de los bienes de la zona turística y la playa, su valor mínimo es cero, pero no puede haber consumo negativo de estos bienes.

Graficando la optimización tenemos:

Gráfica 3.

Como se puede ver en la gráfica, y a diferencia del primer modelo, la restricción presupuestal es una línea cóncava, porque la cantidad de playa (b) determina a la restricción presupuestal ya que un cambio en este atributo altera el precio de la habitación del hotel y consecuentemente la restricción presupuestal. Mediante esta nueva restricción presupuestal muestro que ahora los turistas afectan indirectamente el precio del cuarto que tenga acceso directo a la playa, lo cual significa la apreciación del atributo. En otros términos, los turistas vuelven más o menos valioso el acceso directo a la playa.

De las ecuaciones previas se obtiene que:

$$c = \frac{\alpha b \ \delta P_b}{\beta \ \delta b}$$

$$b = (Y - P_b) \left[\frac{\beta}{\alpha \frac{\partial P_b}{\partial b}} \right]$$

La cantidad de playa que se consumirá esta directamente relacionada con la preferencia que el turista le dé a este atributo (β).

El precio de la habitación del hotel es una variable dependiente del atributo: la playa. Si el atributo es más agradable para el turista, el segundo deseará obtener un acceso directo al atributo y estará dispuesto a pagar un precio mayor por el cuarto que tenga esta característica.

Así un hotel con este atributo puede cobrar un precio superior que uno que no lo contenga (observe la ecuación 6), y la utilidad de los individuos tenderá a ser mayor si gasta mayor parte de su ingreso en el cuarto del hotel, que por todos los demás bienes en la zona turística (c).

El valor de mercado de la playa es justamente la diferencia entre el precio del hotel que contenga este atributo y de aquel que no lo contenga. El individuo, al afectar con sus gustos y preferencias el precio de la habitación del hotel, muestra indirectamente cuanto le agrada el acceso directo a la playa y la valúa con un precio observable en el mercado.

El consumo de todos los demás bienes de la zona turística está inversamente relacionado con el nivel de apreciación que le da el turista a la playa.

Haré ahora un análisis para distinguir a los distintos tipos de consumidores. Primeramente supongamos que todos los turistas tienen el mismo nivel de utilidad, independientemente de los atributos que contenga el hotel. Este supuesto lo requiero para mostrar que los individuos con altos y bajos ingresos tienden a ubicarse en hoteles diferentes.

Para este análisis teórico complementario, requerimos una función de utilidad indirecta. La función de utilidad indirecta es útil porque nos muestra la utilidad del turista relacionándola con los precios de los bienes consumidos y con su nivel de ingreso, es decir, mide la utilidad que obtiene el individuo en base a las variables observables del mercado.

De la anterior maximización obtenemos una función de utilidad indirecta de la siguiente forma:

$$V *= (Y - P_b)^{\beta+\alpha} \left[\frac{\beta}{\alpha \frac{\partial P_b}{\partial b}} \right]^{\beta-3}$$
 (7)

V* es el valor de la utilidad que pueden obtener todos los turistas. Este nivel de utilidad se adquiere independientemente del hotel en el que se hospeden; es decir, los individuos obtienen la misma utilidad porque maximizan, dados los precios y su ingreso, llegando al mismo nivel de utilidad.

Ejemplificando:

Supongamos que existen solamente dos hoteles, cuya diferencia estriba en que uno esta sobre la playa y otro detrás del primero.

Considerando este hecho, el hotel frente de la playa, llamémosle H_p, tiene un atributo más que el otro hotel, nombrémosle H, (este atributo extra es la playa). Por consiguiente, el hotel H_p tendría un precio más elevado que el H.

Es justamente esta diferencia en el precio lo que provoca que el nivel de utilidad tienda a ser el mismo, ya que el precio del hotel H lo hace más atractivo que el hotel H_p , mientras que el atributo conduce a que el hotel H_p sea más deseable.

Con esto generamos una regionalización de los hoteles, donde la diferencia de precios nos indica la cantidad de atributos que contienen.

Para demostrar la hipótesis anterior diferenciamos la ecuación (7) con respecto al atributo del hotel (la playa) y se obtiene explícitamente:

$$\frac{\partial V}{\partial b} = (Y - P_b)^{\beta + \alpha} \left\{ \begin{bmatrix} -(\beta + \alpha) \\ Y - P_b \end{bmatrix} \left(\frac{\beta}{\alpha \frac{\partial P_b}{\partial b}} \right)^{\beta - 3} \frac{\partial P_b}{\partial b} - (\beta - 3) \frac{\alpha \frac{\partial^2 P}{\partial b^2}}{\alpha^2 \left[\frac{\partial P}{\partial b} \right]^2} \frac{\beta}{\alpha \frac{\partial P_b}{\partial b}} \right\}$$
(8)

La derivada $(\frac{\partial V}{\partial b})$ puede ser positiva o negativa, dependiendo de cual de los dos términos indicados en ella sea mayor. Si el término 1 es el mayor al 2, entonces la derivada es negativa; si ocurre lo contrario la derivada será positiva.

Obsérvese que el término (1) de la ecuación muestra un efecto sustitución, de modo que estos valores moldean el cambio del consumo de los demás bienes, c, cuando alteramos la playa. Este término es siempre negativo, porque la derivada del precio con respecto a la playa es positiva y esta multiplicada por un signo negativo.

El segundo término (2) es positivo, porque la segunda derivada del precio con respecto a la playa es negativa y va multiplicada por un signo negativo, siempre y cuando $\beta>3$.

Finalmente mediante este análisis vemos que dependemos de las preferencias del individuo para saber cual de ambos efectos es el dominante.

Analizando con mayor cuidado los resultados de está ecuación nótese, nuevamente, que si el turista tiene una preferencia alta por la playa, su β es alta, entonces esté individuo demandará mayor cantidad de este atributo en el cuarto. Tenderá a elevar el valor de este atributo dentro del hotel y por lo mismo, estará dispuesto a pagar un precio más elevado por el cuarto del hotel. Mientras los turistas valúen en mayor cuantía los demás bienes existentes en la zona turística o quienes tengan un ingreso bajo, el primer término (1) de la ecuación será mayor.

Por lo explicado anteriormente, un hotel en la playa no aumenta la utilidad de aquellos turistas con una β baja (un gusto pequeño por la playa) por lo que preferirán hospedarse en hoteles sin acceso a la playa y con un precio reducido para gastar mayor parte de su ingreso en los demás bienes de la zona turística.

El ingreso es una variable decisiva, principalmente para el primer término. Así que las personas con un ingreso muy bajo, aun cuando aprecien bastante la playa, no se hospedarán en hoteles frente del mar. Simplemente la restricción presupuestal no les permite quedarse en este tipo de hoteles. Pero la diferencia entre el precio del hotel con y sin acceso a la playa es tal que los turistas con mayor o menor ingreso tienden a gozar del mismo nivel de utilidad.

Esto es fácilmente observable, los individuos con menor ingreso tienden a concentrarse fuera de los hoteles con mayor cantidad de atributos.

El punto concluyente de este análisis teórico es que existen dos efectos contrarios, un individuo tenderá a preferir hospedarse en un hotel con playa, si primeramente tiene un sistema de preferencias tal que le agrade más la playa que los demás bienes consumidos en la zona turística y su restricción presupuestal le permita pagar el cuarto.

Con este análisis teórico sustentamos que los hoteles frente a la playa suelen tener huéspedes con ingresos elevados o con un alto factor de preferencia hacia la playa sobre otros atributos.

IV. TEORÍA DE PRECIOS HEDÓNICOS

La teoría de precios hedónicos supone que los individuos valúan los bienes mediante la utilidad que generan las características del producto. Así podemos definir a los precios hedónicos como los precios que están dispuestos a pagar los consumidores o productores por cada característica que integra al bien final.

Poniéndolo en otros términos, supongamos un auto, el cual se compone de motor, carrocería, llantas, entre otros atributos, cada consumidor le da un valor a cada atributo, aunque no se vea explícitamente en el precio del auto.

En nuestro caso, tenemos diferentes hoteles que ofrecen cuartos a los turistas. Estos contienen atributos como restaurantes, bares, albercas, acceso a la playa, etcétera, que tienen un valor que esta implícitamente estimado en el precio de la habitación del hotel.

"Si el producto contiene suficientes modelos con distintas combinaciones de características, entonces será posible estimar la relación implícita que provee los precios de cualquier modelo como una función de cantidades que varia según las características. Esta relación es llamada función de precios hedónicos. La derivada parcial de esta función con respecto a una de las características nos da el precio implícito marginal."

Supongamos que un hotel puede tener de uno hasta n atributos. El turista pagará un precio implícito por la cantidad y calidad de cada uno de los atributos ofrecidos por el hotel. Teniendo esto en cuenta se puede realizar una función de precios hedónicos para cada hotel:

$$P_{ci} = f(Q_{ia}, Q_{ib}, \dots, Q_{in}) \qquad (9)$$

Donde el subíndice i, representa el hotel del cual estamos obteniendo el precio hedónico de sus características. Además los Q_{ia}, Q_{ib}, ...,Q_{in}, representan las cantidades y calidades de cada atributos, estas cantidades pueden ser cero.

⁷ Freeman. A. Myrick, <u>The Measurement of environmental and resource values</u> Resources for the Future, 1993 pp.125

Si se diferencia esta función con respecto a la playa, el resultado es el precio implícito marginal de la playa. Haciendo este paso se obtiene:

$$\frac{\delta P_{ci}}{\delta b} = \frac{\delta f(Q_{ia}, Q_{ib}, \dots, Q_{in})}{\delta b}$$
 (10)

Sabemos de la ecuación (6), que la derivada del precio del cuarto con respecto a la playa es igual a las preferencias que los individuos tengan por la playa. Uniendo ambos resultados, obtenemos que el nivel de preferencias y las cantidades consumidas de la playa y los demás productos de la zona turística, es igual a la derivada de la función de precios hedónicos con respecto a la playa. En otras palabras, el resultado de la optimización se puede ver mediante el precio implícito marginal de la playa, obtenido mediante la función de precios hedónicos.

Mostrándolo con ecuaciones:

$$\frac{\partial P}{\partial b} = \frac{\beta c^{\alpha} b^{\beta-1}}{\alpha c^{\alpha-1} b^{\beta}} = \frac{\beta c}{\alpha b} = \frac{\partial P_{ci}}{\partial b} = \frac{\partial f(Q_{ia}, Q_{ib}, ..., Q_{im})}{\partial b}$$
(11)

La maximización del turista con respecto a la playa es igual al precio implícito marginal que obtenemos por medio de la función de precios hedónicos.

Concluyendo, se ha demostrado teóricamente que la función de precios hedónicos revela el punto donde optimizan los individuos con diferentes gustos y preferencias.

V. ESTIMACIÓN DEL PRECIO IMPLÍCITO MARGINAL DE LA PLAYA

Para este análisis tenemos supuestos adicionales a los requeridos para el análisis de maximización del individuo cuando afecta indirectamente el precio de la habitación del hotel.

Supongamos que la única diferencia entre los hoteles estriba en que tienen o carecen del acceso directo a la playa. Además supongamos que el mercado hotelero de Acapulco tiende a ser competencia perfecta. El último supuesto sirve para hacer que el costo marginal de la producción hotelera sea igual al precio del cuarto. No obstante existen precios diferenciados, los hoteles no son precio aceptantes⁸.

Por lo tanto existen dos costos marginales y dos precios de los cuartos, dependiendo si el hotel tiene acceso a la playa o no. Con ambos supuestos podemos utilizar una función semilogarítmica como la siguiente:

$$Ln P = Ln CMg = \varphi + \gamma p + \varepsilon$$
 (12)

Donde la variable dependiente es el precio o el costo marginal y la variable independiente es la calidad y cantidad de playa. El símbolo ϕ representa el incremento en el precio o costo marginal cuando alteramos alguna variable exógena al sistema (por ejemplo: cambios en los costos de transporte), el símbolo γ muestra el precio marginal de incrementar la calidad o cantidad de la playa, y finalmente, el término ϵ es el error que se comporta como ruido blanco.

En este momento, el estudio puede ampliarse si eliminamos algunos supuestos.

Hagamos que los hoteles tengan diferentes calidades y cantidades de atributos, no solamente la playa. Formemos una nueva variable, llamémosle A, esta variable es un vector con todos los atributos que van cambiando según el hotel.

Nuestra nueva regresión queda:

Ln P = Ln CMg =
$$\varphi + \gamma' A + \epsilon$$
 (13)

Con esta nueva regresión, el término γ' es un vector que determina el precio marginal de incrementar cualquiera de los atributos del hotel y nos indica como el precio del hotel tiende a elevarse mientras mayor sea la cantidad y calidad de los atributos en el hotel.

Debemos percatarnos que para realizar una regresión de tipo lineal requerimos que los bienes sean perfectamente separables, no obstante, esto puede no observarse en el caso de los cuartos del hotel. Estas habitaciones llevan todos los servicios incluidos y el hecho de que se ocupen o no, no altera el precio de la habitación del hotel.

Así que primeramente se requiere realizar una regresión de tipo lineal y después una de tipo no lineal para saber cual de las dos obtiene mejores resultados.

Además, posiblemente, requerimos una regresión de tipo no lineal porque el precio del hotel depende de la combinación de los atributos con los que cuente el hotel. Es decir, no es lo mismo un hotel que contenga playa y alberca a un hotel que contenga la playa o la alberca. La combinación de ambos atributos es lo que da un precio mayor al bien final, cuando esta combinación es lo que interesa al consumidor⁹. En el caso específico de la playa, el cuarto del hotel tiene una combinación de servicios (atributos) generando así su precio, independientemente de si el turista lo utiliza o no. Para este análisis de combinaciones es necesaria una regresión no lineal.

⁸ Precio-aceptante: las empresas que trabajan en la industria toman el precio vigente en el mercado, sin que ellas puedan alterarlo.

VI. ANÁLISIS EMPIRICO

Para obtener el valor de la playa de Acapulco, obtuve los datos siguientes:

- Precios de las habitaciones en distintos hoteles con y sin playa
- La cantidad de albercas en los hoteles
- La cantidad de restaurantes y bares, como una sola variable para evitar multicolinealidad
- El número de habitaciones del hotel
- Si tiene estacionamiento
- Si tiene lavandería
- Si tiene gimnasio
- Si tiene algún centro deportivo (cancha de tennis, squash, fútbol, etcétera)

Los datos fueron obtenidos vía Internet. Los precios de las habitaciones de los hoteles fueron tomados para el mismo periodo de tiempo (evitando comparar dos hoteles en diferentes temporadas). La temporada que se tomo en cuenta fue la baja, para evitar sobre valuación de la playa.

Además todos los precios de los hoteles fueron sin el cargo extra del IVA, ya que este impuesto podría sesgar el valor de la playa.

Los datos usados fueron de 99 hoteles, que no fueron elegidos de manera aleatoria debido a la falta de recursos para obtener una muestra estadísticamente representativa y, con esta base llevar a cabo una encuesta. Decidí simplemente construir la muestra con base en todos aquellos hoteles en los que pude encontrar sus precios y atributos por medio de Internet. Así hallé 99 hoteles de distintas categorías y estrellas que van desde Gran Turismo hasta una estrella. Treinta y cuatro hoteles de la muestra tienen el acceso a la playa como un atributo. La habitación que se tomó como base fue la doble, aunque algunos hoteles tienen una tarifa estándar para cuartos sencillos y dobles, y otros dan una tarifa igual para habitaciones dobles a cuádruples.

⁹ Jones, Larry E. "The Characteristicas Model, Hedonic Prices and the Clientele Effect" Journal of Political Economy (1988) vol. 96 no. 3 pp.551-567.

VII. ANÁLISIS ECONOMÉTRICO

Primeramente se realizo una regresión lineal con la siguiente forma:

PRECIO =
$$\beta_0$$
 + β_1 PLAYA + β_2 RESTAURANTES Y BARES + β_3 NÚMERO DE HABITACIONES + β_4 ESTACIONAMIENTO + β_5 ALBERCA + β_6 LAVANDERÍA + β_7 GIMNASIO + + β_8 CENTROS DEPORTIVOS + ϵ (14)

Teniendo en cuenta la posibilidad de que los atributos del hotel sean bienes no separables o combinables, se calculó una regresión semilogarítmica para estudiar si ésta funcionaba mejor que la lineal (el procedimiento es usado frecuentemente en estudios comparativos de funciones de precios hedónicos¹⁰).

Está regresión semilogarítmica tiene la siguiente forma:

```
LN (PRECIO) = \beta_0 + \beta_1 PLAYA + \beta_2 RESTAURANTES Y BARES +
+\beta_3 NÚMERO DE HABITACIONES + \beta_4 ESTACIONAMIENTO + \beta_5 ALBERCA +
+ \beta_6 LAVANDERÍA + \beta_7 GIMNASIO + \beta_8 CENTROS DEPORTIOS + \epsilon (15)
```

El análisis econométrico pudo haberse extendido a métodos semiparamétricos o no paramétricos. Sin embargo la reducida cantidad de datos no permitieron hacer análisis con estas opciones. También se pudo haber ocupado una transformación Box-Cox, pero en el estudio de Gencay (1996) se demuestra que dicha técnica parece no ser significativamente mejor a la de Mínimos Cuadrados Ordinarios.

Ambas regresiones se corrieron en el programa econométrico E-Views¹¹. Inicialmente con las dos regresiones propuestas se eliminaron las variables no significativas¹². También se realizaron pruebas de normalidad¹³, multicolinealidad y heterocedasticidad para ambas regresiones.

¹⁰ Ver Gencay, Ramazon & Yang, Xian "A forecast comparison of residential housing prices by parametric versus semiparametric conditional mean estimators" Economics Letters vol. 52 pp. 129-135

¹¹ Los detalles de los resultados de ambas regresiones y pruebas se encuentran en el apéndice.

¹² En el caso de la regresión lineal elimine la constante por no ser significativa, véase en el apéndice.

Los problemas encontrados en la regresión lineal son los de heterocedasticidad y multicolinealidad.

La heterocedasticidad se halló según la prueba de White. Se pudieron haber realizado las pruebas Goldfeld-Quandt y Breusch-Pagan, pero como es un corte transversal y este tipo de serie, generalmente, presenta heterocedasticidad y por el nivel de significancia obtenido en la prueba de White, era casi seguro que las otras pruebas darían el mismo resultado sobre la existencia de heterocedasticidad. Este problema se corrigió mediante el método de agrupación de datos¹⁴.

Para la multicolinealidad se observó que no existían variables que al integrarse a la regresión elevaran el valor de la R² y no fueran significativas con la prueba t-Student. Aun con esta evidencia se realizaron regresiones auxiliares para investigar su existencia y grado. Resultó con multicolinealidad grave solamente la variable restaurantes y bares, por lo que fue eliminada de la regresión (ver apéndice cuadro A. IV).

Con la regresión semilogarítmica no se tuvo ningún problema. Sin embargo, se excluyó, nuevamente, la variable restaurantes y bares por la posibilidad de multicolinealidad.

¹³ Observación del dato obtenido en el sesgo y la kurtosis, debido a que la Prueba Jarque-Vera no es confiable para muestras pequeñas.

¹⁴ Stewart. Wallis "Introductory Econometrics", 2da Edición Basil Blackwell Oxford, 1981

Los resultados de ambos métodos son los siguientes:

Cuadro 2: Resultados de las Regresiones

Regresión Lineal

Variable	Coeficiente	Error estándar	T-estadistica
Playa*	210.4681	62.4019	3.3728
Número de habitaciones*	0.9443	0.1931	4.8892
Alberca*	4.7637	0.9396	5.0699
Estacionamiento*	372.5498	37.9481	9.8174
R ²	0.416252		
R² ajustada	0.397818		
Prueba F	22.58048		

Regresión

Semilogarítmica

Variable	Coeficiente	Error estándar	T-estadistica
Constante	5.7015	0.0857	66.5426
Playa	0.2310	0.0945	2.4437
Número de habitaciones	0.0013	0.0003	4.5036
Alberca	0.3011	0.0950	3.1709
Estacionamiento	0.0039	0.0014	2.7469
R^2	0.468997		
R ² ajustada	0.446401		
Prueba F	20.75584]	

^{*} son las variables con la corrección de heterocedasticidad mediante el método de agrupación.

Ambas regresiones resultaron ser bastante buenas.

La regresión semilogarítmica es particularmente buena por no presentar problemas con los datos.

Todas las demás variables son significativas, es decir forman el precio de la habitación del hotel, aunque no son las únicas.

Finalmente, por la calidad de la regresión semilogarítmica podemos concluir que la función de precios hedónicos (que se presentó de forma general en la ecuación 9) toma la forma específica de una función semilogarítmica de la siguiente forma:

Ln Precio =
$$\beta_0 + \beta_1$$
 Playa + β_2 Número de habitaciones + β_3 Alberca + β_4 Estacionamiento + ϵ (16)

Precio = $e^{\beta 0 + \beta 1}$ Playa + $\beta 2$ Número de habitaciones + $\beta 3$ Alberca + $\beta 4$ Estacionamiento + ϵ

Regresando al análisis realizado en las ecuaciones 9 a la 11, para obtener el punto donde la función de precios hedónicos también maximiza la utilidad del consumidor, derivamos las ecuaciones 14 y 15 (al igual que se hizo con la ecuación 10) con respecto al atributo del cual deseamos obtener el valor, es decir, la playa y obtenemos el precio implícito marginal de la playa, el cual es el valor que le da el turista a la playa.

Realizando dicha derivada tenemos que el precio implícito marginal es:

$$\frac{\partial \ln(P)}{\partial b} = \beta_1 \quad (17)$$

Pero β_1 al estar dentro de una función en logarítmicos nos indica el incremento que puede realizar un hotel al cambiar su ubicación frente de la playa y tener acceso directo a la playa, no el valor monetario directo de la habitación del hotel.

Con la regresión lineal podemos concluir que la playa es un atributo significativo al 99% para la formación del precio final de cuarto con un valor monetario de 210.47 pesos por cuarto. Mientras que con la regresión no lineal (semilogarítmica) el cuarto del hotel puede incrementar su precio en 23% si el hotel tiene acceso directo a la playa, con un grado de significancia del 95%.

VIII. CONCLUSION

Considero que la aportación del presente trabajo es la aplicación de una herramienta teórica y empírica que sirva para valuar las playas en zonas turísticas. El trabajo podría ser la base de análisis con datos representativos, que utilicen las distintas técnicas para calcular la función de precios hedónicos y comparar todos sus resultados sobre la valuación de las playas.

En el trabajo se obtiene un modelo teórico, que integra las maximizaciones del turista en términos subjetivos, con la función de utilidad Cobb- Douglas, y en objetivos, mediante la utilidad indirecta. En ambos análisis se encuentran resultados distintos y complementarios.

Con el estudio de la utilidad directa observamos que el precio del hotel es una variable dependiente de los gustos del turista por los atributos que contenga el hotel, en este caso, la playa. Si los gustos de los individuos muestran que la playa es un paisaje "deseable" que le genera utilidad, el precio de las habitaciones de los hoteles con acceso directo a la playa tiende a ser superior al de aquellos cuartos de hotel que no contienen este atributo.

Con el estudio de la utilidad indirecta se descubre que no solamente el gusto de los individuos por la playa afecta el hotel donde se hospeden, sino que el ingreso del individuo es una variable importante que tenderá a decidir el tipo de hoteles en el que el individuo se hospedará. En otras palabras, los individuos con mayor ingreso se quedarán con los hoteles con mayor cantidad de atributos. Existe una regionalización de los hoteles; el hotel se ubicara territorialmente e invertirá en ciertos atributos, dependiendo del tipo de turistas al que desee atraer.

La teoría de precios hedónicos utiliza una función, la cual –al derivarla con respecto al atributo– nos muestra el precio marginal implícito de ese servicio, es decir, qué tanto ese atributo incrementa el precio del bien final.

El precio marginal implícito es el mismo valor que el individuo obtiene al realizar la maximización de su utilidad. Este resultado es interesante, ya que significa que si nosotros obtenemos adecuadamente el precio marginal implícito, estamos valuando la utilidad que el individuo da al atributo.

Finalmente, con métodos econométricos se obtuvo que el valor monetario de la playa en Acapulco es de 210.47 pesos, o que el incremento porcentual del precio de la habitación es de 23% si contiene acceso a la playa. Estos valores implican que las tarifas actuales de la ZFMT son relativamente pequeñas, ya que la tarifa, en la zona X donde se encuentra Acapulco, es de 55.21 pesos por metro cuadrado de playa ocupada.

También obsérvese que el valor monetario obtenido en este trabajo es por habitación, mientras que la estructura de la tarifa es por metro cuadrado. Posiblemente, sea más equitativo cobrar la tarifa por número de habitaciones que contenga el hotel, ya que no es lo mismo tener 10 habitaciones que 100, aunque tenga el mismo número de metros cuadrados de playa.

Sin embargo tampoco se debería cobrar una tarifa de 210.47 pesos por habitación. Para la determinación de las tarifas es necesario tener otros criterios, como sus efectos en el desarrollo turístico, cuanto disminuiría la inversión hotelera, la distribución del ingreso, el aumento del desempleo, etcétera

Lo que importa de una tarifa es que su ausencia conduce a una baja apreciación de la playa, reduciendo, probablemente, el cuidado del hotelero hacia ella.

Una buena forma de hacer conciencia sobre el verdadero valor de la playa es, simplemente, mostrando el valor real al hotelero, aunque no se le cobre directamente este valor.

Como resultados complementarios del análisis econométrico obtuvimos que los otros atributos que forman parte importante en el incremento del precio del hotel son:

- El número de habitaciones
- El número de albercas
- La existencia de estacionamiento

Todas estas variables fueron significativas al 99%, por lo que puede decirse que ellas son sumamente importantes para el turista que paga por la habitación (es posible que esta sea una razón que explique el porqué la mayoría de los hoteles cuentan con estos servicios).

Referencias Bibliográficas

Anglin, Paul M. & Gencay, Ramazan "Semiparametric Estimation of a Hedonic Price Function" Journal of Applied Econometrics Vol. 11 pp. 633-648

Bowbrick, Peter "A Critique of Economic Man Theories of Quality" www.prima.net. /bowbrick/Critique.htm

Brookshire, David S., Thayer Mark, A., Schulze, William D. & Dárge, Ralph C. "Valuing Public Goods: A Comparison of Survey an Hedonic Approaches" Amercian Economics Review vol. 72 no. 1 pp. 165-176

Epple, Dennis "Hedonic Prices and Implicit Markets: Estimating Demand and Supply Functions for Differentiated Products" Journal of Political Economy vol. 95 no. 11 pp. 59-79

Feenstra, Robert C. "Exact Hedonic Price Indexes" Review of Economics and Statistics vol. 77 no. 4 pp.634-650

Folmes, H. & Van Ierland E. "<u>Valuation Methods and Policy Making in Environmental Economics"</u> Elsevier, Studies in Environmental Science 36, septiembre 1987

Freeman, A. Myrick "<u>The Measurement of Environmental and Resource Values"</u>
EU, Resources for the future, 1993

Gencay, Ramazon & Yang, Xian "A forecast comparison of residential housing prices by parametric versus semiparametric conditional mean estimators" Economics Letters vol. 52 pp. 129-135

Greene, William H. "Análisis Econométrico" España, Prentice Hall, 1999

Jones, Larry E. "The Characteristics Model, Hedonic Prices and the Clientele Effect" Journal of Political Economy (1988) vol. 96 no. 3 pp. 551-567

Kanemoto, Yoshitsugu "Hedonic Prices and the Benefits of Public Projects" Econométrica vol. 54 no. 4 pp.981-989

Lancaster, Kelvin J. "A New Approach to Consumer Theory" Journal of Political Economy vol. 74 pp. 132-157

Mills, Edwin S. "New Hedonic Estimates of Regional Constant Quality House Prices" Journal of Urban Economics vol. 39 pp. 209-215

Nicholson, Walter., "<u>Teoría Microeconómica:Principios básicos y aplicaciones"</u> Espana, Mc Graw Hill, 1997.

Papatheodorou, Andreas "The demand for international tourism in the Mediterranean region" Applied Economics 1999 vol. 31 pp. 619-630

Polinsky, Mitchell A. & Shavell, Steven "Amenities and Property Values in a Model of an Urban Area" Journal of Public Economics 5(1976) pp. 119-129

Rosen, Sherwin "Hedonic Price and Implicit Markets: Product Differentiation in Pure Competition". Journal of Political Economy 82 (1) pp. 34-55.

Sivitanidou, Rena "Urban Spatial Variations in Office-Commercial Rents: The Role of Spatial Amenities and Commercial Zoning" Journal of Urban Economics vol 38 pp. 23-49

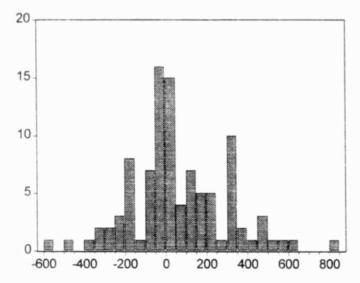
Wallis, Stewart "Introductory Econometrics" Oxford, Basil Blackwell, 2da edición, 1981

www.ecosystemvaluation.org/hedonic-pricing.htm

APENDICE

Cuadro A.I.1 Regresión lineal con las variables más significativas

LS // Dependent Variable is PRECIO


Date: 12/27/00 Time: 21:19

Sample: 1 99

Included observations: 99 after adjusting endpoints

Property of the Party of the Pa	mode of the control o			
Variable	Coefficient	Std. Error	T-Statistic	Prob.
PLAYA	145.2809	63.3468	2.293422	0.0241
RESTA	73.92998	23.85191	3.099541	0.0026
NOHAB	0.368588	0.262113	1.406218	0.163
ESTA	323.9831	39.572	8.187179	0
ALBERCA	2.904008	1.081431	2.685338	0.0086
R-squared	0.470381	Mean dep	endent var	556.3487
Adjusted R-squared	0.447844	S.D. depe	endent var	338.3726
S.E. of regression	251.4352	Akaike in	fo criterion	11.10356
Sum squared resid	5942648	Schwartz criterion		11.23462
Log likelihood	-685.1009	F-statistic		20.87152
Durbin-Watson stat	1.502699	Prob(F-statistic) 0		0

Cuadro A.II.1 Prueba de Normalidad

Series: Resid Sample 1 99 Observations	
Mean	64.60944
Median	21.07401
Maximum	801.1016
Minimum	-577.3079
Std. Dev.	237.5338
Skewness	0.311181
Kurtosis	3.485421
Jarque-Bera	2.569739
Probability	0.276687

Cuadro A.III.1 Prueba de Heterocedasticidad: Prueba de White

White Heteroskedasticity Test:

F-statistic	3.095544	Probability	0.002799
Obs*R-squared	23.60202	Probability	0.004977

Test Equation:

LS // Dependent Variable is RESID^2

Date: 12/27/00 Time: 21:34

Sample: 1 99

Variable	Coefficient	Std. Error	T-Statistic	Prob.
С	81564.09	22105.6	3.689749	0.0004
PLAYA	34705.65	24166.93	1.43608	0.1545
RESTA	-9470.274	17229.66	-0.54965	0.5839
RESTA^2	3669.687	2670.064	1.374382	0.1728
NOHAB	423.6983	225.5469	1.878538	0.0636
NOHAB^2	-0.841439	0.385101	-2.184981	0.0315
ESTA	-179212.8	60301.62	-2.97194	0.0038
ESTA^2	88186.12	48623.63	1.813647	0.0731
ALBERCA	12659.9	9472.968	1.336424	0.1848
ALBERCA^2	-49.35101	32.55666	-1.51585	0.1331
R-squared	0.238404	Mean depe	ndent var	60026.75
Adjusted R-squared	0.161389	S.D. depen	dent var	99821.64
S.E. of regression	91412.37	Akaike info	criterion	22.94181
Sum squared resid	7.44E+11	Schwartz c	riterion	23.20394
Log likelihood	-1266.094	F-statistic		3.095544
Durbin-Watson stat	1.611393	Prob(F-stat	istic)	0.002799

White Heteroskedasticity Test:

F-statistic	4.396561	Probability	0.000001
Obs*R-squared	50.88103	Probability	0.000097

Test Equation:

LS // Dependent Variable is RESID^2

Date: 12/27/00 Time: 21:35

Sample: 1 99

Variable	Coefficient	Std. Error	T-Statistic	Prob.
С	4308.799	37094.6	0.116157	0.9078
PLAYA	-60770.7	54885.03	-1.107236	0.2716
PLAYA*RESTA	22256.27	25623.02	0.868605	0.3877
PLAYA*NOHAB	131.8313	309.5878	0.425828	0.6714
PLAYA*ESTA	61806.85	55211.57	1.119455	0.2663
PLAYA*ALBERCA	549.282	33679.46	0.016309	0.987
RESTA	-62925.57	36230.87	-1.736794	0.0863
RESTA ²	-2463.917	5793.042	-0.425324	0.6718
RESTA*NOHAB	55.75285	113.8862	0.489549	0.6258
RESTA*ESTA	41950.27	37739.14	1.111585	0.2697
RESTA*ALBERCA	14058.08	14630.57	0.96087	0.3395
NOHAB	355.8834	712.0798	0.49978	0.6186
NOHAB^2	-1.247353	0.564799	-2.20849	0.0301
NOHAB*ESTA	72.99293	729.0228	0.100124	0.9205
NOHAB*ALBERCA	-63.74642	229.5001	-0.277762	0.7819
ESTA	-137014.7	59272.15	-2.31162	0.0234
ESTA ²	170714.7	57467.05	2.970653	0.0039
ESTA*ALBERCA	-17855 5.8	38385.21	-4.651684	0
ALBERCA	154509.4	25661.2	6.021131	0
ALBERCA^2	-391.6012	410.2861	-0.954459	0.3428
R-squared	0.51395	Mean depe	ndent var	60026.75
Adjusted R-squared	0.397052	S.D. depen	dent var	99821.64
S.E. of regression	77511.25	Akaike info criterion		22.69473
Sum squared resid	4.75E+11	Schwartz criterion		23.21899
Log likelihood	-1243.864	F-statistic		4.396561
Durbin-Watson stat	1.527256	Prob(F-stat	istic)	0.000001

Cuadro A.IV.1 Prueba de Multicolinealidad: Regresiones Auxiliares

LS // Dependent Variable is RESTA

Date: 12/21/00 Time: 13:38

Sample: 1 99

Included observations: 99 after adjusting endpoints

Variable	Coefficient	Std. Error	T-Statistic	Prob.
NOHAR	0.007787	0.000796	9.788773	0
NOHAB				
ALBERCA	0.025155			
ESTA	0.656929	0.156305	4.202874	0.0001
PLAYA	0.881742	0.257028	3.430532	0.0009
R-squared	0.741901	Mean depe	ndent var	1.787879
Adjusted R-squared	0.73375	S.D. depen	dent var	2.096025
S.E. of regression	1.081536	Akaike info	criterion	0.196331
Sum squared resid	111.1235	Schwartz cr	riterion	0.301184
Log likelihood	-146.1933	F-statistic		91.0251
Durbin-Watson stat	1.985228	Prob(F-stat	istic)	0

LS // Dependent Variable is PLAYA

Date: 12/27/00 Time: 21:56

Sample: 1 99

Variable	Coefficient	Std. Error	T-Statistic	Prob.
•				
С	0.133688	0.087341	1.530643	0.1292
RESTA	0.121108	0.036275	3.33863	0.0012
ESTA	-0.045175	0.100791	-0.4482	0.655
ALBERCA	-0.001746	0.00173	-1.009124	0.3155
NOHAB	0.000239	0.000421	0.567318	0.5719
R-squared	0.301304	Mean deper	ndent var	0.333333
Adjusted R-squared	0.271572	S.D. depen	dent var	0.473804
S.E. of regression	0.404382	Akaike info	criterion	-1.761606
Sum squared resid	15.37132	Schwartz cr	riterion	-1.63054
Log likelihood	-48.27539	F-statistic		10.13407
Durbin-Watson stat	1.676571	Prob(F-stat	istic)	0.000001

LS // Dependent Variable is ALBERCA

Date: 12/27/00 Time: 22:00

Sample: 1 99

Included observations: 99 after adjusting endpoints

Variable	Coefficient	Std. Error	T-Statistic	Prob.
	4.053464	E 244442	0.200087	0.0444
С	-1.053464		-0.200987	
RESTA	12.23827	1.892269	6.467509	0
ESTA	-6.645015	5.942846	-1.118154	0.2664
NOHAB	-0.084909	0.023416	-3.626124	0.0005
PLAYA	-6.137889	6.082394	-1.009124	0.3155
R-squared	0.327916	Mean deper	ndent var	4.111111
Adjusted R-squared	0.299317	S.D. depend	dent var	28.64237
S.E. of regression	23.97562	Akaike info	criterion	6.40326
Sum squared resid	54034.06	Schwartz cr	iterion	6.534327
Log likelihood	-452.4363	F-statistic		11.46586
Durbin-Watson stat	1.870163	Prob(F-stati	stic)	0

LS // Dependent Variable is ESTA Date: 12/27/00 Time: 22:07

Sample: 1 99

Variable	Coefficient	Std. Error	T-Statistic	Prob.
С	0.680029	0.057014	11.92731	0
PLAYA	-0.047206	0.105323	-0.4482	0.655
NOHAB	-0.000183	0.000431	-0.42387	0.6726
RESTA	0.090579	0.038089	2.378082	0.0194
ALBERCA	-0.001975	0.001767	-1.118154	0.2664
R-squared	0.105633	Mean depe	ndent var	0.79798
Adjusted R-squared	0.067575	S.D. depen	dent var	0.42809
S.E. of regression	0.413373	Akaike info	criterion	-1.717624
Sum squared resid	16.06248	Schwartz cr	riterion	-1.586557
Log likelihood	-50.45253	F-statistic		2.775558
Durbin-Watson stat	1.695499	Prob(F-stat	istic)	0.031393

LS // Dependent Variable is NOHAB

Date: 12/27/00 Time: 22:20

Sample: 1 99

Variable	Coefficient	Std. Error	T-Statistic	Prob.
С	4.663446	21.62385	0.215662	0.8297
PLAYA	14.28877	25.18653	0.567318	0.5719
ALBERCA	-1.445258	0.398568	-3.626124	0.0005
ESTA	-10.45149	24.65728	-0.42387	0.6726
RESTA	64.4219	6.627058	9.721042	. 0
R-squared	0.394552	Mean deper	ndent var	434.83
Adjusted R-squared	0.365721	S.D. depend	dent var	177.9783
S.E. of regression	141.7449	Akaike info	criterion	9.965902
Sum squared resid	1265771	Schwartz cr	iterion	10.09753
Log likelihood	-424.9266	F-statistic		13.68505
Durbin-Watson stat	2.016296	Prob(F-stat	istic)	0.000001

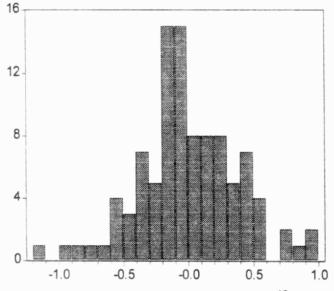
Cuadro A.V.1 Corrección de Multicolinealidad y Heterocedasticidad por el Método de Agrupación

LS // Dependent Variable is PRECHB

Date: 12/27/00 Time: 22:18

Sample: 1 99

Variable	Coefficient	Std. Error	T-Statistic	Prob.
PLAYAHB	210.4681	62.40191	3.372783	0.0011
NOHABHB	0.944296		0.0.2.00	
ALBHB	4.763688	0.939603	5.069893	0
ESTAHB	372.5498	37.9481	9.817351	0
R-squared	0.416252	Mean depe	ndent var	0.009592
Adjusted R-squared	0.397818	S.D. depen	dent var	0.005834
S.E. of regression	0.004527	Akaike info	criterion	-10.75573
Sum squared resid	0.001947	Schwartz ci	riterion	-10.65088
Log likelihood	395.9338	F-statistic		22.58048
Durbin-Watson stat	1.549685	Prob(F-stat	istic)	0


Cuadro A.I.2 Regresión Semilogarítmica Variables Más Significativas

LS // Dependent Variable is LP Date: 02/01/01 Time: 19:01

Sample: 1 99

Variable	Coefficient	Std. Error	T-Statistic	Prob.
С	5.70153744	0.08568257	66.5425582	7.1706E-81
PLAYA	0.23095832	0.09450986	2.44374848	0.01640142
NOHAB	0.00129959	0.00028857	4.5036232	1.9172E-05
ESTA	0.30113155	0.09496719	3.17090093	0.00205232
ALBERCA	0.0038525	0.00140249	2.74689921	0.00721098
R-squared	0.46899664	Mean deper	ndent var	6.17803397
Adjusted R- squared	0.44640075	S.D. depend	dent var	0.52670603
S.E. of regression	0.39189168	Akaike info	criterion	-1.8243546
Sum squared resid	14.436434	Schwartz cr	iterion	-1.69328794
Log likelihood	-45.1693589	F-statistic		20.7558403
Durbin- Watson stat	1.63556282	Prob(F-stati	istic)	2.7676E-12

Cuadro A.II.2 Prueba de Normalidad

Series: Residuals Sample 1 99 Observations 99			
Mean	-4.17E-16		
Median	-0.029609		
Maximum	Maximum 0.960834		
Minimum	-1.120415		
Std. Dev.	0.383811		
Skewness	-0.058131		
Kurtosis 3.385008			
Jarque-Bera 0.667211			
Probability	0.716336		

Cuadro A.III.2 Prueba de Heterocedasticidad: Prueba de White

White Heteroskedasticity Test:

F-statistic	1.555984	Probability	0.158726
Obs*R-squared	10.58276	Probability	0.157883

Test Equation:

LS // Dependent Variable is RESID^2

Date: 02/01/01 Time: 19:28

Sample: 1 99

Variable	Coefficient	Std. Error	T-Statistic	Prob.				
•								
С	0.202534	0.053697	3.771777					
PLAYA	0.105595	0.055146	1.914826	0.0587				
NOHAB	0.000177	0.000382	0.464048	0.6437				
NOHAB^2	-4.09E-07	4.65E-07	-0.879676	0.3814				
ESTA	-0.18149	0.146917	-1.23532	0.2199				
ESTA ²	0.041605	0.118663	0.350617	0.7267				
ALBERCA	0.013343	0.022512	0.592693	0.5549				
ALBERCA^2	-0.0000489	0.0000783	-0.624388	0.5339				
R-squared	0.106897	Mean deper	ndent var	0.145823				
Adjusted R-squared	0.038196	S.D. depend	dent var	0.22798				
S.E. of regression	0.223583	Akaike info	criterion	-2.918585				
Sum squared resid	4.549052	Schwartz cr	Schwartz criterion					
Log likelihood	11.99504	11.99504 F-statistic		1.555984				
Durbin-Watson stat	1.63E+00	Prob(F-stati	istic)	0.158726				

White Heteroskedasticity Test:

F-statistic	1.623015	Probability	0.09455
Obs*R-squared	19.68742	Probability	0.103283

Test Equation:

LS // Dependent Variable is RESID^2

Date: 02/01/01 Time: 19:33

Sample: 1 99

Variable	Coefficient	Std. Error	T-Statistic	Prob.		
С	0.340738					
PLAYA	-0.199189					
PLAYA*NOHAB	0.0000352	0.000524	0.067251	0.9465		
PLAYA*ESTA	0.316236	0.143876	2.197973	0.0307		
PLAYA*ALBERCA	0.03422	0.073706	0.46427	0.6436		
NOHAB	-0.002143	0.001967	-1.089823	0.2789		
NOHAB^2	-0.00000169	0.0000012	-1.401324	0.1648		
NOHAB*ESTA	0.002469	0.002016	1.224842	0.224		
NOHAB*ALBERCA	0.000243	0.000244	0.996174	0.322		
ESTA	-0.368241	0.163199	-2.256395	0.0266		
ESTA ²	0.111887	0.13183	0.848721	0.3984		
ESTA*ALBERCA	-0.043555	0.085909	-0.506993	0.6135		
ALBERCA	0.004903	0.070262	0.06978	0.9445		
ALBERCA ²	-0.000242	0.000239	-1.013099	0.3139		
R-squared	0.198863	Mean depe	Mean dependent var			
Adjusted R-squared	0.076336	S.D. depen	S.D. dependent var			
S.E. of regression	0.219106	Akaike info	Akaike info criterion			
Sum squared resid	4.080618	Schwartz c	Schwartz criterion			
Log likelihood	17.37422	F-statistic	F-statistic			
Durbin-Watson stat	1.656807		istic)	1.623015 0.09455		

Cuadro A.IV.2 Prueba de Multicolinealidad: Regresiones Auxiliares

LS // Dependent Variable is PLAYA

Date: 02/01/01 Time: 19:46

Sample: 1 99

Included observations: 99 after adjusting endpoints

Variable	Coefficient	Std. Error	T-Statistic	Prob.
•	0.454470		4 000000	
С	0.154173	0.09166	1.682009	
ESTA	0.034341	0.103034	0.333293	0.7396
NOHAB	0.001321	0.000282	4.678748	0
ALBERCA	0.001456	0.001515	0.960731	0.3391
R-squared	0.218453	Mean deper	ndent var	0.333333
Adjusted R-squared	0.193772	S.D. depend	dent var	0.473804
S.E. of regression	0.425429	Akaike info	criterion	-1.669749
Sum squared resid	17.19404	Schwartz cr	iterion	-1.564896
Log likelihood	-53.82233	F-statistic	F-statistic	
Durbin-Watson stat	1.724916	Prob(F-stati	istic)	0.000031

LS // Dependent Variable is ESTA Date: 02/01/01 Time: 19:50

Sample: 1 99

Variable	Coefficient	Std. Error	T-Statistic	Prob.
•	0.704005	0.05500	40.44070	
С	0.724225			0
PLAYA	0.034011	0.102044	4 0.333293	0.7396
NOHAB	0.000554	0.000307	7 1.806569	0.074
ALBERCA	0.000322	0.00151	0.212692	0.832
R-squared	0.051825	Mean depe	endent var	0.79798
Adjusted R-squared	0.021883	S.D. deper	ndent var	0.42809
S.E. of regression	0.42338	Akaike info	criterion	-1.679404
Sum squared resid	17.02883	Schwartz o	riterion	-1.57455
Log likelihood	-53.34443	F-statistic	F-statistic	
Durbin-Watson stat	1.680617	Prob(F-sta	tistic)	0.165894

LS // Dependent Variable is NOHAB

Date: 02/01/01 Time: 19:52

Sample: 1 99

Included observations: 99 after adjusting endpoints

Variable	Coefficient	Std. Error	T-Statistic	Prob.
С	13.7691	30.43109	0.452468	0.652
ESTA	59.97716	33.19948	1.806569	0.074
PLAYA	141.733	30.29294	4.678748	0
ALBERCA	0.352516	0.497333	0.708813	0.4802
R-squared	0.240679	Mean deper	ndent var	110.3232
Adjusted R-squared	0.216701	S.D. depend	dent var	157.4326
S.E. of regression	139.3344	Akaike info	criterion	9.913319
Sum squared resid	1844338	Schwartz cr	iterion	10.01817
Log likelihood	-627.1842	F-statistic	F-statistic	
Durbin-Watson stat	2.007754	Prob(F-stati	istic)	0.00008

LS // Dependent Variable is ALBERCA

Date: 02/01/01 Time: 19:54

Sample: 1 99

Variable	Coefficient	Std. Error	T-Statistic	Prob.
С	-0.917535	6.267312	-0.1464	0.8839
NOHAB	0.014923	0.021054	0.708813	0.4802
ESTA	1.477266	6.945572	0.212692	0.832
PLAYA	6.610237	6.880426	0.960731	0.3391
R-squared	0.028848	Mean depe	ndent var	4.111111
Adjusted R-squared	-0.00182	S.D. depen	dent var	28.64237
S.E. of regression	28.66842	Akaike info	criterion	6.751158
Sum squared resid	78078.46	Schwartz ci	riterion	6.856011
Log likelihood	-470.6572	F-statistic		0.940656
Durbin-Watson stat	2.000097	Prob(F-stat	istic)	0.424257

	Cuadro A.I.	Datos													
	Nombre	Categoria	Ubicación	Teléfonos	Costo en la página Web	Costo en pesos	Habitaciones	Albercas	Restaurantes y bares	Estacionamiento	Lavanderia	Iglesia	Centro Deportivo	Playa	Gimnasio
					Tipo de cambio	9.6443									
1	S. Quinta Licha	***	Insurgentes No. 155	485-23-88	340.00	340.00	8	1	1	1	0	0	0	0	0
2	Bungalows Los Milagros	•••	Av.A.Lopez M.No.29	483-07-77	410.00	410.00	11	1	1	1	0	0	0	0	0
3	S Acapulco Real	***	Montealban No. 53	485-18-68	470.00	470.00	11	1	0	1	0	0	0	0	0
4	Dalias Centro	•••	Diego H.de Mendoza 11	482-63-08	430.00	430.00	12	1	1	1	0	0	0	0	0
5	Posada Cel Inn	***	Av.A. Amézquita No. 210	485-86-49	410.00	410.00	14	1	1	1	0	0	0	0	0
6	S Fabian's Sol	***	Cerro Azul No. 33	485-38-01	290.00	290.00	14	1	0	1	0	0	0	0	0
7	Apartamentos Cheli	***	Cristobal C. No. 55	484-31-60	430.00	430.00	15	1	1	0	0	0	0	0	0
8	Apartamentos Marian	***	Alv.Amezquita No.10	485-91-81	400.00	400.00	15	1	1	0	0	0	0	0	0
9	Silva	***	B.Juarez No. 24	482-16-03	230.00	230.00	15	0	0	0	0	0	0	0	0
10	Am Monte Alegre	•	Av.Sn.Marcos No. 52	482-04-29	250.00	250.00	16	1	1	1	0	0	0	0	0
11	S. Vista Mar	•••	Farallón No. 164	484-85-24	370.00	370.00	16	1	1	1	0	0	0	0	0
12	Enrique's	**	C.M.A. No1. 57	480-00-19	179.00	179.00	17	0	0	0	0	0	0	0	0
13	Hotel Mariscal	•	Quebrada No. 35	482-00-15	120.00	120.00	18	0	1	0	0	0	0	0	0
14	Suites Rey del Mar	***	A.Lopez M. No. 265	483-23-10	360.00	360.00	18	1	1	1	0	0	0	0	0
15	B. Santa Cruz	***	Av.A.Lopez M No. 443	483-02-77	380.00	380.00	19	1	1	1	0	0	0	0	0
16	Acapulco	••	Benito Juárez s/n	482-08-51	180 00	180.00	20	0	0	0	0	0	0	0	0
17	Hotel Sacramento	••	Felipe Valle s/n.	482-08-21	130.00	130.00	20	0	0	0	0	0	0	0	0
18	B. Villa Los Pescaditos	***	Av.Niños H.No.19	485-80-84	410.00	410.00	21	1	1	0	0	0	0	0	0
19	Nilo	•••	Ortiz Monasterio No. 105	484-64-30	290.00	290.00	21	1	0	1	0	0	0	0	0
20	Parador Diamante	•••	Carr.Aeropuerto No. 943	466-04-49	430.00	430.00	22	1	1	1	0	0	0	0	0
21	Magallanes	•••	A de Saavedra No. 26	485-94-17	400.00	400.00	25	1	1	0	0	0	0	0	0
22	Bora Bora	•••	Bora Bora No 300	485-58-78	390.00	390 00	26	1	0	1	0	0	0	0	0
23	Club Priv Villa René	Especial	L.del Mar 26,Frac.C. Deportivo	484-39-98	85 00	819 7655	27	3	0	0	0	0	0	0	0
24	Hotel Mary	••	V. De León No. 24	483-52-71	200.00	200.00	28	1	1	0	0	0	0	0	0

	Nombre	Categoría	Ubicación	Teléfonos	Costo en la página Web	Costo en pesos	Habitaciones	Albercas	Restaurantes y bares	Estacionamiento	Lavanderia	Iglesia	Centro Deportivo	Playa	Gimnasio
25	Misión	***	Felipe Valle No. 12	482-20-76	280.00	280.00	28	0	0	1	0	0	0	0	0
26	Dalias Acapulco	***	Czda. Caletilla No. 20	482-63-08	650.00	650.00	30	1	1	1	0	0	0	0	0
27	Hotel Costa Azul	***	H.Nelson y Pq.Norte	484-52-12	360.00	360.00	30	1	0	1	0	0	0	0	0
28	S. Quinta Rosa	***	V.Nuñez de B. No. 15	485-39-30	390.00	390.00	30	1	1	1	0	0	0	0	0
29	Gran Club Oceano	***	Av.Punta Bruja No. 10	484-86-37	580.00	580.00	32	1	1	1	0	0	0	0	0
30	H.Playa Hornos		Pie de la Cuesta No. 12	483-39-40	155.00	155.00	32	0	0	0	0	0	0	0	0
31	M Quinta Mica	***	C.Colon No. 115	484-25-99-	360.00	360.00	33	1	0	1	0	0	0	0	0
32	Monaco	***	C.M.A. No. 137	485-65-18	430.00	430.00	37	1	1	1	0	0	0	0	0
33	B Posada del Bosque	***	Av. Insurgentes No.14	486-39-36	650 00	650.00	38	1	2	1	0	0	0	0	0
34	Minibrisas	***	Bugambilias No. 118	483-04-16	410.00	410.00	40	1	1	1	0	0	0	0	0
35	Romance Inn		V de Brisamar No.6	01-800-715- 4812	450.00	450.00	40	1	1	1	0	0	0	0	0
36	S.Angelópolis	***	Monteblanco No. 250	485-30-63	500.00	500.00	40	1	1	1	0	0	0	0	0
37	Mallorca	•••	G.Vía Tropical No. 28	482-13-75	420.00	420.00	43	1	2	1	0	0	1	0	0
38	Costa Linda	***	C.M.A. No. 1008	483-40-17	430.00	430.00	44	1	1	1	0	0	1	0	0
39	Los Flamingos	****	A.López M. s/n.	483-98-06	345 00	345.00	46	1	2	1	0	0	0	0	0
40	Los Portales	***	W.Masieu y A.Amézquita	486-57-78	380.00	380.00	46	1	1	1	0	0	0	0	0
41	El Mejicano	•••	Costa Grande No. 305	482-64-30	480.00	480.00	48	2	2	1	0	0	0	0	0
42	Los Siete Mares	***	Av. Aguada No. 44	483-20-32	440.00	440.00	50	1	2	1	0	0	0	0	0
43	Miami	***	V.Nuñez de B. No. 11	485-96-66	480.00	480.00	50	1	2	1	0	0	0	0	0
44	Los Pericos	***	C.M.A. No. 255	483-94-00	400.00	400.00	53	1	0	1	0	0	0	0	0
45	FairWay Cuatro	***	F de Magallanes No. 255	484-07-60	550.00	550.00	55	1	1	1	0	0	0	0	0
46	Las Rampas	•••	Av. Lopez M. No. 20	482-08-47	370.00	370.00	55	2	0	0	1	0	0	0	0
47	S Benny	•••	Insurgentes No. 3	486-54-84	360.00	360 00	55	2	0	1	0	0	0	0	0
48	Paraiso Caleta	***	Calle Alta No. 19	483-11-18	410.00	410.00	56	1	1	0	0	0	0	0	0
49	Club Dorados	•••	Av, Univ.yDr.I.Chavez	487-46-24	480 00	480.00	57	1	1	0	0	0	0	0	0
50	Don Quijote	•••	Insurgentes No. 70	485-31-19	420.00	420.00	60	1	1	1	0	0	0	0	0

	Nombre	Categoría	Ubicación	Teléfonos	Costo en la página Web	Costo en pesos	Habitaciones	Albercas	Restaurantes y	Estacionamiento	Lavanderia	Iglesia	Centro Deportivo	Playa	Gimnasio
l 51	Hotel Sand's	 	C.M.A. No. 178	484-10-54	900.00	900.00	60	1	1	1	0	0	0	0	-
52	Vilia		Av. Roqueta No. 54	483-33-12	390.00	390.00	62	2	0	1	0	0	0	0	-
53	S.Sherezada Aca.		G.Via Tropical No. 195	483-57-78	420.00	420.00	72	1	3	1	0	0	0	0	0
54	M Club La Jolla		C.M.A. No. 506	482-58-63	390.00	390.00	73	1	1	1	0	0	0	0	0
55	Club Verano Beat		C.M.A. No. 482	482-57-93	490.00	490.00	83	1	0	0	0	0	2	0	0
56	Bali-Hai		C.M.A. No. 186	485-66-22	768.00	768.00	86	1	0	1	0	0	0	0	0
57	Sand's	****	C.M.A. No. 178	01-800-710- 9801	46.00	443.6378	98	1	1	0	0	0	0	0	0
58	Acapulco Imperial		C.M.A. No. 251 Cent.	483-0575	80.00	771.544	100	0	1	1	0	0	0	0	0
59	El tropicano	****	C.M.A. No. 510	484-13-08	790.00	790.00	137	1	3	1	0	0	0	0	0
60	El Cid	***	C.M.A. No. 248	485-13-87	520.00	520.00	140	1	1	1	0	0	0	0	0
61	Motel Embassy	***	C M.A. No. 50	481-08-81	425.00	425.00	150	1	1	1	0	0	0	0	0
62	Irys Astoria	***	C.M.A. No. 10	482-44-43	430.00	430.00	185	1	3	1	0	0	0	0	0
63	Barceló Panorámic	****	Av.Condesa No. 1	484-07-24	88.00	848.6984	200	10	3	1	0	0	1	0	0
64	Acapulco Tortuga	****	C.M.A. No. 132	01-800-7109- 900	730.00	730.00	230	1	4	1	0	0	0	0	0
65	Club del Sol	****	CMA y reyes Católicos		76	732.9668	400	0	2	1	0	0	0	0	0
66	Playa Honda	***	Priv.Playa Honda No. 9	483-54-15	430.00	430 00	59	1	0	0	0	0	0	1	0
67	Acap PARK Hotel	••••	C.M.A. No. 127	01-800-356- 5711	480.00	480.00	88	1	0	1	0	0	0	1	0
68	Acapulco Malibú		C.M.A. No. 80	484-09-94	78.00	752.2554	80	1	1	0	0	0	0	1	0
69	Acapulco Princess	Especial	Carr.a Playa Revolcadero.	1-800-773-4714	154.00	1485.2222	1019	5	12	1	1	0	1	1	0
70	Bay Club Acapulco	••••	C.M.A. No. 266	485-07-74	490.00	490.00	118	1	3	1	0	0	0	1	0
71	Belmar		Grn. Via Torp.y Cumbres s/n.	483-80-98	485.00	485 00	70	1	2	1	0	0	1	1	0
72	Boca Chica	••••	Caletilla/conocido	483-95-13	65.00	626.8795	45	2	4	1	0	0	0	1	0
73	Calida Beach Acapulco	*****	Costera M.A.1260	01-800-71- 09876	399.00	399.00	357	2	5	1	1	0	0	1	1
74	Camino Real	Especial	Baja Catita No. 18	486-10-10	160.68	1549 646124	156	2	6	1	1	0	0	1	0

				_						-		_		_	
	Nombre	Categoría	Ubicación	Teléfonos	Costo en la página Web	Costo en pesos	Habitaciones	Albercas	Restaurantes y bares	Estacionamiento	Lavanderia	Iglesia	Centro Deportivo	Playa	Gimnasio
75	Capri	***	C.M.A. No. 406	482-11-79	460.00	460.00	26	1	0	0	0	0	0	1	0
76	Casa Blanca	****			1000.00	1000	150	1	2	1	0	0	0	1	0
77	Club Bananas	****	Av, Monterrey 195	484-22-82	920.00	920.00	140	1	2	1	0	0	0	1	0
78	Continental Plaza	Gran turismo	C. M. A. S/n	484-09-09	103.00	993.3629	390	2	6	1	1	0	0	1	0
79	Copacabana	*****	Tavachines 2 F.C.D.	01-800-7109- 888	70.00	675.101	432	1	5	1	1	0	1	1	1
80	Costa club Acapulco	Especial	Costera M:A: 123	1-800-712-4156	105.00	1012.6515	427	3	5	1	1	0	0	1	0
81	El Cano	*****	C.M.A. No.75	484-22-30	890.00	890.00	180	1	5	1	1	0	0	1	0
82	El Presidente	*****	C.M.A. No. 85	484-17-00 al 14	455 00	455.00	146	2	4	1	1	0	0	1	0
83	Fiesta A.Condesa	Gran turismo	C.M.A No. 1220	484-18-28	1242.00	1242.00	500	2	4	1	1	0	0	1	1
84	Fiesta Inn		C. M.A. No 87	484-28-78	790.00	790.00	4	2	5	1	0	0	0	1	0
85	H.J Maralisa	****	Calle Alemania s/n.	01-800-1-go- hojo	369.00	369.00	178	3	0	1	0	0	0	1	0
86	H.S.N.T.S.S.		C.M.A. No. 157	485-93-87	190.00	190.00	100	1	2	1	0	0	0	1	0
87	Hyatt Regency Acap	Especial	C.M.A. No. 1	484-15-13	800.00	800.00	647	2	5	1	1	1	1	1	1
88	Imperial Jazmin	***	Av. Lopez M.No.432	482-25-10	380.00	380.00	27	1	1	1	0	0	0	1	0
89	Las Brisas	Gran turismo	Carr.E.C.Mejia No. 5255	484-16-50	228.00	2198.9004	300	286	11	1	1	1	1	1	0
90	Lindavista	•••	Playa Caleta s/n	482-54-14	398 00	398 00	43	1	1	1	0	0	0	1	0
91	Majestic	••••				0.00	204	1	2	1	0	0	1	1	0
92	Nao	***	Cam.Viejo Caleta s/n.	483-88-43	420.00	420.00	120	1	2	1	0	0	0	1	0
93	Pierre Marques	Gran turismo	Playa Revolcadero s/n	466-10-46	138.00	1330.9134	344	1	5	1	1	0	0	1	0
94	Playa Linda		C.M.A. S/n.	483-40-17	350.00	350.00	19	1	1	1	0	0	0	1	0
95	Playa Suites	****	C.M.A. No. 123	485-80-50	910.00	910.00	502	1	3	1	1	0	0	1	1
96	Qualton Club	*****	C M.A. No. 159	486-82-10	1400.00	1400 00	204	1	3	1	1	0	0	1	0
97	Quinta Real Acapulco	Gran turismo	Paseo de la Quinta s/n		135 00	1301.9805	90	2	4	1	1	0	0	1	0
98	S Selene	•••	C Colon No. 175	484-29-77	460.00	460.00	19	1	1	1	0	0	0	1	0
99	Villa Romana	•••	A. Lopez M. No. 185	482-39-95	360.00	360 00	9	1	1	0	0	0	0	1	0

INDICE

Agradecimientos	2
Resumen	3
Introducción	4
Capítulo I	
Antecedentes	7
Capítulo II	
Métodos de Valuación	13
Capítulo III	
Modelo Teórico	15
Capítulo IV	
Teoría de Precios Hedónicos	23
Capítulo V	
Estimación del Precio Implícito Marginal de la Playa	25
Capítulo VI	
Análisis Empírico	27
Capítulo VII	
Análisis Econométrico	28
Capítulo VIII	
Conclusión	32
Bibliografía	34
Anándico	26

INDICE DE LOS CUADROS

Cuadro 1	
Tarifas y Zonificación de la Zona Federal Marítimo Terrestre	7
Cuadro 2	
Resultados de las Regresiones	.30
Cuadro A.I.1	
Regresión lineal con las variables más significativas	36
Cuadro A.II.1	
Prueba de Normalidad	36
Cuadro A.III.1	
Prueba de Heterocedasticidad: Prueba de White	37
Cuadro A.IV.1	
Prueba de Multicolinealidad: Regresiones Auxiliares	.39
Cuadro A.V.1	
Corrección de Multicolinealidad y Heterocedasticidad por el Método de	
Agrupación	.42
Cuadro A.I.2	
Regresión Semilogarítmica Variables Más Significativas	.43
Cuadro A.II.2	
Prueba de Normalidad	.43
Cuadro A.III.2	
Prueba de Heterocedasticidad: Prueba de White	44
Cuadro A.IV.1	
Prueba de Multicolinealidad: Regresiones Auxiliares	.46
Cuadro A.I	
Datos.	48

INDICE DE GRÁFICOS

Gráfica 1.
Crecimiento en las tarifas de la Zona Federal Marítimo Terrestre10
Gráfica 2.
Maximización del Consumidor sin afectar al Precio del Hotel16
Gráfica 3.
Maximización del Consumidor afectando el Precio del Hotel18