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Chapter 1

Introduction

This thesis is a collection of three essays on assignment problems in matching markets. Each

essay is self-contained and can be read in any order chosen by the reader.

The problems analyzed in this thesis lie at the intersection of game theory, social choice

theory, and mechanism design. Our main concern is to study the allocation of indivisibles

goods (e.g., school seats, houses, hospitals) to different agents (e.g., students, buyers, doc-

tors), in a model where each agent has preferences over goods, and each good is endowed

with a priority relation over the set of agents. As we shall see, the existence of indivisible

goods arises difficulties that are no present in the standard model, in which all goods are

supposed to be perfectly divisible.

In the first two essays our general goal is to investigate, in two different models, the existence

of allocations that satisfy some desirable properties. The first essay focuses on a variant of the

well known School Choice Model, where agents may enter and exit the market in different

periods. In particular, the essay examines the problem of assigning teacher positions to

teachers in the Mexican public education system. The second essay studies a situation where

each agent owns an indivisible good (e.g., a house) and has a certain amount of money, and

seeks to sell her good to buy another. In both essays we analyze some mechanisms to find

the solutions. We will concentrate on strategy-proof mechanisms; that is, mechanisms with

the property that no matter the report of the other agents, an agent can do no better than

reporting her preferences truthfully. In the last essay, we adopt a different point of view. We

take as given the rules of the market, and we explore the reasons that may force some agents

to take actions that will produce inefficient outcomes. This last analysis complements the

one of the previous chapters: instead of finding an optimal design of the market, we give

a theoretical explanation of why matching markets may not behave as the standard theory

predicts.
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The first essay inspires from a real-life assignment problem faced by the Mexican Ministry

of Public Education. I introduce a dynamic school choice problem that consists in assigning

positions to overlapping generations of teachers. From one period to another, teachers can

either retain their current positions or choose a preferred one. In this framework, a solution

concept that conciliates the fairness criteria with the individual rationality condition is in-

troduced. It is then proved that a fair matching always exists and that it can be reached

by a modified version of the deferred acceptance algorithm of Gale and Shapley. I also show

that the mechanism is dynamically strategy-proof, and respects improvements whenever the

set of orders is lexicographic by tenure.

The second essay studies economies with indivisible goods and budget-constrained agents

with unit-demand who act as both sellers and buyers. In prior literature on the existence

of competitive equilibrium, it is assumed the indispensability of money, which in turn im-

plies that budgets constraints are irrelevant. A new condition, Money Scarcity (MS), is

introduced. The condition considers agents’ budget constraints and ensures the existence of

equilibrium. Moreover, two mechanisms to find a competitive equilibrium are analyzed: an

extended version of Gale’s top trading cycles algorithm and of the exact auction mechanism

of Demange, Gale and Sotomayor. Under MS, the first mechanism is strategy-proof; the sec-

ond is not. The MS condition is strengthened to guarantee the existence of Nash equilibria

in the revelation game induced by the second mechanism, where the outcome coincides with

the assignment found by the first mechanism; moreover, this assignment is Pareto efficient.

The last essay studies unraveling in labor markets, and in matching markets in general.

Unraveling is a phenomenon by which matches are made too early. They are made at a point

in time when there is too little information about the quality of a match. In particular, the

essay investigates the role of impatience as a factor driving unraveling in two-sided matching

markets. A two-period Bayesian game where firms and workers can contract in either period

is considered. In the first period qualities are unknown and this uncertainty is resolved just

prior to the second period. In order to decide whether or not to make early offers, firms

compare the expected utility of each decision and use their discount factors. The number

6



of firms that will unravel is unknown since discounts factors are agents’ private information.

Moreover, there is a negative externality imposed on the rest of the market by agents who

make match early. As a consequence, an agent may make an early offer because she is

concerned that others are making early offers. Yet other agents make early offers because

they are concerned that others worry about early offers; and so on and so forth. The end

result is that any given agent is more likely to make an early offer than a late offer.
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Chapter 2

A Dynamic School Choice Model

2.1 Introduction

Since David Gale and Lloyd Shapley published their famous paper “College admissions and

the stability of marriage” (Gale and Shapley (12)), many authors have studied assignment

problems in different contexts. Therefore, there is an extensive literature on allocation

problems, which primarily considers static models. In contrast, there are many real-life

applications where the assignment is made in a dynamic context. Some examples are on-

campus housing for college students, in which freshmen apply to move in and graduating

seniors leave (Kurino (15)), kidney exchange of patients, in which each agent arrives with

an object to trade (Ünver (21)), and firms with workers whose entry and exit lead to a

reassignment of fixed resources (Bloch and Cantala (4)). In this paper we study a dynamic

version of the well-known school choice model. Specifically, our model assigns school positions

to overlapping generations of teachers. In each period, the central authority must assign

positions to teachers, taking into account each school’s priority ranking and the previous

matching. From one period to another, teachers can either retain their current positions or

choose a preferred one. Hence, the central authority faces a dynamic allocation problem.

The original motivation for this paper is an assignment problem faced by the Mexican Min-

This chapter was written under the supervision of David Cantala. I am very are grateful to him for

encouragement and guidance. I also thank Jordi Masssó, Szilvia Papäı, Federico Echenique, Christine Daley,

Kaniska Dam, Juan Dubra, Alexander Elbittar, Rafael Treibich, Francis Bloch, Emerson Melo, SangMok Lee,

Fuhito Kojima, Edwin van Gameren, Juan Gabriel Brida, Juliana Xavier, Andrés Sambarino and Rodrigo

Velez for their comments and suggestions and the seminar participants at École Polytechnique, Economics

Department at Universidad de la República de Uruguay and El Colegio de México for discussions.
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istry of Public Education. In May 2008 the Mexican Federal Government, through the

Ministry of Public Education, signed an agreement with the National Education Workers

Union called “The Alliance for the Quality of Education”.1 Part of the agreement was the

creation of the National Contest for the Allocation of Teaching Positions, a mechanism to

assign teachers to teaching positions. As a consequence of this agreement, teachers looking

for a position in the public education system are required to sit an exam. According to

each teacher’s grade, the central authority ranks teachers and then assigns each a teaching

position. Specifically, under the mechanism used by the central authority, all open positions

(that is, positions that are not already assigned) are offered to the first teacher in the rank-

ing. Once this first ranked teacher chooses a school, remaining open positions are offered to

the second teacher, and so on. Moreover, any teacher that had been previously assigned a

position may choose to retain it over the new positions that are offered, but if she chooses

a new one, her previous position becomes “open”. In Appendix A we present an example

with an application of this mechanism. It is worth noting that the algorithm is not a sort of

“You-request-my-house-I-get-your-turn” (Abdulkadiroğlu and Sönmez (1)) since a position

that was assigned to a teacher in a previous period, cannot be asked by another teacher until

the teacher who is assigned to it, moves to another position. Thus, the central authority

applies a variant of the serial dictatorship mechanism, which takes into account that some

teachers are initially assigned a position. In 2012, 134,704 teachers participated in the exam

in order to obtain a position.

Cantala (5) shows that the mechanism has some major flaws (see Appendix A for an illus-

trative example). In particular, a teacher can profit in a period after she enters the market

by misrepresenting her preferences. This implies that the mechanism is not dynamically

strategy-proof: it can be manipulated by teachers. Another flaw is that the mechanism does

not respect improvements made by teachers (Balinski and Sönmez, (3)), that is, a teacher

may increase her order in one school’s priority ranking, but be assigned to a worse position.

Finally, Cantala (5) shows that the mechanism is not efficient. In this paper, we study

1More information is available at http://www.concursonacionalalianza.org
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the described problem within a more general framework in order to cast some light on the

resource allocation problem faced by the Mexican Ministry of Public Education.

A central concept in matching theory is stability: a matching is stable if there does not

exist any unmatched teacher-school pair (i, s) such that i prefers s to the school that she

is assigned to and there exists a teacher assigned to s who has a lower priority at s than

i. In school choice models, this concept is usually referred to as the elimination of justified

envy (Abdulkadiroğlu and Sönmez (2)) and embodies a notion of fairness. In addition to

elimination of justified envy, since we cannot assign a teacher to a less preferred school than

the one where she is teaching, we have to address the individual rationality condition. We

present a new solution concept to accommodate these concepts.

In order to define our solution concept, we consider the claims that could exist in a match-

ing. A teacher has a claim over a school if there exists a school that she prefers over her

assignment, and she has higher priority for it than one of the assigned teachers. Note that

a matching eliminates the justified envy if and only if there is no claim in the matching.

Moreover, we consider two kinds of claims. If the teacher in the preferred school was not

assigned to it in the previous period, we say that it is a justified claim. On the contrary,

if the teacher was assigned to the school in the previous period, the claim is considered

inappropriate. Observe that the last type of claim is inappropriate due to the individual

rationality restriction. Finally, our solution concept is as follows. We say that a matching

minimizes inappropriate claims if:

- it is individually rational, non-wasteful (whenever a teacher prefers a school to her own

assignment, that school already has all its positions filled), and does not have justified claims;

and

- if there are inappropriate claims, the following must hold: there is no other matching that

satisfies the three previous properties and one inappropriate claim is solved without creating

a new one.
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It is worth noting that Mexican Ministry of Public Education did not propose an explicit

fairness concept and, also, that the mechanism which is used by this central authority does

not satisfy the last definition.

In this context, we show that within the set of matchings that minimize inappropriate

claims, there is a unique matching Pareto superior to all other matchings. In order to

find it, a modified version of the deferred acceptance algorithm of Gale and Shapley is

introduced. Before applying the algorithm, we modify each school’s priority ranking by

moving teachers who had been assigned to the school in the previous period to the top of

the school’s priority ranking.2 With these new orders we define the related market in which

the deferred acceptance algorithm is applied.

A new dynamic version of strategy-proofness is introduced. The classic concept in static

matching problems only makes reference to the benefit in one period. Our notion of strategy-

proofness is dynamic in the sense that it involves not only the period when the teacher enters

the market but also all the later periods while she is in the market. In our framework, teachers

reveal their preferences in the period in which they enter the market. In the following periods,

they cannot modify the announced preferences. We prove that if each school’s priority

ranking is lexicographic by tenure, that is, if teachers who were present in the previous period

have priority over new teachers, then the proposed mechanism is dynamically strategy-proof.

Finally, it is shown under the same condition that the mechanism also respects improvements

made by teachers. Our concept of respecting improvements involves not only the period

when the teacher improves her position in the ranking (like the classic notion), but also

every following period.

Our model assumes that teachers’ preferences are time invariant, that is, teachers reveal their

preferences entering the market and do not change from one period to the other. Although

the assumption of time-invariant preferences is strong in many real-life applications, we think

2The idea was originally introduced by Guillen and Kesten (13). Compte and Jehiel (7) also use the same

idea.
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that it fits the market studied in the paper. The assumption reflects two teachers’ behavioral

patterns present in this market. In the first place, we know that most teachers that work

in rural areas want to settle in a big city. The reason for this behavior is that residing in a

big city implies better standards of living and more educational opportunities for teacher’s

children.3 Thus, even if a teacher begins to work in a small town, she wants to change the

school where she is assigned to in order to be closer to the capital city of the State where

she works. In the second place, once a teacher is assigned to a school in a city, changes

from one school to another are spare. In this sense, descriptive statistics on Mexico City

presented by de Ibarrola et al. (8), support the idea that teachers’ preferences are stable.

In Mexico City there are 64,000 teacher positions and in each year 5,500 new positions are

created. Therefore, it is possible to change from one school to another. Nevertheless, 82.3%

of teachers in Mexico City had their first position in that city, 35.3% never changed the school

where they started to teach and, another 37.5% changed their appointment no more than

three times during their careers. Thus, there is some evidence that teachers’ preferences are

stable over time in the Mexican market of public school teachers, although the assumption

may not be valid in other markets.4

All the results about the existence of a matching that minimizes inappropriate claims and

the proposed mechanism can be easily extended to the case in which the time-invariant

preferences assumption does not hold. The extension is straightforward since those results

refer to the static problem of our model and thus, they only use the information of the

period. When preferences change over time, however, our analysis over strategy-proofness

and respecting improvements does not carry over.5

As we mentioned, the literature on matching is mostly devoted to static matching problems

(see, for example, the excellent surveys of Roth and Sotomayor (19) and, Sönmez and Ünver

3There are also teachers who want to go back to their home town. We are very grateful with Manuel Gil

Antón and Rodolfo Ramı́rez for information on this issue.
4It is worth noting that there is no national data about teachers’ preferences.
5See Section 2.7 for a discussion.
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(20)). Recently, some articles have presented assignment problems in dynamic contexts.

Kurino (15) is closest to our model. The author introduces a model of house allocation with

overlapping agents and analyzes the impact of orderings on Pareto efficiency and strategy-

proofness. In this sense, it is shown that under time-invariant preferences, orders that favor

existing tenants perform better, in terms of Pareto efficiency and strategy-proofness, than

those that favor newcomers. The concept of an order that favors existing tenants defined by

this author is similar to our concept of school’s priority ranking lexicographic by tenure and in

relation to the mechanism proposed in this paper, it is a spot mechanism with property-rights

transfer, according to Kurino’s classification. Nevertheless, there are three main differences

that distinguish our work from Kurino’s (15). In the first place, we consider a fairness

concept. We are interested in matchings that minimize inappropriate claims because each

school’s priority ranking should be taken into account. In the second place, since fairness is

a key concept in our analysis, instead of the top trading cycles algorithm studied by Kurino

(15), we focus in the deferred acceptance algorithm of Gale and Shapley. Finally, Kurino’s

general results about the top trading cycles mechanism are restricted to the case in which

agents live two periods. Indeed, in the general case where agents stay in the market for at

least three periods, the main properties of the top trading cycles spot rule favoring existing

tenants are no longer valid. In contrast, our positive results are valid in the general case.

The rest of the paper is organized as follows. In Section 2, we introduce the ingredients

of our model and the main concepts. Section 3 is devoted to the existence of a solution

to our problem. In the next section, the proposed mechanism is introduced. Sections 5

and 6 analyze dynamics problems that arise in the model: dynamic strategy-proofness and

respecting improvements properties. In Section 7, we present the conclusions and directions

for future research.
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2.2 Preliminary definitions

2.2.1 The Model

We consider the allocation of teaching positions to overlapping generations of teachers. Time

is discrete, starts at t = 1, and lasts forever. In each period, there is a set of schools denoted

by S. Each school s ∈ S has qs positions, and in each period, some of them can already be

assigned.6 Additionally, we have the null school, denoted by s0, which will be used to assign

no school to teachers; we suppose that s0 is not scarce. Denote by I t the set of teachers in

period t. Note that I t changes over time because in each period some teachers may exit the

market while new teachers may enter.

Another ingredient of the model is a set of strict priority orders of all teachers, denoted by

>t ≡ {>t
s}s∈S ,which includes one different order for each school. When teacher i has priority

over j to choose a position in school s in period t, we write i >t
s j. We suppose that the

relative order of teachers for each school does not change over time, that is, if i >t
s j at some

t, then i >τ
s j for all τ such that i, j ∈ Iτ .7.

Each teacher has preferences defined over a single period, and the comparisons of sequences

of assignments that are considered are made period by period. Formally, we suppose that

preferences over path of schools are time separable.8 Then, each teacher i ∈ I t has a complete

and transitive preference relation over S ∪ {s0}, denoted by %i, and �i is the induced strict

preference relation over the same set. Teachers reveal their preferences in the period in which

they enter. In the following periods their announced preferences remain constant. Let Λ be

the domain of admissible preference relations of each teacher. A preference profile at t is an

element of the Cartesian product of the set of preferences of all teachers present at t, that

is, an element of Λ|It|; we denote by � = (�i)i∈It a preference profile at t.9

6We will use also the notation qi to refer to the number of positions of school si.
7As it is common in this type of model, we assume that each school’s priority ranking is responsive (see

Roth and Sotomayor (19) for more details)
8See Kurino (15) for a discussion about this assumption.
9Although formal notation would be �t, to simplify it we will not use the subindex t.
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2.2.2 Matchings

A matching at t is an assignment of teachers to schools such that every teacher is assigned

one school, and no school has more teachers assigned than positions, i.e., a function µt :

I t → S ∪ {s0} such that
∣∣µ−1t (s)

∣∣ ≤ qs for each s ∈ S. To indicate that teacher i is matched

to school s in period t, we write µt(i) = s. LetMt be the set of all matchings in period t. A

submatching is a matching with restricted domain, i.e., a function νt : J ⊂ I t → S ∪ {s0}.

In the initial period, we have a set of teachers (denoted by I1E ⊂ I1), each of whom is

initially assigned to a school. The initial assignment can be considered as a submatching in

which each teacher in the set I1E is matched to her school. Hence, we describe the initial

submatching of period 1 as a function ν1 : I1E → S such that ν1(i) = s if and only if i is

initially matched to school s. For any period t ≥ 2, the initial submatching, denoted by νt,

is defined by the matching of the previous period; that is, given the matching of the previous

period µt−1 and sets S, I t, we have νt = µt−1 | I tE with I tE = µ−1t−1(S)∩ I t.10 Clearly, at each

t we have
∣∣ν−1t (s)

∣∣ ≤ qs for all s. Note that I t \ I tE is the set of teachers who do not hold

positions and are competing to hold one.

Given a matching µt−1, sets S, I t, the number of positions in each school {qs}s, the set of strict

orders >t= {>t
s}s , and the preference profile at t �, an overlapping teacher placement

problem is represented by M t = 〈S, {qs}s , I t, µt−1,�, >t〉 . Notice that the problem M t

defines the initial submatching of period t, since νt = µt−1 | I tE and I tE = µ−1t−1(S)∩ I t if t ≥ 2

(for t = 1 we have µ0 ≡ ν1). A solution of an overlapping teacher placement problem is a

matching.

A mechanism is a systematic procedure that assigns a matching for each problem; that is, a

function ϕ such that ϕ (〈S, {qs}s , I t, µt−1,�, >t〉) ∈ Mt, for any problem 〈S, {qs}s , I t, µt−1,

�, >t〉. We will often abbreviate notation by omitting most of the arguments and we will

write ϕ (I t,�) . We believe that this abuse does not confuse and it makes the notation more

manageable.

10Here µt−1 | ItE means the restriction of function µt−1 to the set ItE .
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An economy is defined by the set of schools S and its positions {qs}s, an initial submatching

ν1, sequences of sets {I t}t , preference profiles {�}t = {(�i)i∈It}t, strict priority orders of all

teachers for each school {>t}t and finally, the mechanism, denoted by ϕ. Note that in the

context of our model, the mechanism is included in the economy because the matching in

one period links this period with the one following. Specifically, the matching in one period

determines the initial submatching for the next period. Therefore, the mechanism plays the

role of a transition rule between periods. Finally, note that an economy defines the problem

of each period.

2.2.3 Acceptability

In this section we define some properties that a matching should verify. We combine two

traditional concepts present in the literature. On the one hand, since there are incumbent

teachers in our model, we cannot assign a teacher to a less preferred school than the one where

she is teaching. Therefore, a matching should satisfy the individual rationality condition, as

defined in Abdulkadiroğlu and Sönmez (1). On the other hand, we must respect the strict

priority order of all teachers for each school. Hence, a matching should eliminate justified

envy, as defined by Abdulkadiroğlu and Sönmez (2).

Consider a period t of the model. The information in that period is given by M t = 〈S, {qs}s ,

I t, µt−1, �t, >t〉. Then, the initial submatching of period t is defined by I tE = µ−1t−1(S)∩ I t

and νt = µt−1 | I tE. In order to present the solution concept adopted for the problem M t, we

first define the concepts of individual rationality and non-wastefulness:

- A matching is individually rational if no teacher prefers the null school option or the school

she was initially assigned to her newly assigned school.

- A matching is non-wasteful if whenever a teacher prefers a school to her own assignment,

that school already has all its positions filled.

Next, we consider the claims that could exist after the matching. We say that a teacher
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has a claim over a school if she prefers that school over her own assignment and if a lower

ranked teacher (in the priority order) has been assigned to that school. Moreover, two kinds

of claims may occur. The formal definitions are the following.

Definition 1. A matching µt is individually rational if:

i) µt(i) %i s0, for all i ∈ I t,

ii) µt(i) %i νt(i), for all i ∈ I tE.

Definition 2. A matching µt is non-wasteful if whenever a teacher i ∈ I t exists and a school

s, such that s �i µt(i) then
∣∣µ−1t (s)

∣∣ = qs.

Definition 3. Given a matching µt, teacher i has a justified claim over school s if:

i) i prefers s to her assignment: s �i µt(i), and

ii) there exists a teacher k assigned to s such that i has priority over teacher k in the school’s

ranking, and k was not assigned to s in the previous period; that is: ∃ k ∈ I t such that

µt(k) = s, i >t
s k, and k /∈ ν−1t (s).

We say that a matching eliminates the justified claims if there is no justified claim in

the matching.

The last definition takes into account that teacher i has justified envy of the assignment

of teacher k. We define the claim as justified because the teacher who is assigned to the

preferred school, in the previous period was assigned to another school and thus, she is not

an incumbent teacher. Clearly, the existence of justified claims is an undesirable situation

that the solution concept should prevent. Also note that if a teacher in the preferred school

was assigned to it in the previous period, the claim is inappropriate, because as an incumbent

she has the right to continue in that school.
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Definition 4. Given a matching µt , teacher i has an inappropriate claim over school s if:

i) i prefers s to her assignment: s �i µt(i), and

ii) there exists a teacher k assigned to s, such that i has priority over teacher k in the

school’s ranking, and k was assigned to s in the previous period; that is: ∃ k ∈ I t such that

µt(k) = s, i >t
s k, and k ∈ ν−1t (s).

We say that a matching eliminates the inappropriate claims if there is no inappropriate

claim in the matching.

Let Γ(µt) be the set of all inappropriate claims in matching µt, that is: Γ(µt) = {(i, s) ∈ I t×S,

such that i has an inappropriate claim over s in µt}.

The usual definition of a fair matching (also called stable) implies that there are no claims

in the matching (neither justified nor inappropriate). As we note in the next example, for

some markets there may not exist a fair matching.

Definition 5. A matching is fair if it is individually rational, non-wasteful and eliminates

both justified and inappropriate claims.

Example 1. Consider the following problem with S = {s1, s2}, q1 = q2 = 1, I t = {i, j}, νt =

{(i, s1)}, and the following preferences (from best to worst) and orders:
�i �j
s1 s1

s2 s2



>t

1 >t
2

j j

i i


The unique individually rational matching is:

µt =

 i j

s1 s2

 .
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Note that in this matching teacher j has an inappropriate claim over s1. Thus, there is no

fair matching in this market. �

The new ingredient in our model is the existence of incumbents whose rights should be

considered. Thus, we need to relax the definition of a fair matching in order to adapt it

to our framework. The next definition enumerates the minimal desirable properties that a

matching should verify in order to be a solution to the problem M t.

Definition 6. A matching is acceptable if it:

i) is individually rational,

ii) is non-wasteful, and

iii) eliminates the justified claims.

Let Ct ⊂Mt denote the set of all acceptable matchings.

On the one hand, inappropriate claims should not be considered from a fairness perspective

since they do not proceed because of the incumbents’ rights. On the other hand, when

an inappropriate claim is solved without creating a new one, the new matching is Pareto

superior. Roughly speaking, an inappropriate claim (i, s) can be settled by reallocating

teacher i to a school better than s or by changing the teacher who is assigned to s with

another teacher with priority for s over i. In this last case, since the new matching should

be individually rational, the teacher who was originally assigned to s should be reallocated

to a better school. If these modifications are made such that no other inappropriate claim

is created, then the new matching is Pareto superior to the original matching. Thus, from

an efficiency point of view, is desirable a matching that minimizes the inappropriate claims.

The following example points out this remark.11

11The link between inappropriate claims and efficiency will be clear after we prove Lemma 2. In that

Lemma we prove that if a matching is Pareto superior to another matching, then the set of inappropriate

claims of the first matching is included in the set of inappropriate claims of the other matching
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Example 2. Consider the same problem of Example 1, but with the following preference for

teacher i: �i= (s2, s1).

The following matchings are acceptable:

µ1
t =

 i j

s1 s2

 and µ2
t =

 i j

s2 s1

 .

Note that Γ(µ2
t ) = ∅ ( Γ(µ1

t ) = {(j, s1)}. Thus, µ2
t solves the claim present in µ1

t , without

creating a new one. Also note that all agents prefer their assignment in µ2
t at least as well

as their assignment in µ1
t . Therefore, µ2

t is Pareto superior to the other matching �

We refine the concept of acceptability based on the situation illustrated by the last exam-

ple. We introduce a new solution concept, minimization of inappropriate claims, which is

fair-consistent: if there is a fair matching (i.e., an acceptable matching with no claims), it

is selected. In those cases where there is no fair matching (which means that all acceptable

matchings have at least one inappropriate claim) the criterion is to minimize the inappropri-

ate claims. If all acceptable matchings have the same inappropriate claims, then all of them

are selected. However, if there are two acceptable matchings such that the set of inappro-

priate claims of one matching is strictly included in the set of inappropriate claims of the

other matching (as in the last example), the solution concept chooses the first matching. In

this situation, the criterion implies that the selected matchings are no Pareto dominated by

others matchings. The solution concept is the following.

Definition 7. A matching µt minimizes inappropriate claims:

i) if it is acceptable, and

ii) there is no acceptable matching µ′t such that Γ(µ′t)(Γ(µt).
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If there is an acceptable matching without inappropriate claims (that is, a fair matching)

then, by the previous definition, it minimizes inappropriate claims. Also notice that the

concept does not imply a utilitarian perspective.

Although minimization of inappropriate claims is also related with improving efficiency, the

link is not straightforward. Indeed, a matching that minimizes inappropriate claims could be

Pareto dominated by another matching with the same property: if there are no incumbents

in the market, all acceptable matchings minimize inappropriate claims, but some of these

matchings are Pareto dominated by others. In fact, as we will prove in the next Section,

within the set of matchings that minimize inappropriate claims, there is a unique matching

Pareto superior to all other matchings.

2.3 Existence

In order to prove the existence of a matching that minimizes inappropriate claims, we in-

troduce the concept of related market. We want to apply the deferred acceptance (DA)

algorithm of Gale and Shapley to obtain an individually rational matching. With that pur-

pose, we modify each school’s priority ranking. In each new priority ranking, we have two

groups of teachers. The first group in the new ranking is the set of teachers who had been

assigned to the school in the previous period, and the second is the remaining teachers.

Within each group, the order is defined by the original ranking >t
s . With these new orders,

we define the related market in which the DA algorithm is applied. By Ergin (11) Proposi-

tion 1, we know that the outcome of the DA algorithm adapts to the order structure: there

is no teacher such that there is a school that she prefers over her assignment, and she has

priority for it over one of the assigned teachers. Next, we prove that the DA outcome is

an acceptable matching in the original market. Finally, since the set Ct is finite and not

empty, we choose one acceptable matching with the fewer number of claims; then we find a

matching that minimizes inappropriate claims.
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Definition 8. Let M t = 〈S, {qs}s , I t, µt−1,�, >t〉 be an overlapping teacher placement problem.

For each school s ∈ S with priority ranking >t
s, let’s define the following order of all teachers,

denoted by Ot
s(M t), in the following way: for each pair i, j ∈ I t and s ∈ S, if

1. i, j ∈ ν−1t (s) the order is defined by >t
s, that is i Ot

s(M t) j ⇔ i >t
s j,

2. i ∈ ν−1t (s) and j /∈ ν−1t (s), then i Ot
s(M t) j, and

3. i, j ∈ I t�ν−1t (s) the order is defined by >t
s, that is i Ot

s(M t)j ⇔ i >t
s j.

Let Ot(M t) = {Ot
s(M t)}s∈S be the set of all such orders indexed by the school. Then, given

a problem M t = 〈S, {qs}s , I t, µt−1,�, >t〉 , the related market is 〈S, {qs}s , I t,�, Ot(M t)〉.

We will often abbreviate notation by omitting the argument M t of the new orders Ot
s.
12

Given a problem M t = 〈S, {qs}s , I t, µt−1,�, >t〉 and the related market 〈S, {qs}s , I t,�, Ot〉 ,

we have all elements to apply the DA algorithm of Gale and Shapley (12) to the related

market. The algorithm works as follows:

Step 1. Each teacher proposes to her top choice. Each school s rejects all but the best

qs teachers among those teachers who proposed to it. Those that remain are “tentatively”

assigned one position at school s.

In general,

Step k. Each teacher who is rejected in the last step proposes to her top choice among those

schools that have not yet rejected her. Each school s rejects all but the best qs teachers

among those teachers who have just proposed and those who were tentatively assigned to it

at the last step. Those who remain are “tentatively” assigned one position at school s.

The algorithm terminates when no teacher proposal is rejected. Each teacher is assigned to

her final tentative assignment.

12The idea of the related market in which position-specific priorities are modified was originally introduced

by Guillen and Kesten (13).
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When we apply the DA algorithm, since
∣∣ν−1t (s)

∣∣ ≤ qs, if µt(k) 6= νt(k) for some k ∈ ν−1t (s),

then µt(k) �k νt(k). That is, using orders Ot(M t) and applying the DA algorithm, we obtain

an individually rational matching.

Following Ergin (11), we present the next definition.

Definition 9. Given an overlapping teacher placement problem 〈S, {qs}s , I t, µt−1,�, >t〉 and

the related market 〈S, {qs}s , I t,�, Ot〉 , we say that matching µt violates the priority of

i for s, if there is a teacher h such that µt(h) = s, s �i µt(i) and i Ot
s h. The matching µt

adapts to Ot if it does not violate any priorities.

The relation between a matching that adapts to Ot and an acceptable matching is straight-

forward, as we prove in the next lemma.

Lemma 1. Given an overlapping teacher placement problem M t = 〈S, {qs}s , I t, µt−1,�, >t〉

and the related market 〈S, {qs}s , I t,�, Ot〉 , a matching is acceptable (relative to the problem

M t) if and only if it adapts to Ot (regarding the related market) and it is non-wasteful.

Proof. (⇒) An acceptable matching is, by definition, non-wasteful. Then, suppose that µt is

acceptable but violates the priority of i for s. Then, there is a teacher j such that µt(j) = s,

s �i µt(i) and i Ot
s j. We have two cases: i >t

s j or j >t
s i. The latter implies that i was

originally assigned to school s, that is i ∈ ν−1t (s), but this violates the individual rationality

assumption. The first implies that both i and j were originally assigned to school s, since

µt is an acceptable matching. But, once again, the latter violates the individual rationality

assumption for the assignment of i.

(⇐) Suppose that µt adapts to Ot and is non-wasteful, but it is not acceptable. Then we

have two cases: µt is not individually rational or there is a justified claim in µt. In the first

case, suppose that i is such that s = νt(i) �i µt(i). Since matching µt is non-wasteful, we

have teacher j, such that j /∈ ν−1t (s) and µt(j) = s. But then, i Ot
s j, and µt does not adapt
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to Ot. If there is a justified claim in µt, we have two teachers i, j and a school s, such that

µt(j) = s �i µt(i), i >t
s j and j /∈ ν−1t (s). But then i Ot

s j and µt does not adapt to Ot.

Therefore, the problem of finding an acceptable matching in our original framework is equiv-

alent to finding a matching that adapts to Ot and is non-wasteful in the related market.

Proposition 1. Given an overlapping teacher placement problem 〈S, {qs}s , I t, µt−1,�, >t〉,

there is an acceptable matching.

Proof. Given the related market 〈S, {qs}s , I t,�, Ot〉 , we apply the DA algorithm. It is well

known (see Ergin (11), Proposition 1), that the outcome of the algorithm is a matching that

adapts to Ot. It is easy to show that the outcome is also non-wasteful. Then, by Lemma 1,

we have an acceptable matching in the problem 〈S, {qs}s , I t, µt−1,�, >t〉.

Corollary 1. Given an overlapping teacher placement problem 〈S, {qs}s , I t, µt−1,�, >t〉 ,

there always exists a matching that minimizes inappropriate claims.

Proof. We know that Ct is nonempty and finite. For each matching µt ∈ Ct , compute

|Γ(µt)| . Therefore, we have a finite set of real numbers; take µ′t ∈ Ct such that |Γ(µ′t)| ≤

|Γ(µt)| , for all µt ∈ Ct. Then, µ′t minimizes inappropriate claims.

We know that in every problem, there is one matching that minimizes inappropriate claims.

One easily finds examples in which there is more than one matching with this property.

It is a classic result of matching theory that the outcome of the DA algorithm satisfies that

every agent prefers her partner at this outcome at least as well as the partner of any other

acceptable matching. (It is said that the matching is agent-optimal in the subset of accept-

able matchings.) Then we know that DA outcome is Pareto superior to any other matching

that minimizes inappropriate claims. If we proved that the outcome of the DA algorithm

minimizes inappropriate claims, we would prove that it is also the best matching that min-

imizes inappropriate claims, because it is a well-known result that if preferences are strict,
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there is only one acceptable matching Pareto superior to any other acceptable matching.13

This is the purpose of the following results.

Lemma 2. Given an overlapping teacher placement problem 〈S, {qs}s , I t, µt−1,�, >t〉, con-

sider the outcome of the DA algorithm, denoted by µGSt , when it is applied to the related

market 〈S, {qs}s , I t,�, Ot〉. Then µGSt minimizes inappropriate claims.

(See Appendix for a proof).

Since preferences are strict, we have the following characterization theorem.

Theorem 1. Given an overlapping teacher placement problem 〈S, {qs}s , I t, µt−1,

�, >t〉, a matching that minimizes inappropriate claims is Pareto superior to

any other matching that minimizes inappropriate claims if and only if it is the

outcome of the DA algorithm (applied to the related market).

2.4 A Mechanism

As we have defined, an economy includes a mechanism, because the dynamics of our problem

are defined by the relation between the matching of one period and the initial assignment of

the following one. We know that the outcome of the DA algorithm is the best matching, in

the sense that within the set of matchings that minimize inappropriate claims it is Pareto

superior to all other matchings. Then, we have the following definition.

Definition 10. The teacher proposing deferred acceptance mechanism is the mech-

anism that assigns to each overlapping teacher placement problem 〈S, {qs}s , I t, µt−1,�, >t〉

the outcome of the DA algorithm when it is applied to the related market 〈S, {qs}s , I t, �, Ot〉 .

Definition 11. The teacher proposing deferred acceptance economy is an economy in

which the mechanism is the teacher proposing deferred acceptance mechanism.

13See Ergin (11), Proposition 1, and Balinski and Sönmez (3), Theorem 2.
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Definition 12. A mechanism minimizes inappropriate claims if it always selects a match-

ing that minimizes inappropriate claims. An economy minimizes inappropriate claims

if the used mechanism minimizes inappropriate claims.

The previous sections show that if we restrict our attention to economies that minimize

inappropriate claims, the best economy in terms of efficiency is the teacher proposing deferred

acceptance economy. And we also know that essentially it is the unique economy with that

property. Hence, we have the following proposition.

Proposition 2. A mechanism minimizes inappropriate claims and is Pareto superior

to any other mechanism that minimizes inappropriate claims, if and only if it is

the teacher proposing deferred acceptance mechanism.

In the next two sections, we study some dynamic properties of the proposed mechanism.

2.5 Dynamic Strategy-Proofness

Suppose that a new teacher enters the market to compete for a position at time t0. A

natural question is whether this new teacher can ever benefit by unilaterally misrepresenting

her preferences. If the DA algorithm is used, it is a well-known result that she cannot benefit

in period t0 by manipulating her preferences (Dubins and Freedman (9); Roth (18)). But,

what can be said about the following periods? Can a teacher benefit, in the following periods,

by sacrificing her school in period t0? After some definitions, we study this issue.

Notation 1. We denote by ϕ [I t,�] (i) the school assigned in period t to teacher i under the

mechanism ϕ.

Definition 13. Suppose an economy S, {qs}s , ν1, {I t}t , {(�i)i∈It}t , {>t}t , ϕ and a teacher i

who enters the market at time t0. We say that the mechanism ϕ is dynamically strategy-

proof if teacher i cannot ever benefit by unilaterally misrepresenting her preferences, that

is: ϕ is dynamically strategy-proof if ϕ[I t,�−i,�i] (i) %i ϕ[I t,�−i,�′i](i) for all i, �−i, �′i
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and for all t ≥ t0 such that i ∈ I t, where �−i are the preferences of teachers in the set

I t� {i} .

Remark 1. The classic concept in static matching problems only makes reference to the

benefit in one period. In our framework, the concept involves not only the period when the

teacher enters the market (and reveals her preferences), but also all the later periods while

she is in the market.

It is interesting to note that a mechanism can be strategy-proof (with the usual static

definition) but not dynamically strategy-proof. Appendix A shows a mechanism with this

property.

As we remarked in the beginning of this section, when the teacher proposing deferred accep-

tance mechanism is used and a new teacher enters the market, she cannot benefit in that

period by misrepresenting her preferences. In this sense, the mechanism is strategy-proof in

the “static” problem. Then, we can wonder if this property is also verified by the mecha-

nism in a dynamic context. In the next example, we prove that in our dynamic model, the

mechanism can be manipulated by teachers.

Example 3. Consider the following problem:

I tE = {j, k} ⊂ I t = {i, j, k} ,

S = {s1, s2, s3} , qi = 1, i = 1, 2, 3, νt = {(j, s2), (k, s3)} , and

the following teacher preferences (from best to worst) and orders:
�i �j �k
s2 s3 s2

s3 s2 s3

s1 s1 s1




>t

1 >t
2 >t

3

i j k

j k i

k i j


Then the outcome of the teacher proposing deferred acceptance mechanism is:

µt =

 i j k

s1 s2 s3


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For the next period assume: I t+1 = {i, j, l},


�l
s2

s3

s1




>t+1

1 >t+1
2 >t+1

3

i j l

j i i

l l j


The matching in this period is:

µt+1 =

 i j l

s1 s2 s3


Suppose that instead of her true preferences, teacher i reveals the following preferences:

�′i= (s2, s1, s3). Then the matching generated in each period is:

µ′t =

 i j k

s1 s3 s2

 µ′t+1 =

 i j l

s2 s3 s1


Since µ′t+1(i) = s2 �i µt+1(i) = s1, teacher i can benefit by unilaterally misrepresenting her

preferences. �

Let’s examine the last example more closely. By revealing other preferences, teacher i can

manipulate the initial submatching of period t+1. When she reveals �′i, teacher j is assigned

in period t to school s3. Then j has priority over new teacher l to school s3 even when she

is lower ranked than the new teacher. If i reveals her true preferences, new teacher l has

priority over j to school s3, then j is rejected from that school and she proposes to s2, causing

the rejection of i from that school. It is easy to see that this case is also possible when there

is a unique priority order of all teachers, that is: when >t
s= >t for all s and t. However,

as we will prove in the next theorem, if at each school’s priority ranking teachers that were

present in the previous period have priority over new teachers, then the teacher proposing

deferred acceptance mechanism is dynamically strategy-proof. We first define this property

and then we present our positive result.
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Definition 14. A set of orders {>t
s}s∈S is lexicographic by tenure if for all teachers i, j ∈ I t,

whenever i ∈ I tE, and j /∈ I tE then i >t
s j for all schools s ∈ S.

In an overlapping teacher placement problem 〈S, {qs}s , I t, µt−1,�, >t〉 in which the set of

orders >t= {>t
s}s∈S is lexicographic by tenure, each order in the related market consists of

three groups of teachers. The first group in the order is the set of teachers who were assigned

to the school; then we have the set of teachers who were assigned to another school in the

previous period. Finally, we have the new teachers. Within each group, the order is defined

by the original priority ranking >t
s .

Definition 15. An economy is dynamically strategy-proof if the used mechanism is

dynamically strategy-proof.

Theorem 2. Let S, {qs}s , ν1, {I t}t , {(�i)i∈It}t , {>t}t , ϕ be the teacher proposing de-

ferred acceptance economy. If in each t the set of orders {>t
s}s∈S is lexicographic

by tenure, then the economy is dynamically strategy-proof.

(See Appendix for a proof).

2.6 Respecting Improvements

In this section, we study another important property of mechanisms, namely, respecting

improvements. We say that a mechanism does not respect improvements made by teachers

if a teacher may increase her place in one school’s priority ranking, everything else remains

unchanged, and yet she is punished with a less preferred assignment (Balinski and Sömnez

(3)). In Appendix A, we present a mechanism that does not respect improvements. In this

section, we study whether or not the teacher proposing deferred acceptance mechanism has

this property.

Definition 16. An overlapping teacher placement problem 〈S, {qs}s , I t, µt−1,�, >̃
t
s′ , {>t

s}s 6=s′〉

is an improvement for teacher i over another problem
〈
S, {qs}i , I t, µt−1,�, >t

s′ , {>t
s}s 6=s′

〉
,
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if i >t
s′ j implies that i >̃t

s′ j , and for all teachers k, h different from i, we have that

h>̃t
s′k ⇔ h >t

s′ k.

According to Definition 16, an improvement for a teacher is basically the original placement

problem with the only difference being that the teacher possibly has a higher priority in

some school’s priority ranking.

Definition 17. A mechanism respects improvements if for any teacher i and 〈 S, {qs}s , I t,

µt−1, �, >̃t
s′ , {>t

s}s 6=s′〉 an improvement for that teacher over another problem 〈S, {qs}s , I t,

µt−1, �, >t
s′ , {>t

s}s 6=s′〉, the position assigned by the mechanism to teacher i in each period

since the improvement (that is, in all periods τ ≥ t) is, for teacher i, at least as good as

the position assigned in each period beginning with the problem 〈S, {qs}s , I t, µt−1, �, >t
s′ ,

{>t
s}s 6=s′〉. That is, let µt denote the matching selected by the mechanism in the problem with

>t
s′ and µ̃t the selected matching in the problem with >̃t

s′ . Then the mechanism respects

improvements if µ̃τ (i) %i µτ (i) for all τ ≥ t.

Remark 2. The comment of Remark 1 also applies to this definition. Our concept of respect-

ing improvements involves not only the period when the teacher improves her place in the

priority ranking (as in the classic notion), but also every following period while she is in the

market.

It is worth noting that there is no relation between the properties of respecting improve-

ments and dynamic strategy-proofness. Consider the static problem; on the one hand, the

mechanism described in the introduction is strategy-proof but does not respect improve-

ments made by teachers (see Appendix A.1). On the other hand, it is straightforward to

find a mechanism that respects improvements but is not strategy-proof. Now consider the

dynamic problem and a mechanism that is both strategy-proof and respects improvements

(in the static problem). We can wonder if there is any relation between both properties

in the dynamic problem. One easily finds examples of mechanisms that satisfy only one of

these properties. Hence, there is no relation between these two properties, neither in the

static problem nor in the dynamic one.
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In the next example, we show that the problem described in the previous section also appears

with this property.

Example 4. Consider the same problem of Example 3 and suppose another problem with

the same elements, but in which the order of school s3 is: >̄t
3 = (k, j, i). Denote by M t

and M̄ t the problem of Example 3 and its modification, respectively. Then, problem M t

represents an improvement for teacher i over M̄ t. The outcome of the teacher proposing

deferred acceptance mechanism for each problem is (µt corresponds to the problem M t and

µ̄t to M̄ t):

µt =

 i j k

s1 s2 s3

 µ̄t =

 i j l

s1 s3 s2


In the next period, we have >̄t+1

3 = (l, j, i) and the following matchings:

µt+1 =

 i j k

s1 s2 s3

 µ̄t+1 =

 i j l

s2 s3 s1


Note that µ̄t+1(i) �i µt+1(i). Then, although teacher i improves her position in the ranking

of school s3, she is assigned in period t+ 1 to a less preferred school. �

As we will prove in the next theorem, if the set of orders is lexicographic by tenure, the

mechanism respects improvements.

Definition 18. An economy respects improvements if the used mechanism respects im-

provements.

Theorem 3. Consider a teacher i and 〈 S, {qs}s , I t, µt−1, �, >̃
t
s′ , {>t

s}s 6=s′〉, an improve-

ment for that teacher over another problem 〈S, {qs}s , I t, µt−1, �, >t
s′ , {>t

s}s 6=s′〉.

Denote by µ̃t and µt matchings selected by the teacher proposing deferred ac-

ceptance mechanism in each problem. Then µ̃t(i) %i µt(i). Moreover, if in each

period τ ≥ t the set of orders is lexicographic by tenure, then the teacher propos-

ing deferred acceptance economy respects improvements.

(See Appendix for a proof).
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2.7 Concluding Remarks

We conclude with a brief discussion about efficiency. A matching µt is Pareto efficient

(or simply efficient) if there is no other matching that makes all teachers present at t

weakly better off and at least one teacher strictly better off. A mechanism is efficient if,

for any preference profile, it always selects an efficient matching. Then, one can wonder

if the mechanism proposed in our model is efficient. We use a result from Ergin (11) to

address this question: a cycle for a given priority structure Ot is constituted of distinct

schools s, s′ ∈ S and teachers i, j, k ∈ I t, such that i Ot
s j O

t
s k O

t
s′ i. By Theorem 1 of

Ergin (11), we know that the DA mechanism is Pareto efficient if and only if the priority

structure is acyclical (that is, the priority structure has no cycle). In our problem, under

the assumption that in each period there are at least three teachers, each of whom was

assigned to a different school in the previous period, the priority structure of the related

market Ot always has at least one cycle. Let i, j, k ∈ I tE with νt(i) = s, νt(j) = s′ and

νt(k) = s′′, then i Ot
s j O

t
s k Ot

s′′ i or i Ot
s k Ot

s j Ot
s′ i, but in each case there is a

cycle. Finally, applying the mentioned theorem, we know that the proposed mechanism is

not Pareto efficient. However, it is important to stress that the outcome of DA algorithm

is Pareto efficient in the subset of acceptable matchings. Moreover, since within the set

of matchings that minimize inappropriate claims, the DA outcome is the unique matching

Pareto superior to all other matchings, we have the following result: if in each period there

are at least three teachers, each of whom was assigned to a different school in a previous

period, there is no efficient mechanism that minimizes inappropriate claims.

The last result stresses the classic tradeoff between efficiency and fairness (see Abdulkadiroğlu

and Sönmez (2)). Roughly speaking, one has to choose between one of these properties. In

our model, we consider fairness as more important since once a teacher is assigned to a school,

she cannot be changed unless she is assigned to a preferred school. In this sense a violation

of the fairness condition has consequences in future periods. There are other mechanisms

that select Pareto efficient matchings. Gale’s top trading cycles mechanism (described in

Abdulkadiroğlu and Sönmez (1)) is one of them.
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In this paper, we have developed a new framework to model a dynamic school choice problem

with overlapping generations of teachers. In each period, the central authority must assign

teachers to teaching positions. Two elements must be considered in the assignments: the

schools’ priority rankings and previous assignments. From one period to another, teachers

are allowed either to retain their current position, or to choose a preferred one (if available).

Hence, the central authority faces a dynamic allocation problem.

The dynamics of our model are defined by the mechanism. The matching in one period links

this period with the following one because it determines the initial submatching for the next

period. In this framework, we introduced a new solution concept which is very natural in our

context. We have proved that a matching that minimizes inappropriate claims always exists

and that it can be reached by a modified version of the deferred acceptance algorithm of

Gale and Shapley. In particular, the algorithm is applied to a related market in which each

school’s priority ranking is modified to obtain an individually rational matching. In relation

to the properties of the mechanism, we proved that if the set of orders is lexicographic by

tenure, it is dynamically strategy-proof and respects improvements made by teachers.

The mechanism proposed in this paper can be easily implemented in the real-life market since

it is based on the DA algorithm which is widely used in practice.14 Also, the mechanism

implies an improvement upon the mechanism which is actually applied. Indeed, the teacher

proposing deferred acceptance mechanism fixes all the problems that the used mechanism

has. As we noted in the Introduction, the mechanism used by the central authority in the

problem studied in this paper is an individually rational variant of the serial dictatorship.

The outcome of this mechanism may create a situation in which a new teacher has justified

envy in the resulting matching. Indeed, it may happen that a new teacher i prefers the school

µt(j) over her assignment and that i has priority over j and j is not an incumbent teacher.

This unfair situation is avoided under the mechanism that we propose. Moreover, the out-

come of the teacher proposing deferred acceptance mechanism is Pareto superior to any

other matching that minimizes inappropriate claims. These two properties additionally to

14See Roth (16) for a list of different markets that use the DA algorithm.
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dynamic strategy-proofness and respecting improvements, promote the proposed mechanism

as an excellent substitute to the mechanism actually used. Although we have to convince

authorities about the benefits of implementing the teacher proposing deferred acceptance

mechanism, the properties that this mechanism has is a promising beginning.

Although the time-invariant preferences assumption fits the analyzed case, it should be

reconsidered if one wants to study other markets. In this sense, it is reasonable to suppose

that agents’ preferences may evolve by learning and an option which was initially one of the

top choices of the agent, in a later period it may lose ranking positions. The same comment

applies to the schools’ priority rankings: poorly performing teachers may be ranked below

their initial ranking position. An important restriction is the individual rationality: a teacher

cannot be assigned to a less preferred school than the one she is teaching and in this sense,

she cannot be considered as a new teacher.

The mechanism we propose can be extended to the case where teachers’ preferences may

change over time. Indeed, suppose that preferences evolve and in each period, the clearing-

house asks teachers for their preferences. In this framework, the mechanism introduced in

this paper allows for exchanges that improve efficiency. In particular, suppose that teacher

i who was assigned to school s1, with time she prefers s2, while j who is teaching at s2, now

prefers s1. By Theorem 1, we know that the outcome of the mechanism is Pareto superior

to any other matching that minimizes inappropriate claims. Then, if teachers i and j are

allowed to express their new preferences, they may exchange their positions.

However, the concept of strategy-proofness should be reconsidered. First note that if one

wants to encompass time-evolving preferences, under the definition of dynamic strategy-

proofness stated in the paper, there is no dynamically strategy-proof mechanism that always

selects an individually rational and acceptable matching. In this sense, consider the following

example.

Example 5. Suppose there are no incumbent teachers in the market, two new teachers (i and
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j) and two schools. Consider the following preferences and orders:
�ti �tj
s1 s2

s2 s1



>t

1 >t
2

i i

j j


The matching selected by the mechanism is:

µt =

 i j

s1 s2

 .

Suppose that in period t + 1, teacher i changes her preferences and prefers school s2 to s1,

while teacher j has the same preferences. The unique individually rational matching in t+ 1

is µt. But, if i declares in period t school s2 as preferred to s1, then she is assigned to that

school in both periods. Therefore, the mechanism is not dynamically strategy-proof, because

teacher i benefits in period t+ 1 if she reports other preferences �

In the last example, we assume that teachers know their future preferences. The study of the

case where each agent only knows her current preferences, requires a deeper analysis. Some

articles that investigate matching models with incomplete information are: Chakraborty et

al. (6), Ehlers and Massó (10) and Roth (17). Although the study of a model with incomplete

information goes beyond the scope of the present work, Example 3 shows that also in that

framework, strategy-proofness requires orders to be lexicographic by tenure. Otherwise, the

mechanism can be manipulated by teachers via the initial submatching of the next period.

15

Finally, it would be interesting to study the performance of the proposed mechanism in large

markets. In this sense, the model of Kojima and Pathak (14) can be used to analyze the

properties of the teacher proposing deferred acceptance mechanism in large markets.

15These manipulations are mainly made by lying about the relative ranking positions of the schools not

assigned to the teacher. Note also that overstating the preference for a school to which the teacher is assigned,

is not profitable since the individually rational restriction.
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2.8 Appendix

A.1 The weaknesses of the mechanism used by Mexican Ministry of Public

Education.

Suppose there are four schools S = {s1, s2, s3, s4} , each one with only one position and four

teachers present in the market at time t : I t = {i, j, k, l} . Assume that teachers k and l were

assigned in a previous period to schools s3 and s4, respectively. Teacher preferences (from

best to worst) and the ranking are (where �h are preferences of teacher h):

�i �j �k �l
s3 s4 s1 s2

s1 s2 s3 s3

s2 s3 s2 s4

s4 s1 s4 s1





>t

i

k

l

j


That is, teacher i ’s most preferred school is s3, her second choice is s1, and so on. We also

have that the first teacher in the ranking is i, the second k, the third l, and the last j. If we

use the mechanism described in the introduction, the matching in this market is (the school

below each teacher is her assigned school):

µt =

 i j k l

s1 s4 s3 s2


Assume that in the next period, teachers k and l exit the market and two new teachers

enter. Then we have I t+1 = {i, j,m, n} , >t+1= (m, i, n, j). The preferences of new teachers

are �m= (s1, s3, s4, s2) and �n= (s2, s4, s1, s3). Then, the outcome of the mechanism is:

µt+1 =

 i j m n

s1 s4 s3 s2


Next we will show how a teacher can benefit by manipulating her preferences. Suppose that

instead of her true preferences, teacher i reveals the following preferences: �′i= (s3, s2, s1, s4).
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Hence, the outcome of the mechanism in each period is:

µ′t =

 i j k l

s2 s4 s1 s3

 and µ′t+1 =

 i j m n

s3 s4 s1 s2


Note that µ′t+1(i) �i µt+1(i), and then teacher i benefits in period t + 1 by misrepresenting

her preferences. Hence, the mechanism is not dynamically strategy-proof. The second flaw

we will illustrate is that the mechanism does not respect improvements made by teachers.

Suppose that teacher i, instead of being the first in the ranking >t, has a worse performance

and she is the second in the ranking. Specifically, assume that at period t the ranking of

teachers is: >̃t = (k, i, l, j). Then the outcome of the mechanism is:

µ̃t =

 i j k l

s3 s4 s1 s2


Therefore, it is better for teacher i to have a lower order in the ranking, because if she

increases her position in the ‘priority order,’ like in >t, she will be punished with a worse

position.�

A.2 Proof of Lemma 2

Proof. If Γ(µGSt ) = ∅, the proof is complete. Otherwise, we already know that µGSt is

acceptable. Suppose that it does not minimize inappropriate claims; then, we have another

acceptable matching µt, such that Γ(µt)( Γ(µGSt ). Since µGSt is Pareto superior to µt :

µGSt (i) %i µt(i) ∀i and there is a teacher h such that µGSt (h) �h µt(h). We claim that in

this case Γ(µGSt ) ⊂ Γ(µt), but this contradicts the last relation. Suppose there is a pair

(i, s) ∈ I t × S, such that (i, s) ∈ Γ(µGSt ) but (i, s) /∈ Γ(µt). Then we have a teacher j, such

that µGSt (j) = s �i µGSt (i) = s′, i >t
s j and j ∈ ν−1t (s). As (i, s) /∈ Γ(µt), we have two cases:

µt(i) %i s or j /∈ µ−1t (s). The first case implies µt(i) %i s �i µGSt (i), but it is not possible

since µGSt is Pareto superior to all acceptable matchings. In the second case, it must be

µGSt (j) = s = νt(j) �j µt(j), but then µt is not individually rational. Finally, we prove that

Γ(µGSt ) ⊂ Γ(µt).

38



A.3 Proof of Theorem 2

Proof. The proof of the theorem is built on the following observation.

Let I tt′ be the set of teachers at period t who joined the market at period t′ ≤ t. If the

priority structure is lexicographic by tenure, the outcome of the teacher proposing deferred

acceptance mechanism becomes the same as the outcome of the following procedure:

Step 0: Teachers in I t0 propose to schools under DA (using the strict priority >t
s of each

school s) and a matching is produced. The capacities of the schools are updated by sub-

tracting the positions that are filled.

Step t′ ≤ t: Teachers in I tt′ propose to schools (with their unfilled capacities) under DA

(using the strict priority >t
s of each school s) and a matching is produced. The capacities of

school are updated by subtracting the positions that are filled.

To prove the equivalence between the previous procedure and the teacher proposing deferred

acceptance mechanism, fix a period t, a school s and two teachers i and j. We have two

cases to study: both teachers joined the market at the same period or one of them, say i,

joined before j. In the first case, suppose i >t
s j. Then, the strict priority order of school

s used by each mechanism can be different if and only if, teacher j was assigned to school

s at the previous period and i was assigned to another school. In the second case we have

a similar situation, teacher i has priority for all school over j in the alternative mechanism

while in the teacher proposing deferred acceptance mechanism j has priority over i if and

only if j was assigned to s in t− 1 and i was not. In both cases we will prove that teacher i

does not propose to school s when the teacher proposing deferred acceptance mechanism is

used. Since this mechanism selects an individually rational matching, it is enough to prove

that µt−1(i) �i s. Suppose, to the contrary, that s �i µt−1(i) and be l the period when

teacher j was assigned to school s. Then we have µl(j) = s �i µl(i) and also i >l
s j since

orders are lexicographic by tenure; but this implies that the matching is not acceptable, a

contradiction.
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Then, once priorities are assumed to be lexicographic by tenure, at period t a teacher in I tt′

only competes with other teachers in the same set. Teachers in I tt′ , by changing their reported

preferences, cannot influence, in the described procedure, which positions at schools remain

after Step t′ − 1. To complete the proof just note that when a teacher competes with

other teachers that enter in the same period that she enters, strategy-proofness is a direct

consequence of the classic results from Dubins and Freedman (9) and Roth (18).

A.4 Proof of Theorem 3

Proof. For the first period, the result is similar to the one presented in Balinski and Sömnez

(3), Theorem 5. For the sake of completeness, we include the adapted proof. Fix a problem

M t =
〈
S, {qs}s , I t, µt−1,�, >t

s′ , {>t
s}s 6=s′

〉
and another problem M̃ t = 〈 S, {qs}s , I t, µt−1,

�, >̃t
s′ , {>t

s}s 6=s′〉, that represents an improvement for teacher i. Let µt denote the matching

selected by the teacher proposing deferred acceptance mechanism in the problem M t and µ̃t

the one selected in the problem M̃ t.

We shall prove that µ̃t(i) %i µt(i). Suppose that µt(i) �i µ̃t(i) and let µt(i) ≡ s1. Denote by

Õt the set of strict priority orders in the related market for the problem M̃ t. In the related

market of each problem, we know that Ot
s = Õt

s for all s 6= s′, j Ot
s′ k ⇐⇒ j Õt

s′ k (with

j, k 6= i), if i Ot
s′ k then i Õt

s′ k and if j Õt
s′ i then j Ot

s′i.

First, note that µt does not adapt to Õt because we know that µ̃t is Pareto superior to any

other matching that minimizes inappropriate claims. Suppose that teacher i announces the

following preferences �′i: s1 �′i s0 �′i s for all s 6= s1 and consider the following problem 〈

�j 6=i,�′i, >̃
t
s′ , {>t

s}s 6=s′〉, that is, problem M̃ t which represents an improvement for teacher i

but with the preferences defined before. We will prove that µt is a matching that minimizes

inappropriate claims in the problem 〈 �j 6=i,�′i, >̃
t
s′ , {>t

s}s 6=s′〉.

Claim 1: µt is individually rational. As µt is individually rational in the problem M t,
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then for any teacher j 6= i that reveals the same preference in both problems we have

µt(j) % jµt−1(j) if j ∈ I tE or µt(j) % js0 if j is a new teacher, and teacher i is assigned to

her top school.

Claim 2: µt adapts to Õt. Matching µt cannot violate the priority of a teacher different to

i, otherwise the same priority would be violated by µt in the problem M t. Indeed, suppose

there is a teacher j 6= i and a school s such that s �j µt(j) and j Õt
s h with µt(h) = s.

But then s �j µt(j) and j Ot
s h with µt(h) = s and µt is not an acceptable matching in the

problem M t. Clearly, matching µt cannot violate any priority of i because she is assigned to

her top school.

Claim 3: The school assigned to teacher i by the teacher proposing deferred acceptance

mechanism in the problem 〈 �j 6=i,�′i, >̃
t
s′ , {>t

s}s 6=s′〉 is s1. To prove this claim just note that

the DA algorithm satisfies that every teacher prefers his assigned school at this outcome

at least as well as the school that she is assigned in any other matching that minimizes

inappropriate claims and in µt, which minimizes inappropriate claims in this problem, teacher

i is assigned to her top school s1.

Claim 4: In the problem M̃ t teacher i can benefit by misrepresenting her preferences.

Indeed, if i announces her true preferences, she is assigned to school µ̃t(i), but when she

announces preferences �′i, she is assigned to µt(i) �i µ̃t(i). Then the teacher proposing

deferred acceptance mechanism is not strategy-proof, a contradiction.

Since the observation made in the last proof, the proof for the following periods is straight-

forward. An improvement for a teacher in I tt′ does not influence, in the alternative procedure,

which positions at schools remain after Step t′−1. Then, given that in each period a teacher

only competes with teachers that enter the market in the same period that she entered, if the

teacher improves her place in one school’s priority ranking, the teacher proposing deferred

acceptance mechanism will not assign her to a less preferred school.
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México. Mimeo El Colegio de México.
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Chapter 3

Housing Markets with Endogenous

Budget Constraints

3.1 Introduction

This paper is aimed at studying economies with indivisible goods and budget-constrained

agents with unit-demand who act as both sellers and buyers. Important examples of markets

with indivisible goods include housing and automobile markets, the market for video games,

and collectors’ markets (e.g., fine art, stamps). The single unit-demand assumption best

applies to a housing market where agents own a house and have a certain amount of money,

and seek to sell their house to buy another. In this market, budget constraints are endogenous

because each agent’s total resources depend on the selling price of her house. Thus, agents

endowed with an indivisible good, endogenous budget constraints and unit-demands, are

important features of housing markets.

Recently, Milgrom (15) presented a model which extends the Assignment Game of Shapley

and Shubik (20) in three important ways: agents may buy or sell multiple types of goods

simultaneously, they may trade any integer number of units of each type of good and they

may buy some goods and sell other. However, as the author asserts, the assignment message

This chapter was written under the supervision of David Cantala. I am very are grateful to him for

encouragement and guidance. I also thank Atila Abdulkadiroğlu, Grisel Ayllón, Kaniska Dam, Juan Dubra,

Federico Echenique, Alexander Elbittar, Paula Jaramillo, Çağatay Kayı, Jordi Massó, Hervé Moulin, Antonio

Nicolò and Rodrigo A. Velez for their comments and suggestions and seminar participants at UAB, El Colegio

de México, Universidad de Montevideo, Rice, Texas A&M and XIII Latin-American Workshop in Economic

Theory for discussions.
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space used in his model does not allow buyers to express directly a budget limit. Additionally,

Milgrom argues that the case of indivisible goods is relevant because: “Even when goods are

perfectly divisible, contracts are often denominated and traded in whole numbers of units,

so the ability to respect integer constraints may be useful even in those applications.”16

The contribution of the paper is twofold. First, we explore the existence of competitive

equilibrium, complementing the analysis of Quinzii (17). Second, we extend and study two

classical mechanisms, the exact auction mechanism of Demange, Gale and Sotomayor (6)

and the top trading cycles with price setting.

3.1.1 Existence

In the literature on economies with indivisible goods, a widely-used assumption is the in-

dispensability of money (IM). This condition, originally stated by Quinzii (17), says that

agents should retain some of their initial amount of money in order to attain a utility level

higher than their initial one. According to Quinzii (17), under the IM condition, competitive

equilibrium exists. At equilibrium, an agent either trades and, under the IM assumption,

keeps some of her endowment in money, which implies that her budget constraint does not

bind; or she does not trade, in which case money restriction is irrelevant. Thus, under the IM

condition, budget constraints never bind and then, previous studies that adopt the condition

do not consider effective budget constraints.

Let us examine the IM condition more closely. In the first place, it implies, as Wako (24)

asserts, that there is no active exchange unless some agents have divisible goods (money).

However, in some markets without money, for example the housing market of Shapley and

Scarf (19), there exists a competitive equilibrium which can be found by the top trading

cycles algorithm. In the second place, as we just mentioned, under that assumption each

agent’s budget constraint does not bind, which is far from reality, in particular in housing

markets.

16Milgrom (15), page 96.
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Two main problems arise when the IM does not hold. First, the existence of competitive

equilibrium is not guaranteed. Second, even if a competitive equilibrium exists, there is

no adequate mechanism to find it. The Exact Auction Mechanism of Demange, Gale and

Sotomayor (6), which finds an equilibrium in the classic Assignment Game, when it is applied

to some of the economies considered in this article, prices rise indefinitely and the algorithm

does not stop.17

The difference in valuations of goods is the yardstick for evaluating if there is a lot or little

money in the economy. If for any agent, the amount of money she owns is larger than any

of her differences, there is abundance of money. Scarcity, on the contrary, is evaluated at

the aggregate level. Roughly, money is scarce if the summation of money in the economy is

smaller than any difference in valuations, for any agent.

At equilibrium prices, no good is overdemanded. When agents are rich enough, the mech-

anism of Demange, Gale and Sotomayor (6) always produces an equilibrium by increasing

prices of goods which are minimally overdemanded, and holding others constant. The idea

is simply to make agents indifferent between an increasing numbers of goods. Once indiffer-

ences are sufficiently widespread in the economy, all agents can be assigned one of her top

choices, meaning that an equilibrium exists. The procedure does not extend when agents

face budget constraint since rising prices might lead some demand to disappear.

When money is suitably scarce, prices cannot raise sufficiently 1) to make agents indifferent-

so that we keep a lot of heterogeneity in the economy- 2) to make an agent switch from her

top affordable choice for a very cheap but less preferred good. Thus, the main source of

richness is the endowment of good, and the assignment produced by TTC is an equilibrium

assignment.

17Since the model we study differs from the Assignment Game analyzed by Demange, Gale and Sotomayor

(6), their mechanism is not the one used in this paper. However, since we apply the algorithm stated by

these authors, we abuse notation by referring as Demange, Gale and Sotomayor mechanism the application

of their algorithm in our model.
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The central conditions analyzed in this paper are the Money Scarcity (MS) and its Strong

(SMS) and Weak (WMS) versions. The key components of these concepts include one

related to the scarcity of money and other related to the number of steps in the top trading

cycles algorithm. Formally, if the top trading cycles algorithm consists of k steps, the WMS

condition says that the difference between each agent’s valuation for two goods should be

greater than or equal to the sum of the initial amount of money held by the rest of agents, plus

k− 1. Thus, the condition requires that each agent should consider goods as heterogeneous,

and is independent of the agent’s endowment in money and also of the initial distribution

of money. The MS condition is slightly stronger: it takes into account the total amount of

money, including the agent’s endowment. Finally, the strong version replaces the number of

steps in the top trading cycles algorithm with the total number of agents. Whereas the IM

can be viewed as an assumption of abundance of money in the economy, these conditions

assume the opposite.

The WMS condition ensures the existence of competitive equilibrium: an allocation of goods

to agents and a price vector such that all goods are assigned to one and only one agent who

demands it, and each agent satisfies her budget constraint. The intuitive understanding

behind this result is the following. The assignment of goods is found by the top trading

cycles algorithm, which defines a partition of the set of agents; each subset consists of agents

that exit the market in the same step of the algorithm (although they might belong to

different trading cycles). In order to find a competitive equilibrium, prices are set according

to the step at which goods leave the market: goods that leave first have a higher price.18 But

each agent’s endowment in money should also be considered. Then, all goods that leave the

market in the last step are assigned a price of zero; for goods that leave in step t, the assigned

price is the highest endowment in money of agents that leave the market in step t+ 1, plus

the price assigned in that step, plus one. This method implies that goods with the highest

price are those that leave the market in the first step. The WMS condition guarantees that

this procedure defines a competitive equilibrium since no agent has incentives to sell her

18The idea is adopted from Shapley and Scarf (19)
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good and buy another with lower price and, although an agent may prefer another good over

the one she is assigned to, she cannot afford it. Thus, Quinzii’s result on the existence of

competitive equilibrium is extended to cases where the IM does not hold and utility functions

are quasi-linear.

3.1.2 Mechanisms

Two mechanisms are considered to find a competitive equilibrium which are extended ver-

sions of the top trading cycles algorithm, and of the Exact Auction Mechanism of Demange,

Gale and Sotomayor (6). When agents’ endowment in money are common knowledge, the

extended version of the top trading cycles is strategy-proof under the MS condition; this

result means that truthful revelation is a weakly dominant strategy for each agent in the

preference revelation game induced by this mechanism. Then, we show that the mechanism

of Demange, Gale and Sotomayor does not satisfy that property, and a set of Nash equilibria

for the revelation game induced by this mechanism is found. Using the SMS condition we

obtain this result, specifying a link between the mechanisms, since the assignment of goods

in a Nash equilibrium coincides with the assignment found by the extended version of the

top trading cycles mechanism, and it is thus Pareto efficient.

Finally, we identify certain conditions under which the mechanism of Demange, Gale and

Sotomayor finds a competitive equilibrium. It is shown that under the MS condition, this

mechanism always finds a competitive equilibrium in a market with three agents, but may fail

in a more general setting. Then, we posit a stronger condition for each agent’s valuations in

order to show the convergence of the mechanism to a competitive equilibrium in the general

case.

An important field of application for these mechanisms is on-campus housing at universities.

In this problem, a number of dormitory rooms has to be allocated to a group of students;

there are existing tenants (students who are occupants of a room), new applicants, and

vacant rooms. Abdulkadiroğlu and Sönmez (1) first studied this problem. They introduce
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a class of mechanisms to find an assignment: the top trading cycles mechanisms. The

literature assumes that rents are exogenously given (see Miyagawa (16), Kesten (11) and,

Sönmez and Ünver (21)).19 Suppose the following situation. Incoming freshmen arrive and

each one is assigned to an available room (according to the assignment policies of the central

clearinghouse). Then, some of these students or some existing tenants may want to exchange

their rooms. We introduce a mechanism which, based on the cardinal utility of each student,

finds the reassignment of rooms to students and the rent of each room. Moreover, the price

vector and the new assignment is a competitive equilibrium at which no student pays a

higher rent than in the initial assignment. The mechanism is strategy-proof, and thus there

is no point in misrepresenting preferences.

3.1.3 Related literature

Shapley and Shubik (20) introduce the Assignment Game under the assumptions that there

is a bipartition in the set of agents, sellers and buyers, and that no agent has ever problems

to “pay the bill”. The authors analyze, in the first place, the core of the economy; that is,

those allocations of goods such that no coalition of agents can find another allocation which is

preferred by all its members, and, in the second place, the set of competitive equilibria. They

prove that the core is nonempty and its equivalence with the set of competitive equilibria.

In the same line, Shapley and Scarf (19) present a model without money in which each agent

owns one indivisible good and wants to exchange it for another. They show that the market

has nonempty core and at least one core allocation can be decentralized as a competitive

equilibrium (and thus, there is a competitive equilibrium of the model). This last result is

proved using an algorithm called the top trading cycles, due to David Gale.

Quinzii (17) presents a model that embeds the two previous models. In her article there are

two types of agents, those that have an endowment consisting in one indivisible good and a

19Miyagawa (16), for instance, studies the house allocation problem and, although monetary transfers are

allowed, the price of each object is fixed in advance.
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certain amount of money and those that only have money. She proves that the core of the

market is not empty. To show the equivalence of the core and the set of competitive equilibria,

Quinzii (17) supposes that the IM condition holds.20 The condition can be understood as

abundance of money: if agents initially have a lot of money, they would not give up all of

their money to buy any object. Since Quinzii (17) many articles have worked under this

assumption, for instance: Lars-Gunnar (13), van der Laan et al. (23), Beviá et al. (4), Yang

(25), Saitoh (18) and Hwang and Shih (10).

Wako (24) allows for scarcity of money and studies the strong core of the economy; that is,

those allocations such that no coalition of agents can find another allocation at which no

member is worse off and at least one of them is strictly better off. He shows that the strong

core always coincides with the set of competitive equilibria. However, if the IM assumption

does not hold, both the strong core and the set of competitive equilibria can be strictly

included in the core and also can disappear in some cases. Thus, the assumption is crucial

to guarantee the existence of a competitive equilibrium.

A closely related work is Demange, Gale and Sotomayor (6), which studies the Assignment

Game of Shapley and Shubik (20). The paper introduces a dynamic auction mechanism,

named the Exact Auction Mechanism, to find a competitive equilibrium. It is shown that

prices obtained by the mechanism are the minimum equilibrium prices. Also, it is well-known

that the mechanism is strategy-proof (Demange and Gale (5)). This paper discusses on the

extension of this mechanism to Quinzii’s model in which budget-constrained agents act as

both sellers and buyers.

The model that we study is a special case of the one presented by Quinzii (17). In the first

place, we assume that all agents initially own one indivisible good and a certain amount of

money. In Quinzii’s model there are also agents that only have money and do not own any

good. In the second place, we assume quasi-linear utility functions while Quinzii allows for

general utility functions, although continuous and non decreasing with respect to the quantity

20The same results, but using different arguments, are showed by Gale (7)
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of money. Finally, we restrict our attention to the integer case. The main difference from

Quinzii (17) is that the IM is not assumed.

The rest of the paper is laid out as follows. The next section presents an example of the prob-

lems addressed in the paper. Section 3 sets up the model and introduces the main concepts.

Section 4 describes the two mechanisms that are analyzed and presents the main condition

that guarantees the existence of a competitive equilibrium. The following section studies

some strategic properties of the two mechanisms introduced before. Section 6 concludes.

3.2 An illustrative example

This section presents an example that illustrates the main problems studied in the rest

of the paper. Suppose an economy with four agents: {a1, a2, a3, a4}, and four indivisible

goods: {g1, g2, g3, g4}. Each agent initially owns one good and a certain amount of money.

The valuation of each agent for each good and her initial amount of money is given by the

following matrix (the element in the ith row and the jth column, denoted by αij, is the

valuation of agent i for good j and the last column is the initial amount of money owned by

each agent).

g1 g2 g3 g4 ω

a1 1 10 19 28 4

a2 1 11 21 31 3

a3 1 34 23 12 2

a4 25 37 13 1 1

Assume that agent ai initially owns good gi and her utility by holding an amount of money

m and good gj is, αij +m. Suppose that each agent has no use for more than one indivisible

good. This example is included in the model analyzed by Quinzii (17). However, note that

the example does not satisfy the IM condition. Indeed, agent a1 by holding good g2 and

without saving money enjoys an utility level higher than her initial one (which is 5).
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Let us try to find a competitive equilibrium applying the mechanism of Demange, Gale and

Sotomayor (6) (DGS). The mechanism uses the concept of minimal overdemanded set. A set

of goods is overdemanded if the number of agents demanding goods only in the set is greater

than the number of goods. In each step a price vector is announced and each agent’s demand

set (the set of affordable goods that maximize agent’s utility) is computed. If it is possible

to assign each good to an agent who demands it, the mechanism already finds a competitive

equilibrium and stops. Otherwise, a minimal overdemanded set (an overdemanded set with

the property that none of its proper subset is overdemanded) is located and the price of

each good in this set is raised by one unit. Then, each agent’s demand set is computed.

If there are no budget constraints (or, if the IM condition holds) the model reduces to the

Assignment Game and, as Demange, Gale and Sotomayor (6) show, the mechanism stops

and finds a competitive equilibrium.

Next figure shows the demand set of every agent (denoted by Di(p1, p2, p3, p4)) in each step

of the mechanism.

Di(0, 0, 0, 0) Di(0, 1, 0, 0) Di(0, 2, 0, 0) ... Di(0, 7, 5, 5)

a1 4 4 4 1

a2 4 4 4 4

a3 2 2 2 2

a4 2 2 1 1

Di(1, 7, 5, 5) Di(1, 7, 5, 6) Di(1, 8, 5, 6) Di(1, 8, 6, 6) ...

a1 4 3 3 1

a2 4 4 4 4

a3 2 2 3 2

a4 1 2 1 1

Note that when the mechanism reaches the price vector p = (0, 7, 5, 5), it enters in a loop

and prices rise continuously. Thus, the mechanism fails to find a competitive equilibrium.
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The previous example raises some important questions. First, it is not clear why the mech-

anism does not stop. It could be that there is no competitive equilibrium in the economy.

Or, if there is a competitive equilibrium, it could be that the mechanism is not the adequate

to find it. An additional difficulty is that we are interested in competitive equilibria with

integer prices because our aim is to study the performance of the DGS mechanism.

3.3 The model

3.3.1 Agents and goods

We consider an economy with n agents, n indivisibles goods and a perfectly divisible good or

money. Each agent initially owns a certain amount of money and one and only one indivisible

good.

Let A be the set of agents and G the set of goods. We identify a generic agent with ai or i

and a generic good with gj or j. Each agent i ∈ A = {1, 2, ..., n} initially holds good i and

has an amount of money ωi ≥ 0. Thus, the endowment of agent i is ei = (ωi, gi).

We suppose that each agent has no use for more than one indivisible good and that utility is

quasi-linear in money. Agent’s preferences can be represented by a utility function ui defined

on R+ ×G.21 The valuation of agent i for good j is αij. We assume that all valuations are

integers and that no agent has the same valuation for two different goods; that is, for each

agent i it holds αij 6= αih, for all j 6= h. If αij > αih we say that good j is preferred over h

by agent i.

For each agent i, vi is her vector of valuations and V = (αij)(i,j)∈A×G is the matrix of

valuations of all agents. The notation V−i is used to denote the set of valuations of all agents

different from i. Thus, the utility that agent i has by holding a bundle x = (m, gj) composed

with an amount of money m and good gj is ui(x) = m + αij. The initial level of utility of

21By R+ we denote the set of nonnegative real numbers.
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each agent i is ui(ei).

An economy is represented by E = {(ei)i=1,...,n, V }.

3.3.2 Allocations and prices

In what follows we recall some basic definitions.

An allocation is a vector in (R+ × {g1, ..., gn})n. An allocation is feasible if there exists

a permutation σ of the set of indices {1, 2, ..., n} such that the allocation is of the form

((m1, gσ(1)), (m2, gσ(2)),. ..,(mn, gσ(n))) and
∑

imi ≤
∑

i ωi.

A coalition is a nonempty subset S ⊂ A. An allocation {(mi, gj)}i,j∈{1,2,...,n} is feasible for a

coalition S if
∑

i∈Smi ≤
∑

i∈S ωi and there is a permutation σS of S such that for all i ∈ S,

(mi, gj) = (mi, gσS(i)).

The core of the economy is the set of feasible allocations such that no coalition S can find

an allocation feasible for S which is strictly preferred by all its members. The strong core

of the economy consists of those allocations such that no coalition S can find an allocation

feasible for S at which no member is worse off and at least one of them is strictly better off.

We observe that the strong core is a subset of the core.

A price vector is a n−vector with non negatives entries, denoted by p = (p1, ..., pn). We

assume that all prices are integers.

For each price vector p, Bi(p) is the budget set of agent i; that is, is the set of all affordable

goods. Thus,

Bi(p) = {j ∈ G : ωi + pi − pj ≥ 0}.

For each price vector p we define the demand set of agent i by:

Di(p) = {j ∈ Bi(p) : αij − pj ≥ αih − ph, for all h ∈ Bi(p)}.
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That is, a good is an element of an agent demand set if its price satisfies the agent budget’s

constraint and maximizes her utility. Note that Di(p) is a finite and nonempty set for every

price vector.

Definition 1. A competitive equilibrium is a pair consisting of a price vector p and a

feasible allocation (mi, σ(i))i=1,...,n such that for all agent i, σ(i) ∈ Di(p).

The concept of overdemanded set is introduced in Demange, Gale and Sotomayor (6). The

authors define a mechanism which finds a competitive equilibrium in the Assignment Game.

In this mechanism (that ends at the minimum equilibrium price vector), prices are increased

based on information about sets of goods that are overdemanded. A set of goods is overde-

manded if the number of agents demanding goods only in the set is greater than the number

of goods. It is well-known that a necessary condition for reaching a competitive equilibrium

is that there be no overdemanded set (Hall (9)). However, by using information only related

to overdemanded sets, it is not guaranteed that, in general, the mechanism finds a com-

petitive equilibrium.22 Demange, Gale and Sotomayor (6) solved the problem by increasing

prices in a minimal overdemanded set; that is, a set with the property that none of its proper

subset is overdemanded. We finish this section stating these concepts.

For every H ⊂ G and price vector p, the set of agents demanding items only in H is denoted

by O(H, p), formally: O(H, p) = {i ∈ A : Di(p) ⊆ H}.

A subset of items H is an overdemanded set at prices p if |O(H, p)| > |H|.

An overdemanded set at prices p with the property that none of its proper subsets is overde-

manded, is called a minimal overdemanded set.

22See an example in Anderson et al. (3).
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3.4 Competitive equilibrium

In this section, two mechanisms are introduced and the existence of competitive equilibrium

is addressed. We analyze the IM assumption introduced by Quinzii (17) and observe that

under this condition budget constraints are irrelevant. However, when the condition does

not hold we show, by means of an example, that a competitive equilibrium may not exist.

Finally, the main result of this section is presented.

3.4.1 Mechanisms

We start by adapting to our setting the DGS mechanism (originally stated by Demange,

Gale and Sotomayor (6)). In the second place, we describe the top trading cycles mechanism

with price setting, which is used in the proof of the existence theorem.

3.4.1.1 The Demange, Gale and Sotomayor mechanism

The mechanism runs as follows.

Let pt denote the price vector in step t of the algorithm. Set p0 = 0.

Step 1:

1. Input p0.

2. Compute the demand set Di(p
0) for every agent i ∈ A.

3. If there are no overdemanded sets, stop. Otherwise, choose a minimal overdemanded

set S0.

4. Update prices such that: p1i = p0i + 1 for all i ∈ S0 and p1i = p0i for all i /∈ S0.

In general,

Step t:
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1. Input pt−1.

2. Compute the demand set Di(p
t−1) for every agent i ∈ A.

3. If there are no overdemanded sets, stop. Otherwise, choose a minimal overdemanded

set St.

4. Update prices such that: pti = pt−1i + 1 for all i ∈ St and pti = pt−1i for all i /∈ St.

In every step, the mechanism computes each agent’s demand set. If it is possible to assign

each good to an agent who demands it, the mechanism already finds a competitive equilib-

rium and stops. Otherwise, the auctioneer locates a minimal overdemanded set (which exists

by Hall’s theorem) and raises the price of each good in this set by one unit.23 Then, each

agent’s demand set is computed. If there are no budget constraints, Demange, Gale and

Sotomayor (6) show that in any market of the Assignment Game there is a competitive equi-

librium for some prices and the mechanism stops; moreover, the mechanism is strategy-proof

(Demange and Gale (5)).

3.4.1.2 The top trading cycles with price setting

The second mechanism, called the top trading cycles with price setting (TTCPS), consists

of two phases. The first one is the top trading cycles (TTC) algorithm defined by Shapley

and Scarf (19). In the second phase prices are set. The mechanism runs as follows.

Phase 1: Top trading cycles algorithm

A subset C ⊆ A is a top trading cycle if all members of C can be indexed in a cyclic order:

C = {c1, c2, ..., cs = c1} in such a way that each agent cj has in her demand set the cj+1’st

(modulo s) good. Take all prices equal zero and consider a directed graph in which we have

a node for each agent and a directed edge from i to j if and only if agent i demands the

good of agent j. Since for each agent we assume that αij 6= αih for all j 6= h, all nodes have

outdegree equal to 1, and thus, there is at least one cycle and no two cycles intersect. Then

23See Gale (8) for details about this result.
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we partition the set A into a sequence of one or more disjoint sets: A = C1 ∪ C2 ∪ ... ∪ Ck

by taking C1 to be all top trading cycles for A, then taking C2 to be all top trading cycles

for A−C1, then taking C3 to be all top trading cycles for A− (C1 ∪C2), and so on until A

has been exhausted. We call this partition the TTC partition. Note that k, the number of

elements of the partition, is also the number of steps in the TTC algorithm.24 This procedure

defines an assignment of goods in the economy E, called the TTC assignment and denoted

by σTTC(E).

Phase 2: Price setting

Consider the TTC partition, A = C1 ∪ C2 ∪ ... ∪ Ck. We define the following price vector:

For all i ∈ Ck, set pi = 0. Denote by ωk the highest endowment of money of agents in the

set Ck; that is, ωk = maxi∈Ck{ωi}.

For all i ∈ Ck−1, set pi = ωk + 1. Denote by ωk−1 the highest endowment of money of agents

in the set Ck−1; that is, ωk−1 = maxi∈Ck−1{ωi}.

For all i ∈ Ck−2, set pi = ωk + ωk−1 + 2. Denote by ωk−2 the highest endowment of money

of agents in the set Ck−2; that is, ωk−2 = maxi∈Ck−2{ωi}.

And so on until:

For all i ∈ C1, set pi = ωk + ωk−1 + ...+ ω2 + k − 1.

We denote by pTTC the obtained price vector. If no agent has endowment in money, the

price setting procedure reduces to the one stated by Shapley and Scarf (19).

Finally, we have defined an assignment of goods σTTC(E) and a price vector pTTC .

24Note that a top trading cycle may consist of a single agent and that k ≤ n.
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3.4.2 Existence

Quinzii (17) proves that any economy has nonempty core and that the core is equivalent to

the set of competitive equilibria under the IM condition. This condition states that each

no agent can enjoy a utility level higher than her initial utility level, without saving some

money.

Definition 2. An economy E = {(ei)i=1,...,n, V } satisfies the indispensability of money

(IM) condition if αii + ωi ≥ αij for all agent i and good j.

It is worth noting that under the IM condition, budget constraints do not bind. Indeed,

suppose that for a price vector p the good which maximizes the utility of agent i is not

affordable for the agent. Denote by j ∈ G that good. Clearly, this good is not the one

initially held by the agent. We have: αij − pj ≥ αih− ph for all h and ωi + pi− pj < 0, which

is equivalent to pj − pi > ωi. To the extent that this is true for all good h, we have also that

relation for good i: αij − pj ≥ αii− pi, therefore: αij −αii ≥ pj − pi. But since good j is not

reachable for i we have αij − αii ≥ pj − pi > ωi. However, the IM condition implies that for

all i, j, ωi ≥ αij − αii. Therefore, under this condition budget constraints are irrelevant.

Thus, in order to study the effects of agents’ budget constraints we may not assume the

IM condition. But, as we show in the next example, if this condition does not hold, the

existence of a competitive equilibrium is not guaranteed. Wako (24) presents an example

with this result in which all agents are indifferent between two goods. Clearly, the existence

of indifferences in agents’ valuations increases the opportunities to a coalition to weakly

improve upon the allocations. We present a new example in which there are no indifferences

and however, the set of competitive equilibria is empty.

Example 1. Consider A = {a1, a2, a3} and G = {g1, g2, g3} and the following valuations and

initial amounts of money:
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g1 g2 g3 ω

a1 5 1 8 1

a2 1 5 8 2

a3 5 4 3 3

Since Wako (24) we know that the strong core always coincides with the set of competitive

equilibria. Note that there are only two allocations that may be in the strong core: X1 =

((1, g1), (0, g3), (5, g2)) and X2 = ((0, g3), (2, g2), (4, g1)). In the first case, coalition {a1, a3}

can weakly improve allocation X1 with the allocation ((0, g3), (4, g1)). In the second case,

coalition {a2, a3} can weakly improve X2 with the allocation ((0, g3), (5, g2)). Thus, the

strong core of the economy is empty and there is no competitive equilibrium. �

The example raises the question of which condition, different from the IM condition, guar-

antees the existence of a competitive equilibrium. We have noted that the IM condition can

be viewed as abundance of money. It is quite surprising that the key components of the

condition that ensures the existence of equilibrium are one related to the scarcity of money

and the other related to the number of steps in the TTC algorithm.

Definition 3. Consider an economy E = {(ei)i=1,...,n, V }. Suppose that the TTC algorithm

consists of k steps. The economy satisfies the weak version of the money scarcity condi-

tion (WMS) if for any agent i and different goods h, l we have |αih−αil| ≥
∑

j∈A\{i} ωj+k−1.

Some comments about the condition are in order. It requires that each agent should consider

goods as heterogeneous. In the second place, the condition is independent of each agent’s

endowment in money and also of the initial distribution of money. Finally, while the WMS

condition indicates a specific lower bound of the difference between any two valuations, the

IM condition states an upper bound. Indeed, suppose there are two goods j, h and one agent

i such that αij ≥ αii and αih ≥ αii. Then, we have |αij − αih| = |αij − αii + αii − αih| ≤

|αij − αii| + |αii − αih| ≤ 2mi. Thus, the IM condition implies that the difference between
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any two valuations should be lower than the double of the initial amount of money that the

agent has. The main result of this section is the following.

Theorem 1. Consider an economy E = {(ei)i=1,...,n, V }.

1. If E satisfies the IM condition, there is a competitive equilibrium which can be reached

by the DGS mechanism.

2. If E satisfies the WMS condition, there is a competitive equilibrium which can be

reached by the TTCPS mechanism.

Proof. A proof of the first part can be found in Quinzii (17) and Demange, Gale and So-

tomayor (6).

For the second part we have to prove that pTTC and ((ωi, σ
TTC(i))i∈A is a competitive equi-

librium. Fix an agent i and denote by σ(i) the good assigned by the TTC algorithm to this

agent. We shall prove that:

(1) ωi + pi − pσ(i) ≥ 0 and,

(2) αiσ(i) + pi − pσ(i) ≥ αih + pi − ph for all h such that ωi + pi − ph ≥ 0.

Assertion (1) is straightforward since good σ(i) leaves the market with good i and then we

have pi = pσ(i).

For (2), suppose that agent i leaves the market in the step k − r of the procedure (0 ≤

r < k). Then, for all good l such that al leaves the market in the step j < k − r, we have

pl ≥ ps = ωk + ωk−1 + ... + ωk−r + r + 1 for all s such that as ∈ Ck−r−1 with ωk−r ≥ ωi.

Also, pi = ωk + ωk−1 + ... + ωk−r+1 + r. Thus, pi − ps = −ωk−r − 1 = −(ωk−r + 1) with

ωk−r ≥ ωi. This means that i cannot achieve goods of agents that leave the market in any

step j < k − r.

Finally, we have to verify that for any good j such that aj ∈ Ct with t = k − r, ..., k the

following holds: αiσ(i) ≥ αij + pi − pj. By way of contradiction, suppose there is a good

j ∈ Ct with t = k− r, ..., k such that αiσ(i) < αij + pi− pj. Then, 0 ≤ αiσ(i)−αij < pi− pj ≤
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pi = ωk +ωk−1 + ...+ωk−r+1 +r. Since r ≤ k−1, we have that αiσ(i)−αij < ωk +ωk−1 + ...+

ω2 + k− 1 ≤
∑

j∈A\{i} ωj + k− 1. Thus, we conclude that αiσ(i)−αij <
∑

r∈A\{i} ωr + k− 1,

which is a contradiction.

Theorem 1 shows that there is a discontinuity in the existence of competitive equilibrium in

relation to the total amount of money that initially exists in the economy. If there is abundant

money in the economy (IM condition) or if money is very scarce (WMS condition), there is

a competitive equilibrium. For other cases between those situations (for instance, Example

1), we cannot guarantee the existence of a competitive equilibrium. Also, as we note in the

following example, the WMS condition cannot be relaxed.

Example 2. Consider the following economy.

g1 g2 g3 g4 ω

a1 1 25 13 37 4

a2 1 25 13 37 2

a3 1 25 13 37 3

a4 25 1 13 36 1

In the first place, note that the WMS condition holds for agents a1, a2 and a3. For agent a4,

the condition does not hold because α44−α41 = 11 <
∑3

i=1 ωi+3 = 12. It is straightforward

to verify that the unique allocation in the core of the economy is ((4, g1), (2, g2), (3, g3), (1, g4)).

In Appendix A.1 we prove that there is no integer price vector p such that the allocation

defined previously and prices p are a competitive equilibrium.25 Thus, we conclude that

there is no competitive equilibrium in this economy. �

Note that price vector pTTC satisfies that pi = pσ(i) for all agent i. Thus, at the competitive

equilibrium found by the TTCPS mechanism, there are no money transfers between agents

and the final assignment of money is equal to its initial distribution. In this sense, we say that

25Note that if we allow real price vectors, the allocation is a competitive equilibrium associated with, for

example, p = (0.9, 9, 5, 11.9)

63



the TTCPS minimizes money transactions. Moreover, the assignment of goods defined by

the TTCPS is the unique assignment with that property. Thus, we have a characterization

of the TTCPS, which is introduced after presenting the mechanism definition.

Definition 4. A mechanism is a function that assigns a competitive equilibrium for each

economy.

Proposition 1. A mechanism minimizes money transactions if and only if it is the TTCPS

mechanism.

(See Appendix A.2 for a proof)

As we just noted, at the competitive equilibrium found by the TTCPS mechanism, there

are no money transfers between agents and the final assignment of money is equal to its

initial distribution. In order to adjust prices, we introduce a mechanism which includes a

final phase that finds the minimum equilibrium price vector associated with the assignment

found by the TTC mechanism.

Consider an economy E = {(ei)i=1,...,n, V }. Let pTTC and ((ωi, σ
TTC(i)))i∈A be the compet-

itive equilibrium defined by the TTCPS. Starting with the price vector pTTC we apply the

following algorithm:

Step 1: Decrease the price of good 1 by one unit until either an overdemanded set appears

or it is zero. In the last case, go to the following step. When an overdemanded set is found,

fix the price of good 1 in its previous value (at which there is no overdemanded set) and

continue with the next step.

Step t ≤ n: Decrease the price of good t by one unit until either an overdemanded set

appears or it is zero. When an overdemanded set is found, fix the price of good t in its

previous level (at which there is no overdemanded set). If the final price of good t is lower

than its value at the beginning of the step, go to Step 1. Otherwise, go to the following step.

The algorithm ends when no price can be decreased.
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Let p̂ denote the final price vector obtained by this procedure. The new proposed mechanism

is the following.

Definition 5. The extended top trading cycles (ETTC) mechanism is the function that

assigns for each economy E = {(ei)i=1,...,n, V } the competitive equilibrium formed by the

price p̂ and the allocation (ωi + p̂i − p̂σTTC(i), σTTC(i))i∈A.

It is straightforward to verify that p̂ is the minimum equilibrium price vector associated with

the allocation of goods (σTTC(i))i∈A. That is, any price vector that constitutes a competitive

equilibrium with the previous allocation, verifies that its components are greater than or

equal to the components of p̂. However, as we show in the next example, p̂ may not be the

minimum equilibrium price vector.

Example 3. Consider the following economy.

g1 g2 g3 g4 ω

a1 21 31 11 1 1

a2 28 1 10 19 2

a3 25 1 9 17 3

a4 1 15 22 8 4

Note that the economy in the example satisfies the WMS condition. In the first place,

we apply the TTC in order to find the TTC partition; we get A = C1 ∪ C2 with C1 =

{a1, a2} and C2 = {a3, a4}. Since ω2 = ω4 = 4 we have the following TTC induced

price vector p = (p1, p2, p3, p4) = (5, 5, 0, 0). In the final phase we obtain the price vec-

tor: p̂ = (4, 2, 0, 0). Thus, the competitive equilibrium found by the ETTC is p̂ = (4, 2, 0, 0)

and ((3, g2), (0, g1), (3, g4), (4, g3)). However, the minimum equilibrium price vector is p̂ =

(3, 0, 0, 0) which is associated with the allocation ((4, g2), (2, g4), (0, g1), (4, g3)). �

One important result of Shapley and Shubik (20) is the existence of a unique minimum

equilibrium price vector, smallest in the strong sense that this price vector is at least as
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small in every component as any other equilibrium price vector. We finish the section by

proving that this result does not hold in our model.

Proposition 2. Consider an economy E = {(ei)i=1,...,n, V }. Then, there may not exist a

minimum equilibrium price vector.

(See Appendix A.3 for a proof)

3.5 Strategic questions

In this section we study some strategic questions about the mechanisms introduced pre-

viously. After some comments on the TTCPS mechanism, it is shown that the ETTC is

strategy-proof if a slightly stronger condition than WMS holds, and that the DGS mecha-

nism does not satisfy this property, even under the same condition. Then, we analyze the

existence of Nash equilibria in the revelation game induced by the DGS mechanism. A link

between these two mechanisms is specified by showing that the assignment of goods in a

Nash equilibrium coincides with the assignment found by the ETTC mechanism; thus, it is

Pareto efficient. Finally, we identify some conditions under which the DGS mechanism stops

and finds a competitive equilibrium.

3.5.1 Strategy-proofness

Before presenting the results, we need some definitions.

Denote by φi(e, V ) the assignment of agent i by the mechanism φ when endowments are

e = (ei)i=1,...,n and agents’ valuations are V .

A mechanism induces a game in which agents have to reveal some information (for example,

valuations) and the mechanism determines the assignment of each agent. In this section we

study two games which have the following common elements:
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1. the set A of all players,

2. the set of strategies of each player i: Si

3. the set of strategy profiles defined by S =
∏n

i=1 Si, and

4. the payoff function of each player, defined by ui : S → R such that if i gets gj at price

pj and her good’s price is pi, her payoff is ωi + pi + αij − pj and αii + ωi, otherwise.

In the first place, we consider the game in which each agent has to declare her endowment

in money and valuations. Moreover, we suppose that true and reported valuations belong

to a certain domain of valuations D ⊂ Zn+. Thus, the set of strategies of each agent is

Si = R+ × D. If truthful revelation is a weakly dominant strategy for each agent in the

preference revelation game induced by the mechanism, then we say that the mechanism is

strategy-proof on the domain D. In the second place, suppose that the endowment in

money of each agent is common knowledge and then, the set of strategies of each agent is

Si = D. If truthful revelation is a weakly dominant strategy for each agent in the preference

revelation game induced by the mechanism, then we say that the mechanism is strategy-

proof on valuations on the domain D. Formal definitions are the following.

Definition 6. Suppose an economy in which each agent’s valuations belong to a certain

domain of valuations D ∈ Zn+. A mechanism φ is strategy-proof on the domain D if for

each V ∈ Dn, e and i ∈ A, ui(φi(e−i, ei, V−i, vi)) ≥ ui(φi(e−i, êi, V−i, v̂i)) for all v̂i ∈ D and

êi ∈ {gi} × R+.26

Definition 7. Suppose an economy in which each agent’s valuations belong to a certain

domain of valuations D ⊂ Zn+ and that the endowment in money of each agent is common

knowledge. A mechanism φ is strategy-proof on valuations on the domain D if for

each V ∈ Dn and i ∈ A, ui(φi(e, V−i, vi)) ≥ ui(φi(e, V−i, v̂i)) for all v̂i ∈ D.

26We adopt the notation e−i for the endowment of all agents different from i.
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3.5.1.1 The top trading cycles with price setting mechanism

As we state in the next theorem, the TTCPS mechanism is strategy-proof on the domain

defined by the WMS condition.

Let DWMS denote the domain of valuations defined by the WMS condition.

Theorem 2. Suppose an economy that satisfies the WMS condition, then the TTCPS mech-

anism is strategy-proof on DWMS.

Proof. Note that the assignment of goods is computed by the TTC algorithm, without

considering the initial amount of money of each agent. Thus, the proof presented in Ab-

dulkadiroğlu and Sönmez (2) can be adapted to our framework to show that no agent can

benefit by announcing valuations different from her true valuations.27 In the phase 2 when

prices are set, by announcing a different endowment of money, an agent does not change the

price of her good neither the price of the good she is assigned to (which are always equal).

Thus, truthful revelation is a weakly dominant strategy for each agent.

3.5.1.2 The extended top trading cycles mechanism

In Appendix A.4 we present an economy that satisfies the WMS condition in which truthful

revelation is not a weakly dominant strategy for some agents. Thus, the mechanism is not

strategy-proof on valuations on the domain defined by the WMS condition (which implies

that it is not strategy-proof). The economy should satisfy the following condition, slightly

stronger than the WMS, to guarantee that the mechanism is strategy-proof on valuations.

Definition 8. Consider an economy E = {(ei)i=1,...,n, V }. Suppose that the TTC algorithm

consists of k steps. The economy satisfies the money scarcity (MS) condition if for any

agent i and different goods h, l we have |αih − αil| ≥
∑n

j=1 ωj + k − 1.

27See Appendix A.5.
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Let DMS denote the domain of valuations defined by the MS condition.

Theorem 3. Suppose an economy that satisfies the MS condition, then the ETTC mechanism

is strategy-proof on valuations on DMS.

(See Appendix A.5 for a proof)

We must note that even if the MS condition holds, the ETTC mechanism is not strategy-

proof on DMS. Consider the example of Section 2. The economy satisfies the MS condition

and the ETTC mechanism finds the following competitive equilibrium: p = (0, 8, 5, 7) and

((4, g1), (4, g4), (2, g3)(0, g2)). If a4 declares the following endowment of money: ω4 = 0, final

prices are p̂ = (0, 8, 5, 8) and she benefits since she exchanges her good with agent a2 but

she does not pay for it.

3.5.1.3 The Demange, Gale and Sotomayor mechanism

The next example shows that the DGS mechanism is not strategy-proof on valuations on

the domain defined by the MS condition (and thus, it is not strategy-proof).

Example 4. Consider the following economy.

g1 g2 g3 ω

a1 8 15 1 1

a2 16 2 9 2

a3 18 11 4 3

The DGS mechanism finds the following competitive equilibrium: p = (3, 0, 0) and σ =

((4, g2), (2, g3), (0, g1)). Note that if agent a2 announces its own good as her second option,

she receives g1. Indeed, if a2 reveals valuations v̂2 = (16, 9, 2) the competitive equilibrium

found by the mechanism is p̂ = (4, 4, 0) and σ̂ = ((1, g2), (2, g1), (3, g3)). Therefore, a2 obtains

a higher utility if she reveals a vector of valuations different from her true valuations. Finally,

note that the economy satisfies the MS condition.�
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We must note that, in the last example, for agent a2 to manipulate the mechanism, she does

not need any information about other agents’ valuations. She only needs to observe which

objects were demanded by each of the other agents. The same observation was noted by

Sotomayor (22) in the mechanism that she proposes. As she remarks, this situation contrasts

with the existent results in the literature, where an agent needs to have a large amount of

information to identify profitable strategic manipulations.

We know that truthful revelation is not a weakly dominant strategy in the revelation game

induced by the DGS mechanism. Next, we study the existence of equilibrium in this game.

We focus on the game in which each agent has to reveal her valuations and endowments in

money are common knowledge, and we search for a Nash equilibrium.

A strategy profile (s∗1, ..., s
∗
n) is a Nash equilibrium of the game induced by the DGS

mechanism, if there is no individual i ∈ A and no strategy si ∈ Si such that ui(si, s
∗
−i) >

ui(s
∗
1, ..., s

∗
n).

In order to find a Nash equilibrium of the revelation game, we introduce a set of strategies,

called dropping strategies. A dropping strategy consists of a vector si ∈ Zn+ such that if

σTTC(i) is the good assigned to agent i by the TTC procedure, the highest valuation in si

corresponds to σTTC(i) and the second highest valuation corresponds to gi (her own good).

A dropping profile is a strategy profile (s1, ..., sn) such that each si is a dropping strategy.

28

As we show in the next example, a dropping profile may not be a Nash equilibrium of the

revelation game induced by the DGS mechanism, even when the economy satisfies the MS

condition. In order for a dropping profile to be a Nash equilibrium, the economy should

satisfy a stronger condition, which is defined after the example.

Example 5. Suppose the following economy.

28This type of strategies was originally introduced by Kojima and Pathak (12).
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g1 g2 ω

a1 1 3 1

a2 2 1 0

Note that each agent plays a dropping strategy and that the DGS mechanism stops at the

first round. Also, we have that k = 1. Since α21−α22 = 1 = ω1+ω2, the economy satisfies the

MS condition. The competitive equilibrium found by the DGS mechanism is: p = (0, 0) and

((1, g2), (0, g1)), and agent a2 gets an utility of 2. If a2 announces the following valuations,

v′2 = (1, 2), the new competitive equilibrium found by the mechanism is p′ = (0, 1) and

((0, g2), (1, g1)), and agent a2 gets an utility of 3. Thus, in this economy that satisfies the

MS condition, a dropping profile is not a Nash equilibrium. �

Definition 9. Consider an economy E = {(ei)i=1,...,n, V }. The economy satisfies the strong

money scarcity condition if for any agent i and different goods h, l, we have |αih−αil| ≥∑
j∈A\{i} ωj + n− 1.

Example 5 presents an economy which satisfies the MS condition but does not satisfy the

strong version of the condition. Indeed, since n = 2 we have that α21−α22 = 1 < m1+1 = 2.

A dropping profile satisfies the strong MS condition if each agent’s strategy satisfies the

strong MS condition.

Theorem 4. Suppose an economy that satisfies the strong MS condition, then a dropping

profile that satisfies the strong MS condition is a Nash equilibrium of the revelation game

induced by the DGS mechanism.

(See Appendix A.6 for a proof)

The last theorem shows that the assignment of goods of the ETTC mechanism is the outcome

of a Nash equilibrium in the revelation game induced by the DGS mechanism. Note that

final prices of each mechanism may not be equal.
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3.5.2 Convergence of the DGS mechanism

In Section 4 we proved that the WMS condition guarantees the existence of a competitive

equilibrium which can be found by the ETTC mechanism. In this section we investigate if

the DGS mechanism also finds a competitive equilibrium whenever it exists.

The economy introduced in Section 2 satisfies the strong MS condition and, however, the

DGS mechanism fails to find a competitive equilibrium. In that economy the mechanism

does not stop and prices increase indefinitely. On the other hand, the outcome of the ETTC

mechanism is p = (0, 8, 5, 7) and ((4, g1), (4, g4), (2, g3)(0, g2, )).

The example of Section 2 raises the following question: under which conditions does the DGS

mechanism stop and find a competitive equilibrium? We finish this section with the definition

of a strong condition to guarantee that this mechanism stops. It is worth noting that the

DGS mechanism always stops and finds a competitive equilibrium when it is applied to a

three agents economy whenever the economy satisfies the WMS condition and that ωi 6= ωj

for all i, j ∈ A such that i 6= j.

The conditions that ensure the convergence of the mechanism to a competitive equilibrium

are very restrictive, however, we include the result in order to answer the question posited at

the beginning of the paper and, to stress the inadequacy of this mechanism in our framework.

For each i ∈ A, her valuation vector vi defines a ranking of goods: j is ranked above h if

αij > αih. Let Oi(j) be the place of good j in the ranking of agent i (for instance, if j is the

good with highest valuation at vi, O
i(j) = 1).

Theorem 5. Suppose an economy E = {(ei)i=1,...,n, V } such that:

1. it satisfies the WMS condition,

2. for each agent i, Oi(i) ≥ 2; that is, for each agent there is at most one good preferred

over her own good.
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Then, the DGS mechanism stops and finds a competitive equilibrium.

(See Appendix A.7 for a proof)

In the last proposition, the WMS condition cannot be discarded. We finish this section with

an example illustrating this remark.

Example 6. Suppose the following economy:

g1 g2 g3 ω

a1 3 6 1 2

a2 3 2 1 3

a3 1 7 2 4

Note that the economy satisfies the second condition of the last theorem but does not satisfy

the WMS condition. One can easily show that the DGS mechanism does not stop when it

is applied to this economy. Thus, the WMS condition is a necessary assumption for the last

result. �

3.6 Concluding remarks

In this paper, we study an economy with indivisible goods, money and budget-constrained

agents with unit-demand, who act as both sellers and buyers. In this model, a widely used

assumption is the indispensability of money, originally stated by Quinzii (17). As many

authors have remarked, the assumption can be understood as abundance of money in the

economy. We show that if this assumption holds, budget constraints never bind. On the

other hand, the assumption is crucial to guarantee the existence of competitive equilibrium.

We contribute to the literature by extending the original result of Quinzii on the existence of

competitive equilibrium to cases where money is scarce and utility functions are quasi-linear.

Moreover, an extended version of the top trading cycles algorithm, which is strategy-proof
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under the money scarcity condition, is defined in order to find a competitive equilibrium. We

show also that the mechanism of Demange, Gale and Sotomayor is not strategy-proof and

we find a set of Nash equilibria of the revelation game induced by this mechanism. Finally,

we identify a stronger condition than money scarcity to guarantee the convergence of this

mechanism to a competitive equilibrium in the general model.

The results proven in the paper show that the ETTC is a suitable mechanism to find a

competitive equilibrium in the economies that have been analyzed. In particular, we have

demonstrated that the mechanism is strategy-proof on valuations under the money scarcity

condition. The next step involves a characterization of those mechanisms that are strategy-

proof in this framework. Recent studies have made some advances in this sense. For exam-

ple, Morimoto and Serizawa (14) have characterized the rule that assigns a minimum price

Walrasian equilibrium allocation in the Assignment Game. A similar characterization in

our model where budget-constrained agents act as both sellers and buyers, requires a deep

analysis and goes beyond the scope of the present work.

It could be interesting to study the extension of these results to the case in which there are

also agents that only have money and do not own any good. In that case, the extended

version of the top trading cycles cannot be used because agents without a good will fail to

participate in a cycle. Thus, a new mechanism should be designed to find a competitive

equilibrium in that setting.

3.7 Appendix

A.1 Proof of Example 2

It is straightforward to verify that the unique allocation in the core of the economy is

((4, g1), (2, g2), (3, g3), (1, g4)). We have to prove that there is no integer price vector p

such that the allocation defined previously and prices p are a competitive equilibrium. By
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way of contradiction, suppose there is a integer price vector p = (p1, p2, p3, p4) such that

((4, g1), (2, g2), (3, g3), (1, g4)) and p are a competitive equilibrium.

In the first place, we claim that p4 > p2. Indeed, suppose that p4 ≤ p2; then, ω2 +p2−p4 ≥ 0

and α24 + p2− p4 > α22, but this means that a2 does not demand g2, a contradiction. In the

same way, it can be shown that p2 > p3 and p3 > p1.

Therefore, we have the following inequalities: p4 > p2 > p3 > p1.

In the second place, we know that each agent demands her own good; that is, gi ∈ Di(p). In

order to this result holds, we should have:

1. For agent a1:

(1.1) 4 + p1 − p2 < 0 or, if 4 + p1 − p2 ≥ 0 the following should hold: 1 ≥ 25 + p1 − p2.

But the second case is equivalent to p2 − p1 ≥ 24 if p2 − p1 ≤ 4, which is not

possible. Then, the first relation should hold.

(1.2) 4 + p1 − p3 < 0 or, if 4 + p1 − p3 ≥ 0 the following should hold: 1 ≥ 13 + p1 − p3.

As in the previous case, the second relation is not possible.

(1.3) 4 + p1 − p4 < 0 or, if 4 + p1 − p4 ≥ 0 the following should hold: 1 ≥ 37 + p1 − p4.

As in the first case, the second relation is not possible.

2. For agent a2:

(2.1) Since p2 > p1, we should have 25 ≥ 1 + p2 − p1, and thus, 24 ≥ p2 − p1.

(2.2) Since p2 > p3 we should have 25 ≥ 13 + p2 − p3, and thus 12 ≥ p2 − p3.

(2.3) 2 + p2 − p4 < 0 or, if 2 + p2 − p4 ≥ 0 then, 25 ≥ 37 + p2 − p4. But, as with agent

a1, the last case is not possible.

3. For agent a3:

(3.1) Since p3 > p1, we should have 13 ≥ 1 + p3 − p1, and thus 12 ≥ p2 − p1.
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(3.2) 3 + p3 − p2 < 0 or, if 3 + p3 − p2 ≥ 0 then, 13 ≥ 25 + p3 − p2. Note that the last

case is not possible.

(3.3) 3 + p3 − p4 < 0 or, if 3 + p3 − p4 ≥ 0 then, 13 ≥ 37 + p3 − p4. But note that the

last case is not possible.

4. For agent a4:

(4.1) Since p4 > p1, then we should have 36 ≥ 25 + p4 − p1, and thus 11 ≥ p4 − p1.

(4.2) Since p4 > p2, then we should have 36 ≥ 1 + p4 − p2, and thus 35 ≥ p4 − p2.

(4.3) Since p4 > p3, then we should have 36 ≥ 13 + p4 − p3, and thus 23 ≥ p4 − p3.

Thus, the following inequalities should hold:

(1) 4 < p2 − p1 ≤ 24

(2) 4 < p3 − p1 ≤ 12

(3) 4 < p4 − p1 ≤ 11

(4) 3 < p2 − p3 ≤ 12

(5) 2 < p4 − p2 ≤ 35

(6) 3 < p4 − p3 ≤ 23

Note that 11 ≥ p4 − p1 = p4 − p2 + p2 − p1 and, since p4 − p2 > 0, we have p2 − p1 ≤ 10.

Following in the same way:

11 ≥ p4 − p1 = p4 − p3 + p3 − p1 and, since p3 − p1 > 0, we have p4 − p3 ≤ 10.

11 ≥ p4 − p1 = p4 − p2 + p2 − p3 + p3 − p1 and then, p4 − p2 ≤ 9, p2 − p3 ≤ 9, p3 − p1 ≤ 9.

p4 − p3 = p4 − p2 + p2 − p3 and since inequalities (4) and (5), we have p4 − p3 > 5.

p4−p1 = p4−p2+p2−p3+p3−p1 and since inequalities (2), (4) and (5), we have p4−p1 > 9.

Thus, the last set of inequalities becomes:
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(1) 4 < p2 − p1 ≤ 10

(2) 4 < p3 − p1 ≤ 9

(3) 9 < p4 − p1 ≤ 11

(4) 3 < p2 − p3 ≤ 9

(5) 2 < p4 − p2 ≤ 9

(6) 6 ≤ p4 − p3 ≤ 10

We can suppose, without loss of generality, that p1 = 0; therefore, we have only two possible

values for p4: p4 = 10 or p4 = 11.

1. If p4 = 10, by inequality (6) we know that p3 ≤ 4, which is not possible since inequality

(2).

2. If p4 = 11, by inequalities (5) and (6), we know that 2 ≤ p2 < 9 and 1 ≤ p3 ≤ 5. But,

since this last relation and inequality (2) we have that p3 = 5 and then, by (4), p2 > 8

which contradicts that 2 ≤ p2 < 9.

Therefore, there is no integer price vector such that the unique allocation of the core and

prices p are a competitive equilibrium.

A.2 Proof of Proposition 1

Proposition 1: A mechanism minimizes money transactions if and only if it is the TTCPS

mechanism.

Proof. At the competitive equilibrium found by the TTCPS, there are no money transfers.

Denote by pTTC , (ωi, σ
TTC(i)) the TTCPS competitive equilibrium. We know that pi =

pσTTC(i). We will prove that there is no other competitive equilibrium with an allocation of

goods τ such that pi = pτ(i). Suppose, by way of contradiction, that there is a competitive

77



equilibrium q, (ωi, τ(i)), such that qi = qτ(i). Consider the TTC partition, A = C1∪C2∪ ...∪

Ck. Note that, at σTTC , all agents in C1 receive their most preferred good. Assume there is

an agent in C1 such that she receives at τ a different good from the one she receives at σ.

Then, the allocation of goods defined by C1 is feasible for C1 and no member is worse off

and at least one of them is strictly better off at C1 respect to the assignment τ . Thus, the

assignment (ωi, τ(i)) is not in the strong core of the economy, which is a contradiction. Then,

both competitive equilibria have the same allocation of goods for agents in C1. Suppose now

that there is an agent in C2 such that she receives at τ a different good from the one she

receives at σ. All agents in C2 receive at σTTC their most preferred good of those that were

left. A similar argument as before shows that the allocation of goods defined by C1 ∪ C2 is

feasible for C1∪C2 and no member is worse off and at least one of them is strictly better off

at σTTC respect to the assignment τ . Then, (ωi, τ(i)) is not in the strong core of the economy.

Proceeding in this manner for all the sets in the TTC partition, we see that σTTC(i) = τ(i).

A.3 Proof of Proposition 2

Proposition 2: Consider an economy E = {(ei)i=1,...,n, V }. Then, there may not exist a

minimum equilibrium price vector.

Proof. Consider the following economy.

g1 g2 g3 g4 ω

a1 8 1 22 15 1

a2 1 8 22 15 1

a3 20 13 7 1 2

a4 12 18 6 1 3

First note that the economy of the example satisfies the WMS condition. The outcome of

the TTCPS mechanism is p = (p1, p2, p3, p4) = (4, 0, 4, 0) and ((1, g3), (1, g4), (2, g1), (3, g2)).
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In the final phase we obtain the price vector: p̂ = (1, 0, 2, 0). Thus, the competitive equi-

librium found by the ETTC is p̂ = (1, 0, 2, 0) and ((0, g3), (1, g4), (3, g1), (3, g2)). But the

vector p̃ = (0, 1, 2, 0) is also an equilibrium price vector associated with the allocation

((1, g4), (0, g3), (4, g1)(2, g2)) and it is straightforward to verify that there is no equilibrium

price vector q such that q ≤ p and q ≤ p̃.

A.4 Example: an economy that satisfies the WMS condition and truthful

revelation is not a dominant strategy

Consider the following economy.

g1 g2 g3 g4 g5 ω

a1 4 13 7 1 10 3

a2 20 13 27 1 7 0

a3 27 7 13 20 1 0

a4 7 27 1 20 13 0

a5 6 1 21 16 11 1

First, note that the economy satisfies the WMS condition. The outcome of the ETTC

mechanism is p = (0, 3, 2, 2, 0) and ((0, g2), (1, g3), (2, g1), (0, g4), (1, g5)). Thus, the util-

ity of agent a1 is 13. Suppose that this agent announces the following vector valuation:

v′1 = (4, 10, 7, 1, 13). The new outcome of the ETTC mechanism is p = (2, 1, 2, 0, 1) and

((4, g5), (0, g2), (0, g1), (0, g4), (0, g3)); thus, the utility obtained by a1 is 14. Therefore, an

agent can benefit by announcing other valuations than her true ones; thus, the mechanism

is not strategy-proof on valuations.

A.5 Proof of Theorem 3

The ETTC consists in two steps. In the first, the TTC mechanism is applied and prices are

computed. In the second step, in those cases where it is possible, prices are decreased in the
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way defined previously. To show that in the first step the mechanism is strategy-proof on

valuations, the proof presented in Abdulkadiroğlu and Sönmez (2) can be adapted to our

framework. For the sake of completeness, we include the adapted proof. Then, we present

the proof for the second step of the mechanism. We begin with the following lemma.

Lemma 1. Fix the valuations of all agents except i at V−i. Suppose that in the algorithm

agent i is removed from the market at Step t under vi and at Step t′ under v′i. Suppose

t < t′. Then, the remaining agents at the beginning of Step t are the same whether agent i

announces vi or v′i.

Proof. Since agent i fails to participate in a cycle prior to Step t in either case, the same

cycles form.

Theorem 3: Suppose an economy that satisfies the MS condition, then the ETTC mechanism

is strategy-proof on DMS.

Proof. First step of the mechanism:

Consider an agent i with true valuations vi. Fix an announced valuations profile V−i for

every agent except i. We want to show that revealing her true valuations vi is at least as

good as announcing any other valuations v′i. Let t′ be the step at which agent i leaves under

v′i, (i, h, i1, i2, ..., ik) be the cycle she joins, and thus, she is assigned to good h. Let t be the

step at which she leaves under her true valuation vi. Two cases are considered.

Case 1: t ≥ t′. Suppose agent i announces her true valuation vi. By Lemma 1, the same

agents remain in the market at the beginning of Step t′, whether agent i announces vi or

v′i. Therefore at this Step, agent h points to agent i1, agent i1 points to agent i2,..., agent ik

points to agent i, and all these agents keep doing so as long as agent i remains in the market.

Since agent i truthfully points to her best remaining choice at each step, she either receives

a good that is at least as good as good h or eventually joins to the cycle (i, h, i1, i2, ..., ik).

Case 2: t < t′. By the Lemma the same agents remain in the algorithm at the beginning of
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Step t whether agent i announces vi or v′i. Moreover, agent i is assigned a good at her best

choice remaining at step t under vi. Therefore, in this case too, her assignment under the

true valuation is at least as good as h.

Second step of the mechanism:

Let vi = (αij)j=1,...n be agent i true valuations. Since the economy satisfies the MS condition,

we know that |αih − αil| ≥
∑n

j=1 ωj + k − 1 for all goods l, p, l 6= p.

Let j (h) be the good to which i is assigned when she declares vi (v′i). Denote by p (p′) the

price vector found by the TTCPS when i announces vi (v′i). By the last result we know that

αij ≥ αih. Suppose that when prices are set, we have that αij+ωi+pi−pj < αih+ωi+p
′
i−p′h,

and so agent i benefits by announcing v′i. Since prices of goods that belong to the same cycle

are equal, we have pi = pj and p′i = p′h, and then, the last inequality is not possible.

Finally, suppose, by way of contradiction, that in the the final phase, when prices are

decreased, agent i has a higher utility by announcing v′i; that is, αij + ωi + p̂i − p̂j <

αih +ωi + p̂′i− p̂′h, where p̂ and p̂′ are the final price vectors found by the ETTC mechanism.

To make notation lighter, denote p̂′ as q.

Therefore, suppose that 0 ≤ αij + p̂i − p̂j < αih + qi − qh.

First, note that if h = i we have a contradiction. Indeed, in this case 0 ≤ αij − αih <

p̂j − p̂i ≤
∑n

j=1 ωj + k − 1.

Second, denote as before by C ′ = {i, h, i1, ..., ik} the top trading cycle to which agent i joins

when she declares v′i. We claim that qi−qh ≤ ωk+ ...+ω1+ωh. Indeed, we have the following

inequalities:

ωk + qk − qi ≥ 0

ωk−1 + qk−1 − qk ≥ 0

...
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ω1 + q1 − q2 ≥ 0

ωh + qh − q1 ≥ 0

Therefore:

ωk ≥ qi − qk
ωk−1 ≥ qk − qk−1
...

ω1 ≥ q2 − q1
ωh ≥ q1 − qh

Thus, qi − qh = qi − qk + qk − qk−1 + ...+ q2 − q1 + q1 − qh ≤ ωk + ...+ ω1 + ωh.

Since ωi + p̂i − p̂j ≥ 0, we know that p̂j − p̂i ≤ ωi.

Finally, we have 0 ≤ αij −αih < p̂j − p̂i + qi− qh ≤ ωi +ωk + ...+ω1 +ωh ≤
∑n

j=1 ωj + k− 1,

which is a contradiction.

We must note that, it may seem to be enough to assume αij − αih ≥
∑n

j=1 ωj in order

to obtain the result. However, we need to guarantee that the ETTC mechanism finds an

equilibrium in the economy E. Otherwise, it is straightforward that the mechanism may not

be strategy-proof on valuations. Thus, in order to obtain the result the MS condition should

hold.

A.6 Proof of Theorem 4

Theorem 4: Suppose an economy that satisfies the strong MS condition, then a dropping

profile that satisfies the strong MS condition is a Nash equilibrium of the revelation game

induced by the DGS mechanism.

Proof. Let (αij)j∈G be agent i true valuations and s∗ a dropping profile.

When all agents play a dropping strategy, the DGS mechanism stops at the first step and

final prices are zero. Suppose that agent i gets good σ(i) under s∗ and thus, she gets a payoff
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ωi + αiσ(i). We have to prove that no agent benefits from deviating.

Let us analyze the benefits from deviating that an agent j1 may have. If she announces

other valuations but the good with the highest valuation is σ(j1), she gets the same payoff.

Then, suppose that she reveals a valuation vector in which the good with highest valuation

is different from σ(j1). We have two cases.

Case 1: In the first step of the algorithm j1 demands a good that belongs to an agent who

is not in her original cycle. This case is described in Figure 1.

Figure 1

As in the figure, suppose agent j1 demands the good of agent i1 who belongs to the cycle

(i1, i2, ..., ik). So the price of gi1 increases until agent j1 or ik cannot demand it.

Subcase 1.1: If ωik < ωj1 at some step ik stops demanding gi1 and begins to demand her own

good. As gik is also demanded by ik−1, the price of gik increases and ik demands gi1 again.

This process continues until agent j1 or ik−1 changes her demand. If ωj1 < ωk + ωk−1 + 2

at some step of the mechanism agent j1 cannot demand gi1 and demands another good,

and we are in Subcase 1.2. If ωj1 > ωk + ωk−1 + 2 we have that pi1 = ωk + ωk−1 + 2,

pik = ωk−1 + 1, agent j1 demands i1’s good, agents ik and ik−1 demand their own goods and

gik−1
is overdemanded. The process continues until j1 cannot demand gi1 or the following

step is reached: pi2 = 0, pi3 = ωi2 + 1, pi4 = ωi2 + ωi3 + 2, ..., pik =
∑k−1

s=2 ωis + k − 2, pi1 =∑k
s=2 ωis + k − 1. Since at all steps of the process pi2 < pi1 , good gi2 is always affordable by

agent i1. Thus, this subcase finishes when pi1 = ωj1 + 1 and j1 no longer demands good gi1

and Subase 1.2 is reached.
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Subcase 1.2: If ωik > ωj1 , at some step of the mechanism agent j1 cannot demand gi1 and

demands the second good in her vector valuation. We have the following situations:

1. If j1 demands some good of the cycle (i1, i2, ..., ik), for example gi2 , the previous process

applies until p2 = ωj1 + 1. We have the same situation if j1 demands a good of a cycle

different from (i1, i2, ..., ik) and from the cycle to which she originally joins.

2. If j1 demands a good of her cycle but different from her own good, we are in Case 2.

3. The last case is when she demands her own good. In that case, her good gj1 is overde-

manded and its price increases. Once again, as good gi2 is always attainable by agent

i1, the process finishes when pi1 =
∑p

s=1 ωjs + p and all agents in the original cycle

(j1, ..., jp) demand their own goods. It is in this case that pi1 reaches its highest value of

all the analyzed cases, which is less or equal than
∑n

i=1
i 6=i1

ωi +n−1 (because p ≤ n−1);

this implies that at the end of the process i1 still demands gi2 and ik still demands gi1 .

Indeed, since the economy satisfies the strong MS condition and pi1 ≤
∑n

i=1
i 6=i1

ωi+n−1,

we have that αi1i2−αi1h ≥ pi1 for all good h. With the same argument it can be shown

that αiki1 − αikh ≥ pi1 for all good h.

Case 2: Finally, we have to study the case in which agent j1 demands a good from an agent

of her cycle as in Figure 4 (the dotted arrow represents agent’s demand under s∗).

Figure 2
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Suppose that when j1 changes her valuations, she demands the good of agent jp. So the

price of gjp increases until one of the agents cannot demand it. If ωjp−1 > ωj1 , at some

step of the mechanism agent j1 cannot demand gjp and has to demand another good. If

ωjp−1 < ωj1 , the price of good gjp increases until ωjp−1 + 1 and agent jp−1 demands her own

good, which is overdemanded. The process continues until j1 no longer demands good gjp

or the cycle (j1, jp, ..., jq) is implemented and all agents of the original cycle that no belong

to (j1, jp, ..., jq) are assigned to their own goods. In the last situation, since αip < αiσ(i) the

payoff of agent i is lower than the payoff when she declares a dropping strategy.

A.7 Proof of Theorem 5

Theorem 5: Suppose an economy E = {(ei)i=1,...,n, V } such that:

1. it satisfies the WMS condition,

2. for each agent i, Oi(i) ≥ 2; that is, for each agent there is at most one good preferred

over her own good.

Then, the DGS mechanism stops and finds a competitive equilibrium.

Proof. In the first round of the algorithm there is at least one cycle. The final assignment

of goods is the one defined by this cycle (or cycles) and other agents are assigned to their

own good. The formal proof is similar to the one of Theorem 3, Case 1. Specifically, we

have to show that the cycles that appear in the first step of the mechanism remain formed

until the mechanism finishes. The maximum level that a price pi can achieve is when at the

initial step of the mechanism agents can be indexed in an order {i, 1, 2, ..., n− 1} such that

i demands her good, 1 demands the good of agent i and j demands the good of agent j − 1

for j = 2, ..., n − 1. In this case, the final value of pi is equal to
∑n−1

j=1 ωj + n − 1. Since in

this situation n = k, we finish the proof.
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Chapter 4

Strategic Uncertainty and Unraveling

in Matching Markets

4.1 Introduction

We study unraveling in labor markets, and in matching markets in general. Unraveling is a

phenomenon by which matches are made too early. They are made at a point in time when

there is too little information about the quality of a match. The literature has documented

many episodes of unraveling: the market for medical interns is a famous example, in which

labor contracts for interns were signed two years before the future interns would graduate (see

Roth (19) or Roth and Sotomayor (18)). Other examples of unraveling include the market

for federal court clerks (Avery, Jolls, Posner, and Roth (1); Roth (23)), for gastroenterology

fellows (Niederle and Roth (14, 15)), for college football games (Fréchette, Roth, and Ünver

(7); Roth (22)), and for placement in sororities (Mongell and Roth (13)).

We explain unraveling of the timing of offers as the result of strategic unraveling. If some

agents go early, it becomes more attractive for other agents to go early, which makes it more

attractive for even more agents to go early. Our explanation is reminiscent of models of bank

This chapter was written under the supervision of Federico Echenique from the Division of the Humanities

and Social Sciences at California Institute of Technology. I am very are grateful to him for encouragement and
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Marcelo Lanzilotta, Gastón Cayssials, Damián Gibaja, Pablo Sanchéz Buelna, Benjamı́n Tello for their

comments and suggestions and the seminar participants at the Free University of Bolzano and El Colegio de
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runs, where strategic complementarity makes agents undertake an inefficient action because

they are concerned that others may take this inefficient action (Diamond and Dybvig (4)).

As we shall see, the matching environment is quite different from models of bank runs, but

the basic logic of strategic unraveling is similar.

Strategic unraveling in our model proceeds as follows. There is a loss in efficiency when

some agents go early: Information about the quality of the matches arrives late, so it is

better for efficiency to wait until the information has arrived to make a match. If some

agents go early anyway, this forces later matches to be less efficient. The result is a negative

externality that makes it more tempting for all agents to go early. So the externality may

push some additional agents over the threshold by which they decide to go early. In turn,

these additional agents going early makes it even more tempting to go early—and so on and

so forth.

We show that, as a result of such strategic unraveling, any given agent is more likely to

go early than go late. Our model assumes that there are two periods, and that there is

incomplete information over the agents’ discount factor. We view the incomplete information

simply as modeling device: as a way of generating the strategic uncertainty that allows the

logic of unraveling to apply. If an agent goes early, she has no information about the quality

of a match. If an agent goes late, then all information has been released, and matching is

assortative on the quality of an agent as a partner (highest quality agents match with each

other, the second highest match with each other, and so on).

The qualitative effects of the negative externality are intuitive, but how far do they go?

In our model, we can precisely calculate (and the heart of our arguments is indeed very

combinatorial) the extent to which strategic unraveling pushes agents to go early. It turns

out that unraveling goes all the way to making each individual more likely to go early than

to go late. There are ways in which our model is rigged against unraveling. It makes late

matching particularly attractive, and rules out unraveling purely as the result of coordination
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failure (see Section 4.4). Yet the model produces early contracting as the modal outcome.1

A more precise statement of our results follows. We first assume that only firms are strategic.

Workers always accept the offers they receive. In this environment, we show that there is

always a full unraveling Bayesian Nash equilibrium, in which all firms make early offers.

Further, in any symmetric Bayesian Nash equilibrium, a firm makes an early offer with

probability at least 3/4.

If we assume that the prior over discount factors is uniform, we can say more. There are

exactly two symmetric equilibria when the size of the market is at least 11. One is the full

unraveling equilibrium, but it is unstable. In the second equilibrium, which is stable, agents

go early with probability larger than 3/4. As the size of the market grows, the probability

of going early in the second equilibrium converges to 3/4. If the number of agents is lower

than or equal to 10, the unique symmetric Bayesian Nash equilibrium is the full unraveling

equilibrium.

In second place, we consider a model where both sides of the market are strategic. Our results

continue to apply (there is actually not a substantial conceptual difference between the two

models). Among other things, we prove that in any symmetric Bayesian Nash equilibrium,

the expected proportion of agents that match early is at least 1/2.

Our results reveal that there may exist an equilibrium pattern of adherence and non-

adherence to the hiring dates. The market may become divided in equilibrium, with one

segment hiring early, and the other waiting to match in the final period with full information

about agents’ qualities. We demonstrate that a mixed level of adherence can be sustainable

1Continuing with the similarity with bank runs, the result is reminiscent of the literature on global games,

where basic assumptions on the structure of signals give a precise calculation of how far iterated elimination

of dominated strategies will go (Frankel, Morris, and Pauzner (6)). There is, however, a clear difference with

the literature on bank runs. A run can be explained purely by coordination failure. Agents’ payoffs in our

model are biased against unraveling, and coordination failure alone would not suffice to make agents unravel

(see Section 4.4 for a discussion of this issue).
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in an equilibrium, which is consistent with the empirical evidence Avery, Jolls, Posner, and

Roth (1).

4.2 Related Literature

Ours is the first theoretical study that identifies strategic uncertainty as the main force

behind the unraveling of matching markets. One empirical investigation of the market for

medical interns also attributes unraveling to strategic uncertainty: Wetz, Seelig, Khoueiry,

and Weiserbs (27) write that early contracting is motivated by concerns over losing interns to

other programs who operate outside of the centralized algorithm. Their explanation, based

on agents’ observed behavior in the market, is essentially what we have tried to capture

formally in the present paper.

The best-known episode of unraveling is the case of the market for hospital interns before

1945 (Roth (19); Roth and Sotomayor (18); Roth (21)). There is evidence that unraveling

still exists in this market: Wetz, Seelig, Khoueiry, and Weiserbs (27) study out-of-match

residency offers during the year 2007. In the market for interns, some interns are allowed to

take outside-the-match offers (for instance, osteopathic medical students and international

medical graduates). Wetz, Seelig, Khoueiry, and Weiserbs (27) find that 15.7% of the total

number of postgraduate year-1 positions available in the three primary care and four pro-

cedural and/or lifestyle-oriented specialities studied, were offered outside the match. The

authors conclude that about one in five positions in nonprocedural, primary care specialties

were offered outside the match and, thus, the situation is similar to that which existed before

1952.

One classic explanation of unraveling is the “stability hypothesis,” as formulated by Roth

(20) and Kagel and Roth (9). This hypothesis affirms that unraveling will be prevented

if once the relevant information is revealed, a stable matching is implemented through a

clearinghouse. The idea is that, in some sense, the market is trying to establish a stable

matching. It simply may be doing so in an inefficient manner. Our paper provides some
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justification for central clearing houses. There is a clear efficiency gain from late contracting

in our model, and late contracting equals a stable matching. The agents’ strategic behavior

prevents the market from reaching this stable matching, and makes the market unravel.

A handful other papers provide theoretical explanations for unraveling. They focus on

different mechanisms than the one we have studied here.

Li and Rosen (10) and Li and Suen (11) study a model with transfers (a model based on

Shapley and Shubik (25) assignment game) in which early contracting provides insurance.

They show that unraveling may occur among workers who appear to be most promising a

priori, before full information is revealed. In a similar framework, Li and Suen (12) allow for

unproductive firms and find multiple equilibria with unraveling. They show that more firms

and workers will contract early if the uncertainty about the number of productive workers is

higher and the more risk-adverse agents are. As we explain in Section 4.4, our model does

not have an insurance motive for early contracting, and focuses on a different explanation

for unraveling.

Damiano, Li, and Suen (3) present an explanation of unraveling that is based on search and

matching. Agents know their qualities, so there is no informational gain from matching late,

but an agent may not meet a partner of sufficiently high quality in a given period. If there

are costs to searching, then there is unraveling in how willing agents are to accept a partner.

In Damiano, Li, and Suen (3), unraveling is triggered by search costs. In our model, it is

triggered by incomplete information.

Du and Livne (5) consider the role of transfers in unraveling. They show that, in the absence

of transfers, and in the limit as the market size grows, a substantial number of agents will

contract early. Unraveling in their paper happens because new agents arrive over time, and

agents who are in relatively high positions may want to contract early because the new

arrivals may be of higher match qualities. In contrast, in a flexible-transfer regime, agents

will not unravel.
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Niederle, Roth, and Ünver (16) explain unraveling as the result of an imbalance between

demand and supply. Unraveling arises when there is a surplus of applicants, but a shortage

of high quality applicants. When a worker does not know if she will be in the long or short

side of the market, she may find early offers made by low quality firms attractive. For such

firms, early offers is the only way to employ high quality workers.

Ha laburda (8) proposes that the key to explaining unraveling is the similarity of firms’

preferences. Workers’ preferences for firms are identical, and known from the start, but firms

learn their preferences for workers in the second period. If firms’ preferences are similar, then

firms tend to prefer the same workers. Thus, worse firms may have better chances to hire their

most preferred candidates if they make early offers. So, if firms’ preferences are sufficiently

similar, it is likely that some firms will go early. In our model, although preferences are

identical, this feature does not explain unraveling. An agent may be concerned about being

one of the worst agents in the market, but she would still prefer to wait and contract in the

second period. Early contracting in our model is inefficient for every agent. As we show

below, the strategic uncertainty over how many other agents go early is the main mechanism

behind incentives for some agents to match early.

4.3 The model and results

We present a model of one-to-one matching between workers and firms. In our model, we

adopt the language of the medical interns market. The workers are doctors, and firms are

hospitals.

Let H and D be two finite and disjoint sets: H is the set of hospitals, and D the set of doctors.

Suppose that |H| = |D| = n, so we can identify H and D with (copies of) {1, . . . , n}.

A matching is a function µ : H ∪D → H ∪D such that, for all h ∈ H and d ∈ D,

1. µ(h) ∈ D ∪ {h} and µ(d) ∈ H ∪ {d}
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2. d = µ(h) if and only if h = µ(d).

The meaning of µ(h) = h is that the position of hospital h remains unfilled, and µ(d) = d

means that doctor d does not find a job.

Each doctor d and hospital h is assigned a quality

πD(d) ∈ {1, . . . , n} and πH(h) ∈ {1, . . . , n}.

Suppose that πH and πD are permutations of {1, . . . , n}, so we can think of quality as the

rank of a hospital or doctor in the market. The highest-ranked hospital is h such that

πH(h) = n, for example. If doctor d is hired by hospital h, then they obtain utilities that

depend on their qualities, ud(π
D(d), πH(h)) is the utility to d and uh(π

D(d), πH(h)) is the

utility to h. If an agent remains unmatched, then she obtains a utility of zero.

A matching µ is stable if there is no pair (h, d) such that

ud(π
D(d), πH(h)) > ud(π

D(d), πH(µ(d))) and uh(π
D(d), πH(h)) > uh(π

D(µ(h)), πH(h)).

We assume that ud and uh are multiplicative; that is: ud(i, j) = uh(i, j) = ij.

Remark 1. There is a unique stable matching, the matching µ(i) = i (the identity matching).

4.3.1 Matching over time: early or late offers

The model is a stylized environment with two periods. In the first period, match qualities

πH and πD are not known. In the second period, a pair (πH , πD) is drawn at random,

uniformly and independently. A match is formed among the agents who wish to match in

period t = 0: all agents are identical at that point, so the matching is purely random. In

the second period, when match qualities are known, a stable matching is formed among the

agents that did not match in the first period.

Our purpose is to focus on the strategic motivations for going early: we study the simultaneous-

move game in which hospitals decide whether to go early and match at time t = 0, or to
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wait and match at time t = 1. In particular, we assume that only hospitals are strategic

and that matchings are automatic. In period t = 1 the matching is assortative among the

agents who have not matched in period t = 0; the assortative matching is the unique stable

matching under our assumptions. In period t = 0, matching is random because no agent has

any information on match qualities.

In Section 4.3.4 we present results where both doctors and hospitals are strategic. Our

results essentially continue to hold when both sides are strategic, but we choose to present

first the model in which only hospitals are strategic. The reason is twofold. First, there is no

deep conceptual difference between the two cases. Indeed, we use the results in this section

to prove the results of Section 4.3.4. In second place, the discussion of unraveling in Roth

(19) suggests that, in the hospital-interns market, only hospitals are strategic.

Each agent i ∈ H ∪D has a discount factor δi. The utility at t = 0 when h and d match in

period t is given by

δthuh(π
D(d), πH(h)) = δthπ

D(d)πH(h), and

δtdud(π
D(d), πH(h)) = δtdπ

D(d)πH(h),

to h and d, respectively.

The following timeline describes how events unfold.

δi drawn t = 0 offers π realized t = 1 offers

We proceed to describe the payoffs from making an early vs. a late offer to match. At time

0, qualities are purely random. So if a hospitals h matches in period 0 its expected utility is

Ue = 1
n2

∑n
i=1

∑n
j=1 ij, the expected value of the product ij when i and j are random.

In period 1, agents have learned the values of πD and πH . The matching will be assortative

among the agents who have not matched early. Assortative means that the doctor with
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the highest value of πD(d) will match with the hospital with the highest value of πH(h),

the doctor with the next-highest value of πD(d) will match with the hospital with the next-

highest value of πH(h), and so on.

Now, it is complicated to calculate the expected utility of going late because the calculation

depends on how many agents go early. If m agents have left the market in time t = 0, then

the assortative matching matches the highest available hospital and doctor, but the actual

highest-quality matches may have left early. The problem is compounded as we consider the

second-highest qualities, the third-highest, and so on.

One special case is simple to calculate. Consider a given hospital h. If all other hospitals

wait to make offers in period t = 1, then the expected utility to hospital h, in period 0, of

waiting for period 1 is δh
1
n

∑n
i=1 i

2.

In general, if m hospitals have left the market, we write Um for the expected value of

πH(h)πD(µ̃(h)), where πH and πD are random, and µ̃ is the (random) assortative matching

in period 1. The matching µ̃ is determined by the realization of match qualities πH and

πD, including the qualities of the m hospitals, with corresponding doctors, who have left the

market. That is, when m hospitals exit the market at t = 0, Um is the expected utility to a

hospital of waiting for t = 1.

The following is an important technical result in our paper.

Lemma 1.

Um =
(n+ 1)2(2(n−m) + 1)

6(n−m+ 1)
.

An important consequence of Lemma 1 is that Um > Um+1. The difference Um+1−Um is the

negative externality imposed by a hospital-doctor pair who match early on the agents who

decide to match late. It is important to note that the negative externality increases with m,

so that additional agents going early increase the incentives of any given agent to go early.

This effect vanishes as the market grows large, which helps to stabilize the number of agents

who go early in a large market (see the discussion after Corollary 3 on page 116).
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Section 4.5 gives a precise definition of the quantity Um and presents a proof of Lemma 1.

4.3.2 Incomplete information

We now introduce a Bayesian game in which hospitals may make early offers due to the

strategic uncertainty over how many other hospitals go early.

We assume that δh ∈ [0, 1] is the private information of hospital h. The type of an agent

h is therefore δh. All agents share the prior that the different δh are drawn independently

from a distribution over [0, 1] with cumulative distribution function (cdf) F . We assume

that x ≤ F (x) for all x ∈ [0, 1]: the assumption is satisfied for any distribution with a

concave cdf. For example the uniform, or truncated normal, distributions on [0, 1] satisfy

our assumption.

A strategy for a hospital h is a function

sh : [0, 1]→ {0, 1},

where sh(δh) is the period in which hospital h makes its offer. In our model, there is no

decision to be made other than when to match.

Given a profile of strategies s = (s1, . . . , sn), we write s−h for the profile of strategies of

hospitals other than h. Given a profile s−h, for each realization of δ−h, s−h determines

m, the number of hospitals, other that h, that go early. Thus, s−h defines a probability

distribution for m. Given a profile s−h, m is a random variable, and so it is Um with a

distribution defined by F . Then, we can compute the expected value of Um given s−h (see

Lemma 1), which is denoted by Es−hUm. We write δhEs−hUm for the expected utility at time

0, to hospital h, of waiting for t = 1 to make an offer, if all hospitals other than h have the

profile of strategies s−h: Es−hUm =
∑n−1

i=0 Pr(m = i) Ui, where as we just noted, Pr(m = i)

is calculated from s−h and F .
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Given a profile s−h, a hospital h will decide to go early if and only if

Ue ≥ δhEs−hUm (1)

(recall that Ue is the expected utility of making an early offer). So a strategy sh is a best

response to s−h if for every δh, sh(δh) = 0 iff (1) is satisfied.

A profile of strategies s = (s1, . . . , sn) is a Bayesian Nash equilibrium (BNE) if (1) is satisfied

for each h ∈ H. A BNE is symmetric if sh = sh′ for all h, h′ ∈ H. A BNE is full unraveling

if sh = 0 for all h ∈ H. Thus, in a full unraveling BNE, all agents go early no matter their

type.

Theorem 1. If n ≤ 10 then the unique symmetric BNE is the full unraveling BNE. If n > 10

then there is at least one symmetric BNE, namely the full unraveling BNE; moreover, in any

symmetric BNE s = (s1, . . . , sn) we have that

Pr(sh = 0) ≥ F (3/4) ≥ 3/4,

for all h ∈ H.

Theorem 1 says that any hospital, in any symmetric BNE, is more likely to go early than

late. The equilibrium probability of going early is at least 3/4. It is therefore immediate

that:

Corollary 1. In any symmetric BNE, the expected number of hospitals that go early is at

least nF (3/4) ≥ n3/4.

4.3.3 Stability of BNE – Uniform F

In this section we entertain an additional assumption. We suppose that the prior distribution

F is the uniform cdf. In this case, we can make more precise statements about the set of

BNE in our game. We can also talk about the stability of equilibria.

As we shall see, for large n, in the unique stable equilibrium, the market is divided. Most

of the market (3/4 of all hospitals) go early, while the rest wait and contract late. Thus our

99



results with a uniform F can explain some of the empirical findings where only part of the

market unravels.

Theorem 2. Let F be the uniform cdf. If n ≤ 10 then the unique symmetric BNE is the

full unraveling BNE. If n > 10 then there are exactly two symmetric BNE. One is the full

unraveling BNE. The second is a BNE sn = (sn1 , . . . , s
n
n) in which for every h ∈ H

Pr(snh = 0) ≥ 3/4 = lim
n→∞

Pr(snh = 0).

Remark 2. The proof of Theorem 1 actually follows from Theorem 2. We lay out the details

in Section 4.7.

We discuss a notion of stability of BNE. Stability allows us to select a symmetric BNE in

the cases in which there is more than one. It turns out that the full unraveling BNE is stable

when n ≤ 10 and the equilibrium denoted by sn in Theorem 2 is the unique stable symmetric

BNE when n > 10.

A strategy sh satisfying Equation (1) is characterized by a threshold δ̄h ∈ [0, 1] such that

sh(δh) = 0 if δh ≤ δ̄h and sh(δh) = 1 if δh > δ̄h. Given identical thresholds δ̄−h = δ̄

for all hospitals other than h, we can let βn(δ̄) be the threshold for hospital h defined by

Equation (1).

A symmetric BNE is then described by a single δ̄ ∈ [0, 1] with the property that

δ̄ = βn(δ̄).

The function βn is the best-response function of our game. The symmetric BNE are the

fixed points of βn. The following figure shows the graph of βn for n = 3, 7, 11, 15, 17.

A symmetric BNE δ̄ is stable if there is an open interval I of δ̄ in [0, 1] such that for all δ ∈ I

1. δ < βn(δ) when δ < δ̄, and

2. δ > βn(δ) when δ > δ̄.
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Figure 3: The graph of βn for n = 3, 7, 11, 15, 17.

A symmetric BNE that is not stable is unstable.

In the examples in Figure 3, it is evident that the full unraveling BNE is stable when it is

unique. For larger n, we have two BNE. The smaller BNE is stable, while the full unraveling

BNE is unstable. The picture that emerges from Figure 3 holds more generally:

Proposition 1. Let F be the uniform cdf. If n ≤ 10 then the full unraveling BNE is stable.

If n > 10 then the symmetric BNE denoted by sn in Theorem 2 is stable while the full

unraveling BNE is unstable.

4.3.4 Strategic doctors

We now assume that doctors are strategic as well. We consider the simultaneous-move game

in which the players are H∪D. Each agent has to decide whether to match in period t = 0 or

t = 1. So the set of available actions is {0, 1} to each player. Agents’ strategies are functions

si : [0, 1]→ {0, 1}, with i ∈ H ∪D.

When doctors are strategic, the probability that m agents go early is the probability that the

minimum between the hospitals and the doctors that make offers at period t = 0, equals m.

For any profile of strategies s, and any realization of types (δi), the number of agents who
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exit the market is the minimum of two quantities, the number of hospitals h with sh(δh) = 0,

and the number of doctors d with sd(δd) = 0.

Thus, given a profile of strategies of all agents other than h, the expected value of Um,

Es−hUm, involves the probability distribution of the minimum of two independent binomial

random variables, instead of a single binomial random variable as in the previous case. The

number m is drawn according to the minimum of two binomial distributions.

The calculations performed in the proof of Theorem 1 are still sufficient to give us the

following result.

Theorem 3. There is at least one symmetric BNE, namely the full unraveling BNE. In any

symmetric BNE s = (si)i∈H∪D, for every i ∈ H ∪D we have that

Pr(si = 0) ≥ F (1/2) ≥ 1/2.

Corollary 2. In any symmetric BNE, the expected number of agents that go early is at least

nF (1/2) ≥ n/2.

The results in Section 4.3.3 extend to the case when doctors are strategic. We obtain the

following result.

Theorem 4. Let F be the uniform cdf. If n > 10, then there are exactly two symmetric BNE.

One is the full unraveling BNE, which is unstable. The second is a stable BNE s = (si)i∈H∪D

such that Pr(si = 0) ≥ 1/2 for every i ∈ H ∪D.

4.4 A discussion of our model

Our model has two specific assumptions that merit some additional discussion.

Payoffs. We assume that payoffs are multiplicative, a common assumption in applied

matching theory (see e.g. Bulow and Levin (2), Damiano, Li, and Suen (3), and many other

papers). In our particular case, there are two reasons for working with multiplicative payoffs.
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First, a parametric assumption about payoffs is unavoidable when we are trying to precisely

calculate the probability that an agent will go early. As such, the multiplicative form is

natural.

The multiplicative assumption also makes sense as a way of abstracting from other possible

explanations of unraveling. We did not want an explanation of unraveling that was based

on the insurance value of going early (an avenue explored by Li and Rosen (10)). We

assumed payoffs for which there is a clear advantage to going late, not early. In our model,

agents are risk neutral, and even though an agent may end up with a low quality, there is

not enough insurance in going early to compensate from the gain in efficiency from a late

assortative matching. The multiplicative model implies that, even though an agent may be

concerned about a bad draw of their quality, the gains from matching assortatively outweigh

the temptation to match to an average partner in t = 0.

Roth (19) suggests that unraveling is the result of a prisoners’ dilemma game among the

hospitals. The implication is that it is a dominant strategy for the hospitals to go early.

Our focus is on the strategic channel, whereby agents go early because of their concerns

that others go early (and the consequence negative externality). By our assumptions on

preferences, we rule out that it is dominant for agents to go early.

It is still possible to generate unraveling by way of a coordination failure, as in the literature

on bank runs (Diamond and Dybvig (4)). In our model, however, and in contrast to the

model of bank runs, such unraveling is unstable. Only when all agents are certain that

all other agents want to go early, are they willing to go early. This would be an unstable

situation: It is easy to rule out such an outcome if agents’ beliefs may depart from certainty

that everyone goes early. In contrast, we show that there is in our model a stable equilibrium

in which agents are more likely to go early than to go late. Coordination failure is still present

in that equilibrium, but unraveling arises through the channel of strategic unraveling.

Finally, the multiplicative model also captures the negative externality imposed by agents

who go early on the rest of the market. There is an efficiency loss when some agents go
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early; they hurt the rest of the agents (even in a model without transfers like ours).

Information. The second assumption that deserves mention is our informational assump-

tion. We assume that agents are completely ignorant about match qualities at date t = 0.

The assumption is extreme, and it is meant to focus the model on the trade-off between the

value of the information revealed at t = 1, and the incentives to go early. By assuming that

there is no information at time t = 0, and full information at t = 1, we have biased the

model against the unraveling outcome.

That said, it may not be an unrealistic assumption. From Roth and Xing (24): “offers are

being made so early that there are serious difficulties in distinguishing among the candi-

dates.” So our assumption of complete ignorance over match qualities may reflect the actual

situation in the markets where we observe unraveling.

Finally, we use an assumption of the cdf F that allows us to exploit the results obtained in

the case when F is uniform. The assumption that x ≤ F (x) means that F is smaller in the

sense of first-order stochastic dominance, than the uniform distribution. Again, we need the

uniform distribution to make precise calculations, and then the inequality on F allows us to

obtain bounds. As we remarked above, the assumption on F is satisfied when F is concave.

4.5 Proof of Lemma 1

In this Section we present, in the first place, a formula for U1 which clarifies the meaning of

this quantity. Then, a algorithm to compute Um in the general case is introduced (Proposition

2). Lemmas 2 and 3 deduce a simple formula for Um.

Recall that U0 is the expected utility from waiting when all other hospitals wait. Then:

U0 =
1

n

n∑
i=1

i2 =
(n+ 1)(2n+ 1)

6
.
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4.5.1 Computing U1

We compute the expected utility from waiting, when only one pair of hospital-doctor goes

early. In period 1, after permutations πH and πD are drawn, sets H and D can be ordered

according to agents’ quality. Then, consider the setsH andD described as: H = {1, 2, . . . , n}

and D = {1, 2, . . . , n}, where the first agent is the lowest-quality agent, and the last agent

is the highest-quality agent.

First, conditional on being of quality i, the leaving hospital is of a higher quality than i with

probability (n − i)/(n − 1), and of a lower quality than i with probability (i − 1)/(n − 1).

This is deduced from the fact that there are n − 1 possible qualities for the hospital that

leaves early, (n − i) of those are higher than i and (i − 1) lower than i. Figure 2 may help

to make the computations.

Figure 4: Computing U1

If the leaving hospital is of a higher quality than i, this means that hospital i is better off,

unless the doctor that leaves with hospital i is also a “good” doctor: unless the doctor that

leaves is one that would be matched in the second period with a hospital better than i. This

happens with probability (n − i)/n. With the complementary probability, i/n, hospital i
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is better off by the better hospital leaving. Being better off means that hospital i will be

matched in the second period with a doctor with a quality one unit higher than i (i.e., a

doctor of quality (i+ 1)), which is worth i to a hospital of quality i.

If the leaving hospital is of a lower quality than i, then this does not affect hospital i and it

gets i2; unless the doctor that leaves used to be with a better hospital, or with i, in which case

hospital i goes down one step. To a hospital of quality i, losing one step is worth −i. So in

the event that a hospital of lower quality than i leaves (which has probability (i−1)/(n−1))

it gets i2 for sure but it loses −i with probability (n − i + 1)/n, the probability that the

partner of the hospital that goes early is of a quality greater than or equal to i.

So:

U1 =
1

n

n∑
i=1

{
n− i
n− 1

[
i2 +

i

n
i

]
+
i− 1

n− 1

[
i2 − n− i+ 1

n
i

]}
.

Since the terms that multiply i2 add to 1, this gives:

U1 =
1

n

n∑
i=1

[
i2 +

i

n(n− 1)
(n− 2i+ 1)

]
=

(2n− 1)(n+ 1)2

6n
.

Note that U1 can be also expressed as:

U1 = U0 +
1

n

n∑
i=1

[
(n− i)
(n− 1)

i

n
i− (i− 1)

(n− 1)

(n− i+ 1)

n
i

]
= U0 −

n+ 1

6n
.

The intuition behind this equation is the following. Notice that with probability (n−i)/(n−1)

the hospital that leaves early is of a higher quality than i and with probability (i−1)/(n−1)

is of a lower quality than i. Then, ((n− i)/(n− 1))(i/n) is the probability that the hospital

that leaves early is of a higher quality than i and the doctor it hires is of a quality lower

than or equal to i. In this event, hospital i increases its utility by i. If the hospital that

goes early is of quality lower than i and it hires a doctor of quality higher than or equal to

i, which happens with probability ((i− 1)/(n− 1))((n− i+ 1)/n), then hospital i decreases

its utility by i. Therefore, U1 can be expressed as U0 plus the expected utility derived from
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the leaving of a pair of hospital-doctor. Moreover, −n+1
6n

is the negative externality imposed

on the rest of the market by the first pair of hospital-doctor that decide to match early.

Clearly, this argument is very hard to generalize if we consider more than one pair of hospital-

doctor that goes early. In the following Section, we develop an algorithm to compute the

expected utility from waiting when m pairs of hospital-doctor leave the market at t = 0.

4.5.2 An algorithm to compute Um

In this section, we introduce an algorithm to compute the value of Um in the general case.

First, we define the payoff matrix U as follows: the element (i, j) of U is the utility that a

doctor of quality i has when she is hired by a hospital of quality j (which is also the utility

of the hospital). In particular, the elements of the first column of U are the utilities that

the hospital of quality 1 has if it hires a doctor of quality 1, 2, . . . , n. Note that the elements

of the main diagonal of U are: 1, 4, . . . , i2, . . . , n2, which are the payoffs that each agent has

when no pair of hospital-doctor leaves early. Thus, matrix U is:



1 2 3 . . . (n− 1) n

2 4 6 . . . 2(n− 1) 2n

3 6 9 . . . 3(n− 1) 3n

.

.

.

(n− 1) 2(n− 1) 3(n− 1) . . . (n− 1)2 n(n− 1)

n 2n 3n . . . n(n− 1) n2



.

When a hospital makes an offer at t = 0 and hires a doctor, both the hospital and the doctor

may be of any quality. So, to compute the expected utility of a hospital that waits, we have

to consider all possible qualities combinations. Assume that the hospital that leaves is of
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quality j and the doctor that it hires is of quality i. If only this pair of hospital-doctor leaves

the market at t = 0, in the second period the utilities of hospitals and doctors that do not

leave the market are given by the assortative matching. Indeed, the highest quality hospital

(between those that remain in the market) will hire the highest quality doctor of those that

do not exit the market. The same argument holds for all agents.

Therefore, when doctor i is hired at t = 0 by hospital j, the utilities of hospitals and doctors

that remain in the market in the second period, are the elements of the main diagonal of the

submatrix of U that it is obtained from deleting the row i and the column j. To consider all

possible combinations for the quality of the hospital that leaves early and the doctor that

it hires, we have to go over all the elements of U. Thus, to compute the expected utility

from waiting when only one pair of hospital-doctor leaves at t = 0, we have to compute all

the submatrices of U obtained by deleting one row and one column, for each one of these

submatrices we find its trace, we sum all these traces and, finally, we have to divide the sum

by n2(n − 1), since there are n2 possible pairs of qualities for the hospital and the doctor

that go early, and n − 1 possible qualities that a hospital that waits may be assigned to in

the second period..

If m hospitals make an offer at t = 0, we generalize the previous argument as follows.

Consider all submatrices of U that result when m rows and m columns are deleted. There

are
(
n
m

)(
n
m

)
submatrices that can be found. In each case, there are (n−m) possible qualities

for a hospital that waits. Thus, for each submatrix, compute its trace. Um is the sum of all

the computed traces after dividing it by
(
n
m

)(
n
m

)
(n−m) = n2(n−1)2...(n−m+1)2

(m!)2
(n−m).

The following proposition states this result.2

Proposition 2. Let Um be expected utility to a hospital of waiting for the second period when

m hospitals (with their respective doctors) have left the market at t = 0. Denote by T (n,m)

the sum of the traces of all submatrices of U when m rows and m columns are deleted.

2The algorithm can be also applied with other functions uh and ud whenever the functions are strictly

supermodular on the lattice {1, 2, . . . , n}2.
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Then:

Um =
T (n,m)(m!)2

n2(n− 1)2 . . . (n−m+ 1)2
1

(n−m)
.

To come up with an expression for Um, the next step involves the computation of T (n,m).

The following lemma finds a formula for T (n,m). Then, we obtain a reduced expression of

the formula by means of some combinatorial identities.

Lemma 2. Denote by T (n,m) the sum of the traces of all submatrices of U obtained by

deleting m rows and m columns. Then:

T (n,m) =
n∑
i=1

[
i2

m∑
k=0

((
i− 1

k

)(
n− i
m− k

))2
]

+

2
m∑
j=1

[
n−j∑
i=1

i(i+ j)

(
m∑
k=j

(
i+ j − 1

k

)(
n− (i+ j)

m− k

)(
n− i

m− k + j

)(
i− 1

k − j

))]
.

Proof. First we consider the elements of the main diagonal of U, and then, the remaining

elements.

(ii)-elements:

Consider an element ii of the matrix and suppose we delete m rows and m columns. Note

that there are i − 1 rows (columns) above (at the left of) the element ii and n − i rows

(columns) below (at the right). When we delete columns and rows, the element ii remains

in the main diagonal if the number of rows that are deleted above ii is equal to the number

of columns that are deleted from the left of ii. That is, if we delete k rows above ii and

m − k rows below, then we have to delete k columns at the left and m − k columns at the

right. Thus, the number of submatrices in which the element ii is in the main diagonal is:
m∑
k=0

((
i− 1

k

)(
n− i
m− k

))2

.

Since the element ii in the matrix is i2, the share of T (n,m) that corresponds to the elements

of the main diagonal of U is:
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n∑
i=1

[
i2

m∑
k=0

((
i− 1

k

)(
n− i
m− k

))2
]
.

(ij)-elements:

Since U is a symmetric matrix, the trace of the submatrix that we obtain by deleting rows

i1, i2, . . . , im and columns j1, j2, . . . , jm is equal to the trace of the submatrix obtained by

deleting rows j1, j2, . . . , jm and columns i1, i2, . . . , im. Thus, we only have to consider the

elements i(i + j) for j > 0, and take two times the final result. In particular, when only

one row and one column are deleted, the elements that will be in the main diagonal of some

submatrix are those of the form i(i+ j) for i = 1, . . . , n− 1 and j = 1. When two rows and

two columns are deleted, the elements to be considered in T (n,m) are the previous elements

and those of the form i(i+ j) for i = 1, . . . , n− 2 and j = 2. In general, when m rows and m

columns are deleted we have to consider all the elements that were contemplated when m−1

rows and m − 1 columns were deleted, and those of the form i(i + j) for i = 1, . . . , n −m

and j = m.

As we just noted, when we delete m rows and m columns, the elements that are in the trace

of some submatrix are those of the form i(i+j) with j = 1, 2, . . . ,m. So, consider an element

i(i + j). This element has i − 1 rows above and n − i below. Moreover, it has i + j − 1

columns at the left and n − (i + j) columns at the right. Suppose we delete k columns at

the left of i(i+ j) and m− (i+ j) at the right. Now the element is in column i+ j − k. In

order to be in the main diagonal of a submatrix, it should be that: j − k ≤ 0. Moreover,

we have to delete k − j rows above the element i(i+ j) to ensure that the element is in the

main diagonal of a submatrix.

Then, the share of T (n,m) that corresponds to these elements is:

2
m∑
j=1

[
n−j∑
i=1

i(i+ j)

(
m∑
k=j

(
i+ j − 1

k

)(
n− (i+ j)

m− k

)(
i− 1

k − j

)(
n− i

m− (k − j)

))]
.
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Lemma 3. For n ∈ N and m ∈ 1, 2, . . . , n− 1 it holds that:

T (n,m) =

(
n+ 1

m

)2
(
n−m∑
i=1

i2

)
.

The following proof was provided to us by Doron Zeilberger.

Proof. The proof is organized in five claims.

Claim 1: T (n,m) can be written as:∑
i,j,k

i(i+ j)

(
i+ j − 1

k

)(
n− (i+ j)

m− k

)(
n− i

m− k + j

)(
i− 1

k − j

)
,

where the summation range is over all triples (i, j, k), with the convention that the binomial

coefficient
(
r
s

)
is zero if it is not the case that 0 ≤ s ≤ r.

Proof Claim 1

In the proof of the last lemma we found an expression for T (n,m) using the symmetry of

the matrix U. If we do not use the symmetry we obtain the following equivalent expression:

T (n,m) =
n∑
i=1

[
i2

m∑
k=0

((
i− 1

m− k

)(
n− i
k

))2
]

+

m∑
j=1

[
n−j∑
i=1

i(i+ j)

(
m∑
k=j

(
i+ j − 1

k

)(
n− (i+ j)

m− k

)(
n− i

m− k + j

)(
i− 1

k − j

))]
+

m∑
i=1

[
n−i∑
j=1

j(i+ j)

(
m∑
k=i

(
i+ j − 1

k

)(
n− (i+ j)

m− k

)(
n− j

m− k + i

)(
j − 1

k − i

))]
.

Note that for each j = 1, . . . ,m, the range for i is 1 ≤ i ≤ n− j, and for each i = 1, . . . ,m,

the range for j is 1 ≤ j ≤ n−i. Thus, we can write these conditions as: 1 ≤ i ≤ n, 1 ≤ j ≤ n

and 1 ≤ i+ j ≤ n. Now, consider the sum:∑
i,j,k

i(i+ j)

(
i+ j − 1

k

)(
n− (i+ j)

m− k

)(
n− i

m− k + j

)(
i− 1

k − j

)
.
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The implicit range for each variable is: j ≤ k ≤ m, 1 ≤ i ≤ n, 1 ≤ j ≤ n and 1 ≤ i+ j ≤ n.

This implies that both sums are equal.

Claim 2: The sum of Claim 1 equals:

n∑
a=1

a

min(a−1,m)∑
k=max(0,a−(n−m))

(
a− 1

k

)(
n− a
m− k

) a−k+m∑
i=a−k

i

(
n− i

m− k + a− i

)(
i− 1

k − a+ i

)
.

Proof Claim 2

Writing a = i+ j, (and leaving i as a discrete variable, but letting j = a− i), the sum of the

last claim is equal to:∑
a,k,i

ia

(
a− 1

k

)(
n− a
m− k

)(
n− i

m− k + a− i

)(
i− 1

k − a+ i

)
.

Note that summation range of each variable is defined by:

1. For a: 1 ≤ a ≤ n.

2. For k: 0 ≤ k ≤ m, 0 ≤ m − k + a − i ≤ n − i and 0 ≤ k ≤ a − 1. This implies that

max(0, a− (n−m)) ≤ k ≤ min(a− 1,m).

3. For i: 1 ≤ i ≤ n, 0 ≤ m− k + a− i and 0 ≤ k − a+ i. This implies that a− k ≤ i ≤

m− k + a.

Then, the last sum equals the iterated summation:

n∑
a=1

min(a−1,m)∑
k=max(0,a−(n−m))

a−k+m∑
i=a−k

ia

(
a− 1

k

)(
n− a
m− k

)(
n− i

m− k + a− i

)(
i− 1

k − a+ i

)
.

Which is equivalent to:

n∑
a=1

a

min(a−1,m)∑
k=max(0,a−(n−m))

(
a− 1

k

)(
n− a
m− k

) a−k+m∑
i=a−k

i

(
n− i

m− k + a− i

)(
i− 1

k − a+ i

)
.
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Claim 3: The innermost sum is:

a−k+m∑
i=a−k

i

(
n− i

m− k + a− i

)(
i− 1

k − a+ i

)
= (a− k)

(
n+ 1

m

)
.

Proof Claim 3

First note that: i
(

i−1
k−a+i

)
= (a− k)

(
i

a−k

)
. Then we have:

a−k+m∑
i=a−k

i

(
n− i

m− k + a− i

)(
i− 1

k − a+ i

)
= (a− k)

a−k+m∑
i=a−k

(
n− i

m− k + a− i

)(
i

a− k

)
.

Now, notice that:

a−k+m∑
i=a−k

(
n− i

m− k + a− i

)(
i

a− k

)
=

m∑
i=0

(
n− (a− k + i)

m− i

)(
a− k + i

a− k

)
.

Since
(
a−k+i
a−k

)
=
(
a−k+i

i

)
, the last sum can be written as:

m∑
i=0

(
n− (a− k + i)

m− i

)(
a− k + i

i

)
.

Which is equal to:
m∑
i=0

(
(n−m− a+ k) +m− i

m− i

)(
a− k + i

i

)
.

Finally, we use the Vandermonde-Chu identity (Sprugnoli (26), page 54):

n∑
k=0

(
x+ k

k

)(
y + n− k
n− k

)
=

(
x+ y + n+ 1

n

)
.

Defining x = a− k and y = (n−m− a+ k), we have:

m∑
i=0

(
(n−m− a+ k) +m− i

m− i

)(
a− k + i

i

)
=

(
x+ y + n+ 1

n

)
=

(
n+ 1

m

)
.

Claim 4: For the middle sum it holds that:

min(a−1,m)∑
k=max(0,a−(n−m))

(a− k)

(
a− 1

k

)(
n− a
m− k

)
= a

(
n− 1

m

)
− (a− 1)

(
n− 2

m− 1

)
.
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Proof Claim 4

First, we divide the sum:

min(a−1,m)∑
k=max(0,a−(n−m))

(a− k)

(
a− 1

k

)(
n− a
m− k

)

= a

min(a−1,m)∑
k=max(0,a−(n−m))

(
a− 1

k

)(
n− a
m− k

)
−

min(a−1,m)∑
k=max(0,a−(n−m))

k

(
a− 1

k

)(
n− a
m− k

)
.

We use the Vandermonde-Chu identity (Sprugnoli (26), page 53):

n∑
k=0

(
x

k

)(
y

n− k

)
=

(
x+ y

n

)
.

And the first sum is:3

a

min(a−1,m)∑
k=max(0,a−(n−m))

(
a− 1

k

)(
n− a
m− k

)
= a

(
n− 1

m

)
.

If we replace k
(
a−1
k

)
= (a− 1)

(
a−2
k−1

)
in the second sum, we have:

(a− 1)

min(a−1,m)∑
k=max(0,a−(n−m))

(
a− 2

k − 1

)(
n− a
m− k

)
,

which is equal to:

(a− 1)
m∑
k=0

(
a− 2

m− 1− k

)(
n− a
k

)
.

By the Vandermonde-Chu identity, the sum is:

(a− 1)

(
n− 2

m− 1

)
.

Claim 5: Finally, we have:

T (n,m) =

(
n+ 1

m

)2
(
n−m∑
i=1

i2

)
.

3Note that max(0, a− (n−m)) = 0. Indeed, if (a− (n−m)) > 0, we have n− a−m− k < 0 and thus,(
n−a
m−k

)
= 0. Also, we can write the sum up to k = m, because for k = a, a+ 1, . . . ,m,

(
a−1
k

)
= 0.
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Proof Claim 5

Since the last claims we know that:

T (n,m) =

(
n+ 1

m

)((
n− 1

m

)( n∑
a=1

a2

)
−
(
n− 2

m− 1

)( n∑
a=1

a(a− 1)

))
.

Then, compute:(
n+ 1

m

)((
n− 1

m

)( n∑
a=1

a2

)
−
(
n− 2

m− 1

)( n∑
a=1

a(a− 1)

))

=

(
n+ 1

m

)(
(n− 1)!

m!(n−m− 1)!

n(n+ 1)(2n+ 1)

6

− (n− 2)!

(m− 1)!(n−m− 1)!

(n− 1)n(n+ 1)

3

)
=

(
n+ 1

m

) (
(n+ 1)!

m!(n−m− 1)!

(2n+ 1)

6
− (n+ 1)!

m!(n−m− 1)!

m

3

)
=

(
n+ 1

m

)
(n+ 1)!

m!(n−m− 1)!

(
2n+ 1

6
− m

3

)
=

(
n+ 1

m

)
(n+ 1)!

m!(n−m− 1)!

2n− 2m+ 1

6

=

(
n+ 1

m

)
(n+ 1)!

m!(n−m+ 1)!

(n−m)(n−m+ 1)(2n− 2m+ 1)

6

=

(
n+ 1

m

)2
(n−m)(n−m+ 1)(2(n−m) + 1)

6

=

(
n+ 1

m

)2 n−m∑
i=1

i2 .

Finally, we obtain the formula for Um. We know that:

Um =
T (n,m)(

n
m

)(
n
m

)
(n−m)

.
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First note that: (
n+ 1

m

)2

=

[
n+ 1

n−m+ 1

]2(
n

m

)2

.

Then, by replacing the last expression in Um, we obtain:

Um =
(n+ 1)2

(n−m+ 1)2(n−m)

(n−m)(n−m+ 1)(2(n−m) + 1)

6
.

By simplifying the last equation, we prove the result:

Um =
(n+ 1)2(2(n−m) + 1)

6(n−m+ 1)
.

Note that Um increases with n, the number of agents. This means that if there are more

agents in the market, the expected utility of waiting when a fixed number of agents leave

the market at t = 0, increases.

The next result shows that Um decreases with m, a property which will be used in the next

section. Then, the expected utility of waiting and match at t = 1, decreases as more agents

leave early.

Corollary 3. Let Um be expected utility of a hospital that decides to wait for the second

period when m pairs of hospital-doctor leave the market at t = 1. Then for n ∈ N and

m = 0, 1, 2, . . . , n− 1, we have:

Um − Um+1 =
(n+ 1)2

6(n−m)(n−m+ 1)
.

Note that Um+1−Um represents the negative externality imposed on the rest of the market by

one pair of hospital-doctor that decides to go early, when m agents have already decided to

match at t = 0. Since Um−Um+1 increases when m becomes larger, the negative externality

imposed by one more pair going early increases (in absolute value) as more agents have

decided to go early. Moreover, when the number of agents (that is, n) increases the negative
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externality decreases. However, since lim
n→∞

Um+1 − Um =
1

6
, it does not converge to zero

as the market size goes to infinity. Thus, the negative externality becomes neutral when n

tends to infinity because it does not depend on the number of agents that have previously

decided to match early.

4.6 Proof of Theorem 2

Recall that the best-response function of the game, βn, is defined by Equation (1) in the

following way. Given identical thresholds δ−h = δ for all hospitals other than h, βn(δ) is

given by the equation:
1

n2

n∑
i=1

n∑
j=1

ij = βn(δ)Es−hUm.

Where s−h is such that sh̃ = 0 if δh̃ ≤ δ and sh̃ = 1 if δh̃ > δ, for all h̃ 6= h.

Note that:
1

n2

n∑
i=1

n∑
j=1

ij =
(n+ 1)2

4
.

When all hospitals other than h have the same threshold δ, the probability that m hospitals

make early offers is the probability m hospitals have discount factors less than or equal to δ,

and n −m hospitals have discount factors higher than δ. Since discount factors are drawn

independently from a uniform distribution on [0, 1], the probability that m hospitals leave

at t = 0 is given by δm(1− δ)n−1−m
(
n−1
m

)
. Therefore:

Es−hUm =
n−1∑
m=0

δm(1− δ)n−1−m
(
n− 1

m

)
Um.

Then βn is defined by:

βn(δ) =
(n+ 1)2

4
[∑n−1

m=0 δ
m(1− δ)n−1−m

(
n−1
m

)
Um
] .
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The symmetric BNE of our game are the fixed points of the best-response function βn. Since

Lemma 1 we know that Un−1 = (n+1)2

4
, and then βn(1) = 1 for all n. Thus, full unraveling

is a BNE for all n. In this Section we investigate the existence of other fixed points. In

particular, Lemma 4 gives a simple formula for βn. Lemma 6 shows that βn is an increasing

function of δ and βn(0) > 3
4
. Thus, βn may have, at most, one fixed point different from

δ = 1. Moreover, if it exists, the fixed point is higher than 3
4
. Lemma 6 proves that δ = 1 is

the unique fixed point of βn for all n ≤ 10, and if n > 10, βn has exactly two fixed points.

Finally, Lemma 8 studies the behavior of βn when n tends to infinity.

It is worthwhile noting that the threshold at the BNE sn defined in Theorem 2, decreases

as more agents are present in the market. This means that the probability that a hospital

makes early offers, decreases as the number of agents increases. The intuition of this result

is straightforward since, as we noted before, the incentives to make early offers when a fixed

number of agents leave the market at t = 0, decreases with n.

Lemma 4.

βn(δ) =
3

2

(
2− 1

n(n+ 1)

n∑
m=1

mδn−m

)−1
.

First we will prove the following lemma which will be useful in the proof of Lemma 4.

Lemma 5. For any n ∈ N and δ ∈ R it holds:

n∑
m=0

(1− δ)n−mδm
(
n
m

)
n−m+ 2

=
n∑

m=0

(m+ 1)δn−m

(n+ 1)(n+ 2)
.

Proof. 4 Consider the following polynomials of degree n:

p(δ) =
n∑

m=0

(1− δ)n−mδm
(
n
m

)
n−m+ 2

, and

q(δ) =
n∑

m=0

(m+ 1)δn−m

(n+ 1)(n+ 2)
.

4 We are very grateful to Andrés Sambarino for helpful comments on this proof.
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We want to prove that p = q and to this end, we will show that all the derivatives of p and

q are equal at δ = 0. Denote by p(k) and q(k) the kth derivative of p and q, respectively. It

is straightforward to show that:

q(k)(δ) =
n−k∑
m=0

1

(n+ 1)(n+ 2)
(m+ 1)(n−m)(n−m− 1) . . . (n−m− k + 1)δn−m−k,

for k = 1, 2, . . . , n

Then:

q(k)(δ) =
n−k∑
m=0

1

(n+ 1)(n+ 2)
(m+ 1)

(n−m)!

(n−m− k)!
δn−m−k.

When we evaluate at δ = 0, we have:

q(k)(0) =
(n− k + 1)k!

(n+ 1)(n+ 2)
.

To compute the kth derivative of p, consider the functions:

g1(δ) = (1− δ)n−m, and

g2(δ) = δm.

Then:

g
(i)
1 (δ) =

(n−m)!

(n−m− i)!
(−1)i(1− δ)n−m−i, and

g
(k−i)
2 (δ) =

m!

(m− k + i)!
δm−(k−i).

By the general Leibniz rule we have, for k = 1, 2, . . . , n:

(g1g2)
(k)(δ) =

k∑
i=0

(
k

i

)
(n−m)!

(n−m− i)!
m!

(m− k + i)!
(−1)i(1− δ)n−m−iδm−(k−i).

If m− k ≥ 0,m− (k − i) ≥ 0 for all i and thus, (g1g2)
(k)(0) = 0 Then, suppose m− k ≤ 0,

we have:

(g1g2)
(k)(0) =

(
k

k −m

)
(n−m)!

(n− k)!
m!(−1)k−m.
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Thus, the kth derivative of p is:

p(k)(0) =
n∑

m=0

(
n

m

)
1

(n+ 2−m)

(
k

k −m

)
(n−m)!

(n− k)!
(−1)k−mm! .

As we just noted, when m ≥ k, p(k)(0) = 0, then, we can write the previous sum from m = 0

to m = k.

We want to prove that p(k)(0) = q(k)(0) for all k = 1, 2, . . . , n; that is:

k∑
m=0

(
n

m

)
1

(n+ 2−m)

(
k

k −m

)
(n−m)!

(n− k)!
(−1)k−mm! =

(n− k + 1)!k!

(n+ 1)(n+ 2)
.

Note that: (
n

m

)
(n+ 1)(n+ 2)

(n+m− 2)
=

(
n+ 2

m

)
(n+ 1−m), and

(
k

k −m

)
(n−m)!

(n− k)!
m!

1

(n− k + 1)k!
(n+ 1−m) =

(
n+ 1−m
n− k + 1

)
.

Thus, we have to prove that:

(−1)k
k∑

m=0

(
n+ 2

m

)(
n+ 1−m
n− k + 1

)
(−1)m = 1.

To finish the proof we use the following binomial identity (Riordan (17), page 8):

n∑
k=0

(−1)k
(
n

k

)(
x− k
r

)
=

(
x− n
r − n

)
=

(
x− n
x− r

)
.

Thus:

(−1)k
k∑

m=0

(
n+ 2

m

)(
n+ 1−m
n− k + 1

)
(−1)m = (−1)k

(
−1

k

)
.

Finally, by the Negation rule we have:
(−1
k

)
= (−1)k

(
1+k−1
k

)
= (−1)k, and then:

(−1)k
k∑

m=0

(
n+ 2

m

)(
n+ 1−m
n− k + 1

)
(−1)m = (−1)2k = 1.

Proof of Lemma 4.
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We know that:

βn(δ) =
(n+ 1)2

4

[ n−1∑
m=0

(1− δ)n−1−mδm
(
n− 1

m

)
Um
] , and

Um =
(n+ 1)2(2(n−m) + 1)

6(n−m+ 1)
,

for m = 0, . . . , n− 1.

We will use these two identities:

2(n−m) + 1

n−m+ 1
= 2− 1

n−m+ 1
,

n−1∑
m=0

(1− δ)n−1−mδm
(
n− 1

m

)
= 1.

Then, by substituting Um and since the last identities we have:

βn(δ) =
3

2

(
2−

n−1∑
m=0

(1− δ)n−1−mδm
(
n−1
m

)
n−m+ 1

) .

By the previous lemma we can write βn as:

βn(δ) =
3

2

(
2−

n−1∑
m=0

(m+ 1)

n(n+ 1)
δn−1−m

) .

Which is equivalent to:

βn(δ) =
3

2

(
2− 1

n(n+ 1)

n∑
m=1

mδn−m

) .

�

The following lemma gives more information on the nature of βn.
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Lemma 6.

βn(δ) =


3

2

[
2− 1

n(n+ 1)

(
δn+1 − nδ2 + (n− 1)δ

(1− δ)2

)] if δ ∈ (0, 1)

1 if δ = 1

Further,

1. βn is increasing for each n.

2. βn(0) > 3
4

and βn(1) = 1, for all n.

3. βn has, at most, two fixed points. δ = 1 is a fixed point of βn for all n ∈ N and it may

have another fixed point which, if it exists, is higher than 3
4
.

Proof. When δ = 1 we have:

βn(1) =
3

2

(
2− 1

n(n+ 1)

n∑
m=1

m

) =
3

2

(
2− 1

n(n+ 1)

n(n+ 1)

2

) = 1.

Then, suppose δ ∈ (0, 1), and note that:

n∑
m=1

mδn−m = δn
n∑

m=1

m
(1

δ

)m
.

We use the following identity, that hold for x 6= 1:

n∑
m=1

mxm =
1− nxn + (n− 1)xn+1

(1− x)2
.

Finally, for δ ∈ (0, 1) we have:

n∑
m=1

mδn−m =
δn+1 − nδ2 + (n− 1)δ

(1− δ)2
.

To prove part 1, note that for all δ ∈ [0, 1]:(
n∑

m=1

mδn−m

)′
=

n−1∑
m=1

m(n−m)δn−m−1 ≥ 0.
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Then, the expression
∑n

m=1mδ
n−m increases with δ and thus, βn is increasing.

For part 2 notice that βn(0) = 3(n+1)
2(2n+1)

> 3
4

for all n ≥ 1.

To prove part 3, we know that δ = 1 is a fixed point of βn. Since βn(0) > 3
4

and βn is

increasing, βn crosses the line y = x at, at most, one point different from δ = 1. Thus, if it

exists, the second fixed point is higher than 3
4
.

Lemma 7. Consider the best-response function βn. Then:

1. For each δ ∈ [0, 1] it holds that βn(δ) ≥ βn+1(δ).

2. For all n ≤ 10, δ = 1 is the unique fixed point of βn.

3. For all n > 10, βn has two and only two fixed points.

Proof. (1) We will show that:

1

n(n+ 1)

[
δn+1 − nδ2 + (n− 1)δ

(1− δ)2

]
≥ 1

(n+ 1)(n+ 2)

[
δn+2 − (n+ 1)δ2 + nδ

(1− δ)2

]
.

Which is equivalent to:

δ

n
(δn−1 − n) +

n− 1

n
≥ δ

n+ 2
(δn − (n+ 1)) +

n

n+ 2
.

Note that:
δ

n
>

δ

n+ 2
,

δn− 1− n > δn − (n+ 1),

and:
n− 1

n
= 1− 1

n
≥ 1− 2

n+ 2
=

n

n+ 2
.

Thus, we finish the proof.
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(2) and (3). We have to study the solutions in [0, 1] of the equation:

βn(δ) =
3

2

(
2− 1

n(n+ 1)

n∑
m=1

mδn−m

) = δ.

Since for each δ ∈ [0, 1] it holds that βn(δ) ≥ βn+1(δ), if βn has two fixed points for some

n0, then βn has two fixed points for all n such that n ≥ n0. We know that δ = 1 is one

solution of the equation and there may be, at most, one more solution in [0, 1]. The equation

is equivalent to:

pn(δ) = δn + δn−1 + 3δn−2 + . . .+ (n− 1)δ2 + (−2n2 − n)δ +
3n(n+ 1)

2
= 0.

As we noted, δ = 1 is a root of pn. We also know that pn(0) = 3n(n+1)
2

> 0 and that pn has,

at most, one more root. Then, we will prove that for some n0, p
′
n0

(1) > 0, which implies

that for all n ≥ n0, pn has two fixed points in [0, 1]. Then, compute:

p′n(1) =

[
n−1∑
i=1

i(n− i+ 1)

]
+ (−2n2 − n) =

n(n+ 1)(n− 10)

6
.

Thus, for all n such that 0 ≤ n ≤ 10, p′n(1) ≤ 0 and, for all n > 10, p′n(1) > 0. This finishes

the proof.

4.6.1 Behavior as n→∞

Lemma 8. For each δ ∈ [0, 1],

lim
n→∞

βn(δ) =


3

4
if δ ∈ [0, 1)

1 if δ = 1
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Proof. For δ = 1 we know that βn(1) = 1 for all n. Assume δ < 1. Then, by Lemma 6, it is

enough to show that:

lim
n→+∞

1

n(n+ 1)

[
δn+1 − nδ2 + (n− 1)δt

(1− δ)2

]
= 0.

The last expression is equivalent to:

δ

(1− δ)2

[
(δ)n

n(n+ 1)
− δ

(n+ 1)
+

n− 1

n(n+ 1)

]
.

Finally, it is straightforward to show that the limit of the last expression when n tends to

infinity is 0. Note that Lemma 8 implies that the best-response function βn converges to

a discontinuous function as n→∞.

Finally, note that in any symmetric BNE the expected number of hospitals that go early is

given by:
n∑

m=0

m(1− δ∗)n−m(δ∗)m
(
n

m

)
Where δ∗ is a fixed point of βn.

The last expression equals nδ∗. As we noted before, βn has, at most, two fixed points, each

one higher than 3/4. Thus, in any symmetric BNE, the expected number of hospitals that

go early is at least (3/4)n.

4.7 Proof of Theorem 1

When all agents share the prior that different δh are drawn independently from a distribution

over [0, 1] with cdf F , the best-response function is given by F (βn(x)). Since βn is an

increasing function and F (x) ≥ x, we have that βn(F (x)) ≥ βn(x). Finally, note that

F (1) = 1 and that βn(1) = 1. Then Theorem 1 follows directly from Theorem 2.
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4.8 Proof of Theorem 4

In the case where both sides of the market are strategic, the game is analyzed in the same way

that we did in the previous sections. The difference is that now the probability that m agents

leave early is the probability that the minimum between the hospitals and the doctors that

play at t = 0, equals m. Then, the expected value of Um, involves the probability distribution

of the minimum of two independent binomial random variables.

We introduce some additional notation. Let xm be the probability that a binomial random

variable with parameters (δ, n−1) equals m, and let hm be the probability that the minimum

of two independent such random variables equalsm. Denote byG the cumulative distribution

function of a binomial random variable with parameters (δ, n − 1) and let Ḡ = 1 − G.

Therefore, the best-response function is defined by

β̃n(δ) =
(n+ 1)2

4
[∑n−1

m=0 hmUm
] .

We use the results of the previous sections to find a lower and upper bound for β̃n. It is

straightforward to prove that 1
2
βn ≤ β̃n ≤ βn. Then, for all n > 10, β̃n has, at least, one

fixed point which lies within the interval (3
8
, 3
4
). Moreover, as we will prove in the following

lemmas, the lower bound can be improved, which allows us to conclude that in the general

model, the expected number of agents that go early is at least one half.

We first prove some properties of β̃n. In particular, Lemma 9 shows that: δ = 1 is a fixed

point of β̃n for all n, β̃n is an increasing function of δ, and that β̃n(δ) ≥ β̃n+1(δ) for all n.

Lemma 10 demonstrates that for each ε > 0 there exists n0 such that for all n ≥ n0 and

δ ∈ [0, 1] it holds:
3
4(

3
2

+ ε
) ≤ β̃n(δ) ≤ βn(δ).

Then, limn→∞ β̃
n(δ) ≥ 1

2
, and since β̃ decreases when n increases, we conclude that for all n:

1

2
≤ β̃n(δ) ≤ βn(δ).
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Lemma 9. Consider the best-response function β̃n as defined before. Then:

1. β̃n(1) = 1 for all n.

2. β̃n is an increasing function of δ

3. For each δ ∈ [0, 1], β̃n(δ) ≥ β̃n+1(δ), for all n.

Proof. (1) Since the cumulative distribution function of the minimum of two iid random

variables is 1− (1−G)2, we have:

hm = (1− (1−G(m))2)− (1− (1−G(m− 1))2)

= (1−G(m− 1))2 − (1−G(m))2

= 2(G(m)−G(m− 1)) +G(m− 1)2 −G(m)2

= 2xm + (G(m− 1)−G(m))(G(m) +G(m− 1))

= xm(2−G(m− 1)−G(m))

= xm(Ḡ(m− 1) + Ḡ(m)).

Thus,

β̃n(δ) =
(n+ 1)2

4
[∑n−1

m=0(1− δ)n−1−mδm
(
n−1
n

)
(Ḡ(m− 1) + Ḡ(m))Um

] .
When we compute β̃n(1) we obtain:

β̃n(1) =
(n+ 1)2

4[(Ḡ(n− 2) + Ḡ(n− 1))Un−1]
.

Since Un−1 = (n−1)2
4

, and for δ = 1, Ḡ(n− 2) = 1 and Ḡ(n− 1) = 0, we have that β̃n(1) = 1.
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(2) Now, if Ĝ is the cumulative distribution function of a binomial random variable with

parameters (δ̂, n− 1), with δ̂ > δ, we have that Ĝ(m) ≤ G(m) for all m ∈ {0, 1, . . . , n− 1}.

This implies that 1 − (1 − Ĝ(m))2 ≤ 1 − (1 − G(m))2. Let ĥm be the probability that the

minimum of two independent binomial random variables with parameters (δ̂, n − 1) equals

m. Then, since Um decreases with m, we have that

n−1∑
m=0

ĥmUm ≤
n−1∑
m=0

hmUm.

Therefore, β̃n is an increasing function of δ.

(3) We know that Um = (n+1)2(2(n−m)+1)
6(n−m+1)

. Then, the best-response function can be written

as:

β̃n(δ) =
3

2
[
1 +

∑n−1
m=0

n−m
n−m+1

hm
] .

Using a change of variable, k = n−m, we obtain:

n−1∑
m=0

n−m
n−m+ 1

hm =
n∑
k=1

k

k + 1
hn−k =

n∑
k=0

k

k + 1
hn−k.

Consider two binomial random variables X̃n
i , i = 1, 2. Each random variable i is defined on

the same sample space, the space of an infinite number of Bernoulli trials. For X̃n
i we count

the number of successes in the first n such trials. The sample spaces for X̃n
1 and X̃n

2 are

independent.

Now, for each n there is also the random variable Ỹ n
i counting the number of failures. Note

that X̃n
i + Ỹ n

i = n.

Let rk be the probability that max{Ỹ n
1 , Ỹ

n
2 } = k. Observe that hn−k = rk. So we have that:

n−1∑
m=0

n−m
n−m+ 1

hm =
n∑
k=0

k

k + 1
rk.
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Since we have defined these random variables on the same sample space, it is true that

{Ỹ n
i ≥ x} ⊆ {Ỹ n+1

i ≥ x}

for any x because any time that we have at least x failures in the first n Bernoulli trials, we

have at least x failures in the first n+ 1 Bernoulli trials (past failures cannot be undone).

By the same token:

{max{Ỹ n
1 , Ỹ

n
2 } ≥ x} ⊆ {max{Ỹ n+1

1 , Ỹ n+1
2 } ≥ x}.

So that the probability distribution (rk) increases in the sense of first-order stochastic dom-

inance (it actually increases in a stronger sense).

The function k 7→ k/(k + 1) is monotone increasing. Thus the sum

n∑
k=0

k

k + 1
rk

is increasing in n, as it is the expected value of a monotone increasing function, and the

probability law is monotone increasing in n.

Lemma 10. Let ε > 0. Then, there exists n0 such that for all n ≥ n0, the function β̃n defined

previously satisfies:
3
4(

3
2

+ ε
) ≤ β̃n(δ) ≤ βn(δ).

Proof. Since the last Lemma we know that:

hm = xm(Ḡ(m− 1) + Ḡ(m))

≤ 2xmḠ(m− 1).

Then,
n−1∑
m=0

hmUm =
n−1∑
m=0

xm(Ḡ(m− 1) + Ḡ(m))Um ≤
n−1∑
m=0

2xmḠ(m− 1)Um.
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The median of a binomial distribution with parameter (n, δ) lies within the interval [bnδc, dnδe].

Moreover, if nδ is an integer, the median is nδ. So, if nδ is an integer we have that

Ḡ(nδ) = Pr[xm ≥ nδ + 1] ≤ 1
2
. Otherwise, if nδ is not an integer, Ḡ(bnδc) = Pr[xm >

bnδc] = Pr[xm ≥ dnδe] ≤ 1
2
. Thus, if m ≥ bnδc+ 1, we have that Ḡ(m− 1) ≤ Ḡ(bnδc) ≤ 1

2
.

Then:

n−1∑
m=0

hmUm ≤ 2

b(n−1)δc∑
m=0

UmxmḠ(m− 1) +
n−1∑

m=b(n−1)δc+1

UmxmḠ(m− 1)


≤ 2

b(n−1)δc∑
m=0

Umxm +
1

2

n−1∑
m=b(n−1)δc+1

Umxm


=

b(n−1)δc∑
m=0

Umxm +
n−1∑
m=0

Umxm = g(δ) +

b(n−1)δc∑
m=0

Umxm,

where g(δ) =
∑n−1

m=0 Umxm.

Now, recall that:

Um =
(n+ 1)2(2(n−m) + 1)

6(n−m+ 1)
.

So we obtain that:

b(n−1)δc∑
m=0

Umxm =
(n+ 1)2

6

b(n−1)δc∑
m=0

(2(n−m) + 1)

n−m+ 1
xm

=
(n+ 1)2

6

b(n−1)δc∑
m=0

(
1 +

(n−m)

n−m+ 1

)
xm

≤ (n+ 1)2

6

b(n−1)δc∑
m=0

2xm

≤ (n+ 1)2

6
.

Where, in the last inequality, we use that G(b(n− 1)δc) ≤ 1
2
.
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Therefore: ∑b(n−1)δc
m=0 Umxm

g(δ)
≤ (n+ 1)2/6

g(δ)
=

(
n−1∑
m=0

2(n−m) + 1

n−m+ 1
xm

)−1
. (2)

Now, let ε > 0. Choose ρ0, ρ1 ∈ (0, 1) such that: 5

1

1 + ρ0ρ1
<

1

2
+ ε

Let n be large enough such that:

Pr

(
M̃ ≤ n− ρ0

1− ρ0

)
≥ ρ1,

where M̃ is a binomial random variable with parameters (n− 1, δ).

Clearly, the value of n that satisfies the last inequality depends on δ. Moreover, for higher

values of δ, we need to consider higher values of n. Then, assume that δ ≤ 1
2
, and take n

large enough such that the inequality holds. In the last step of the proof, we extend the

result for all values of δ.

Now, m ≤ n− ρ0
1−ρ0 if and only if ρ0 ≤ (1− ρ0)(n−m) if and only if

ρ0 ≤
n−m

n−m+ 1
.

Note that
∑n−1

m=0
2(n−m)+1
n−m+1

xm is the expectation of the random variable(
2(n− M̃) + 1

n− M̃ + 1

)
,

then we have:

n−1∑
m=0

2(n−m) + 1

n−m+ 1
xm = EM̃

(
2(n− M̃) + 1

n− M̃ + 1

)
= EM̃1 + EM̃

(
n− M̃

n− M̃ + 1

)
.

Now, note that:

5Note that ρ0 and ρ1 exist since j(x) = 1
1+x is a continuous and decreasing function in [0, 1] with j(0) = 1

and j(1) = 1
2 .
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EM̃

(
n− M̃

n− M̃ + 1

)
=

n−1∑
m=0

(
n−m

n−m+ 1

)
xm

≥
bn− ρ0

1−ρ0
c∑

m=0

(
n−m

n−m+ 1

)
xm

≥ ρ0

bn− ρ0
1−ρ0

c∑
m=0

xm

= ρ0Pr

(
M̃ ≤ n− ρ0

1− ρ0

)
≥ ρ0ρ1.

Thus:
n−1∑
m=0

2(n−m) + 1

n−m+ 1
xm ≥ 1 + ρ0ρ1.

Now, using Equation (2) and the definition of ρ0 and ρ1 we obtain that:∑b(n−1)δc
m=0 Umxm

g(δ)
≤ 1

1 + ρ0ρ1
<

1

2
+ ε.

Then:
b(n−1)δc∑
m=0

Umxm < (
1

2
+ ε)g(δ),

which implies that:
n−1∑
m=0

hmUm ≤
(

3

2
+ ε

)
g(δ).

Finally, note that:

β̃n(δ) =
(n+ 1)2

4
[∑n−1

m=0 hmUm
]

≥ (n+ 1)2

4g(δ)

1(
3
2

+ ε
)

= βn(δ)
1(

3
2

+ ε
) .
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Therefore, there exists n0 such that for all n ≥ n0:

β̃n(δ) ≥ βn(δ)
1(

3
2

+ ε
) ≥ 3

4(
3
2

+ ε
) .

for all δ ≤ 1
2
.

Since β̃n is an increasing function of δ, if δ > 1
2
:

β̃n(δ) ≥ β̃n(1/2) ≥
3
4(

3
2

+ ε
) .

To prove that β̃n(δ) ≤ βn(δ) just note that 1 − (1 − G(m))2 ≥ G(m), and since Um is

decreasing in m we have:
n−1∑
m=0

Umhm ≥
n−1∑
m=0

Umxm.

Then:

β̃n(δ) =
(n+ 1)2

4
[∑n−1

m=0 Umhm
] ≤ (n+ 1)2

4
[∑n−1

m=0 Umxm
] = βn(δ).

Finally, we have that there exists n0 such that for all n ≥ n0 and δ ∈ [0, 1]:

3
4(

3
2

+ ε
) ≤ β̃n(δ) ≤ βn(δ). (3)

The lower bond
(
3
2

+ ε
)

is arbitrarily close to 3
2
. Then, for each δ we have that:

lim
n→∞

β̃n(δ) ≥ 1

2
.

Since by Lemma 9, β̃n decreases when n increases, we have that for all n:

1

2
≤ β̃n ≤ βn.

Finally, note that:
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1. β̃n is an increasing function of δ,

2. β̃n(1) = 1,

3. βn has two fixed points if n > 10,

4. 1
2
≤ β̃n ≤ βn,

then, β̃n has exactly two fixed point: δ = 1 and the other between 1
2

and 3
4
.

Thus, in the general model, the expected number of agents that go early is at least (1
2
)n.

4.9 Proof of Theorem 3

Theorem 3 follows from Theorem 4 by observing that β̃n(F (δ)) ≥ β̃n(δ), and by employing

the same argument used in Section 4.7.
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