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Abstract  

 

This paper constructs a theoretical model about a unilateral market. This work studies a market 

where agents can buy and sell goods at the same time.  Agents have one and only one  

indivisible good and money.  Money is used to trade with other agents.  The behavior of  

the agents is described by a two-stage game. In the first stage of the game agents announce  

prices and in the second stage agents report a ranking over the baskets after having seen the  

price vector announced. The Top Trading Cycle is used to allocate the goods and money. The  

first stage of the game is a non-cooperative game, and in the second stage to report their true  

ranking is a dominant strategy, so the second stage is no strategic. The solution concept for  

the game is the Bayesian equilibrium. We compute the Bayesian equilibrium for some 

probability functions when we have n = 2 agents in the market. For these probability functions, 

the Bayesian equilibrium exists and is unique. Finally, we discuss the problems that arise when  

we try to generalize to the case n > 2 or to an arbitrary probability function.  
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1 Introduction 

 

The present work takes as its starting point the price setting behavior observed in the real  

estate market. When an agent decides to sell her house, is usual that agents set the price. An  

agent sets the price of her house by many reasons: she knows better than anyone the features  

of her house, may be cheated if someone else sells her house, or just needs the money to cover  

debts, or to buy a good at the same time. For example, it is common that a person decides  

to sell her house because she wants to change their place of residence and needs money to  

buy a new house. Then, what an agent does is to advertise in the media that your house is  

for sale, showing her house to those interested and wait for someone to pay the price settled.  

Agent adjusts the price of her house after a long time has passed without being able to sell  

her house.  

The real estate market is not the only one where agents sell their goods to buy a new  

one.  For example in the auto-mobile market, people sell their cars to the agencies and get  

money to buy a new one in the same agency or in another.  In recent years this situation  

has become more common in video games and comic shops.  People sell their video games  

to the shops like Blockbuster, Gamers, Game Planet, etc.  Shops have become buyers in the  

market for video games. These shops pay an amount of money to people for their games and  

people use money to buy a new game or something else.  In comic shops, comic collectors  

come together to swap cards, comics, etc.  Depending on the collectible, the trade may or  

may not include money. We must emphasize that in the comic case, the shop also serves as a  

meeting place for people who want to sell their collections and buy special editions. Agents  

set prices according to their preferences. The existence of different unilateral markets makes  

increasingly important to study in these markets.  

On the other hand, we know that the government intervenes in the real estate market  

through taxes or subsidies, even in building, altering the behavior of the agents when they  

set prices in the housing market.  For example, in Mexico there exists Infonavit.  Infonavit  

is a government institution that provides loans to workers to purchase a house, but the role  

played by Infonavit is more important. Infonavit played two roles: it is a buyer because it is  
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the owner of the house bought with the "Infonavit credit" until the worker clears the debt. And 

Infonavit is a seller too: when a loan is cancelled for non-payment, Infonavit seizes the house 

and then puts it on sale.  

Traditional models related with the real estate market have problems to analyze the  

government intervention and typically consider bilateral markets.  Moreover, the literature  

related to the real estate market presents theoretical limitations in its applications. This liter- 

ature can be classified according to the following approaches: the cooperative games whose  

solution concept is the core; the competitive approach that analyses the competitive equilibrium; 

and the studies that suggest the existence of a bargaining process.  In these areas  

their solution concept involves serious problems to do comparative statics.  The cooperative  

approach proposes the core as a concept solution.  The problem with the core, according to  

Mas-Colell (1988, 151), is that "it is a concept a little proactive.  This greatly facilitates the  

ability to improve complaints and, consequently, often leads to an empty core.  This lack of  

consistency in the core concept led von Neumann and Morgerstern to reject it (more or less  

explicitly) to propose a more sophisticated, the stable set". When we work with a competitive  

approach, we find multiple equilibriums, which is the best? How to determine which to choose?  

The cooperative approach does not indicate what price vector take and what not. And the 

problem with bargaining models is that in the real estate market there is no bargaining process: a 

real estate agent does not change the price of their house because a buyer does not have enough  

money to pay or because they disagree with the price of a house.  

With this motivation in mind, we construct a more realistic model. We consider agents 

who have an initial endowment, which consists of money and an indivisible good.  We call 

"basket" to the endowment of an amount of money and a good.  To simplify the model, agents 

have one and only one indivisible good. Money in the economy is use to trade with other agents.  

Each agent is identified by her valuation of each good in the market.  The valuation vector is 

drawn according to a probability function and captures the fact that goods are substitutes but not 

homogeneous.  Agents value the goods in the market independently and they only know their 

own valuation vector.  

Agents interact in a two-stage game. In the first stage agents set simultaneously the  
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price of their goods. Agents observe a price vector according to the prices announced in the  

first stage, so in the second stage agents report their ranking over the set of available baskets.  

The agents’ behavior depends on the money and the good obtained after trading with other  

agents. To end the game, we use the top trading cycle (TTC) algorithm, described in "Shapley  

and Scarf (1974)", to allocate the baskets. The TTC algorithm assign an amount of money and  

a good to each agent, so when it stops, agents buy and sell a good. Finally, we propose the  

Bayesian equilibrium as the solution concept for these situations. For two agents in the market,  

we found that the Bayesian equilibrium exists and is unique for some specific probability  

functions.  

The existing literature on real estate market research is intimately related to the classical 

analyses of matching processes in markets. The classical papers in this area are David Gale  

and Lloyd Shapley [2], Lloyd Shapley and Herbert Scarf [9], and Lloyd Shapley and Martin  

Shubik [10].  Gale and Shapley [2] (1962) consider the preferences over the possible matches  

as exogenous.  They proposed the deferred acceptance procedure to show the existence of the  

core for the marriage and college-admissions games. Later, Shapley and Scarf [9] used the top  

trading cycles algorithm to find an equilibrium assignment of indivisible goods to people. Gale  

and Shapley (1962); and Shapley and Scarf (1974) do not consider any compensation between  

agents that are matched. Shapley and Shubik [10] studied the matching problem in a market  

where there is a divisible good, and agents compensate each other with money for matching.  

These three papers consider bilateral markets. Agents are divided into two disjoint sets. In  

this kind of models, matching is only possible between agents from different sets.  

Corominas-Bosch (2004) and Polanski (2007) propose that prices are set through a 

bargaining process in a bilateral market. The information between buyers and sellers is 

represented by a bipartite graph. These papers analyses the importance of the bipartite graph in 

the competitive equilibrium and establish necessary and sufficient conditions on the network so 

that the solution is the competitive equilibrium.  

The main differences between our approach and the traditional literature are that  

prices are set strategically; we do not consider a bargaining process; and the game ends after  

stage two. As Quinzii (1982), we work with a unilateral market where all agents can sell and  
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buy at the same time, but, we suppose that each agent has an initial amount of money "large 

enough".  On the same line of this work, Pereira (2012) analyses economies with indivisible 

goods and budget constrained with the introduction of a dynamic auction mechanism 

This work is organized as follows. Section 2 introduces the necessary notation; ex- 

plains the Top Trading Cycle Algorithm as an assignment procedure; describes the game  

played by the agents; and defines the Bayesian equilibrium as our solution concept. Section  

3 analyses the Bayesian equilibrium for two agents in the market.  Theorem 3.1 is our main  

result and establishes that the Bayesian equilibrium exists and is unique for three particular  

probability functions. In Section 4 we discuss the problems that we have found to generalize  

the results of Section 3.  In particular we discuss the geometric problem when the number  

of agents in the market is greater than two, and we study the theorem 3.1 for an arbitrary  

probability function. Section 5 concludes the work and we propose some possible extensions.  
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2 The Model 

Consider a market with two sets, a set A of agents and a set B of indivisible goods. Both sets 

have n elements. A generic agent is represented by i = 1, 2,…, n and we use b to refer to any 

good. There is money in the economy to trade goods between agents. Each agent i has an initial 

endowment (m
i
,b

i
), where m

i
 is an amount of money ”large enough” and ib  denotes the unique 

good that the agent has. 

The preference relation ≿
i
 of agent i over R×B is represented by her utility function 

u
i
:R×B→R; i.e., ”agent i at least prefers (ω,b) to (ω',b')” is denoted by )','(),( bb i   , where 

(ω,b), (ω',b') ∈  R × B. Then )','(),( bb i   , and  )','(~  ),( bb i   indicate strict preference 

and indifference respectively. 

We suppose a quasi-linear utility function for each agent jiiji vvbui  );,(: . So, the 

utility function depends on an amount ω of money and over a good b
j
, given the state of nature v

i
 

for agent i.  

Each agent i has a valuation v
ji

 about the good b
j
 for all j ∈ A. The state of nature for 

agent i is her valuation vector v
i
=(v

1i
,v

2i
,…,v

ni
)∈R

n
. Let V

i
 be the set of states of nature of 

an agent i. V
i
 is a subset of n

 .  

The state of nature is a vector v=(v
1
,…,v

n
)  where v

i
∈V

i
 for all i ∈ A. If we use V to 

represent the set of states of nature, then V is the Cartesian product of all sets V
i
:   


n

i iVV
1

, 

so that V is a subset of R
n2

. There exists a probability function f over the set of states of nature V. 

We assume that the valuation vectors of agents are statistically independent. The state of nature 

V is drawn from f; each agent i is told the realization V
i
=v

i
 of her state, but she does not know 

the states of other agents. 

Each agent i sets the price p
i
 of her good b

i
. Assume that agents put non-negative prices 

for their goods. On the other hand, if agents observe the price vector p=(p
1

,…,p
n
) , when 

agent i sells her own good and buys good b
j
 she obtains an amount of money m

i
+p

i
−p

j
. 
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An assignment is a function Γ that assigns to each agent i an amount of money ω
i
 and a 

good )(ib , where σ is a permutation of agents. Then, Γ:A→R×B and the allocation that i receives 

is ),()( )(ii bi  . The assignment Γ is feasible when  


n

i i

n

i i m
11

 1.  

 

2.1 Top Trading Cycle Algorithm 

To describe the top trading algorithm, we first introduce some concepts from Graph Theory. As 

before, let A = {1,…,n} be a set of agents indexed by i, (m
i
,b

i
) the initial endowment for each 

agent i and n
p   a price vector. Each agent has a preference relation over R × B. We define 

the directed graph G(A, p) = (A, E(A, p)) whose nodes are A and whose (directed) edges E(A, p) 

consist of the pairs (i, j) such that i, j ∈ A and agent i prefers the basket (m
i
+p

i
−p

j
,b

j
) to any 

other basket ),( kkii bppm   in the market. The graph G(A,p) is the graph on A which results 

when each agent in A points to her favorite basket (m
i
+p

i
−p

j
,b

j
).  

A Top Trading Cycle (TTC) is an ordered subset C={i
1
,i

2
,…,i

k
,i

k+1
=i

1
} of A for 

which (i
j
,i

j+1
) is an edge of the graph G(A, p). A cycle may contain only a single node, when 

some agent i prefers (m
i
,b

i
) to all other baskets in the market generated by p. The TTC 

mechanism always determines an allocation, (see Appendix A).  

The TTC algorithm, attributed to Gale in Shapley and Scarf (1974), is described below. 

Suppose that agents observe p: 

Step 1:  

1. Each agent i points to her most preferred basket (m
i
+p

i
−p

j
,b

j
), in A, resulting in the 

graph  )),(,(),(1 pAEApAG  .  

2. In each TTC of ),(1 pAG  the corresponding trade is performed: the members of each 

TTC obtain the basket that are pointing to. After it, TTC is removed from the market. Let A
1
 be 

the remaining set of agents after we remove the TTC. If A
1
≠∅  we follow to step 2. 

                                                           
1 Since goods are not divisible, the set of feasible assignment of goods is described by the set of all permutation over 
the set B. 
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Step 2:  

1. Each agent i∈A
1

 points to her most preferred basket (m
i
+p

i
−p

j
,b

j
) in A

1
, resulting in 

the graph )),(,(),( 1112 pAEApAG  .  

2. In each TTC of ),(2 pAG  the corresponding trade is performed: the members of each 

TTC obtain the basket that they are pointing to. Then, the TTC is removed from the market. Let 

A
2
 be the remaining set of agents after we remove the TTC. If A

2
≠∅, step 2 is repeated using A

2
 

instead of A
1
. 

The algorithm goes on until no agent remains in the market. 

This algorithm terminates in at most n steps, because of the finiteness of A and the fact 

that at least one cycle forms at each step (see Appendix A). We use TTC[p] to refer to the 

allocation generated by the TTC algorithm when agents observe a price vector p. 

   

2.2 The Game 

We consider a two-stage game. In the first stage, each agent i ∈ A announces the price of her 

good  ii Pp . In the second stage, all agents observe the price vector p=(p
1
,p

2
,…,p

n
)

and each agent i reports a ranking of the baskets (m
i
+p

i
−p

j
,b

j
). The TTC mechanism is used to 

compute the final allocation. Note that the TTC algorithm allows agent i to retain her good when 

she does not belong to a TTC and she is not interested in any other good than her own; in this 

case, agent i obtains the basket (m
i
,b

i
).  

 

2.3 The Equilibrium 

For the equilibrium characterization, we need some extra definitions and notation. A decision 

rule of agent i is a function α
i
:V

i
→P

i
 mapping states of nature into prices. Let a price vector p, 

β
i
(p) denotes the ranking of the baskets (m

i
+p

i
−p

j
,b

j
) made by agent i. A pure strategy for 

agent i is a pair  ))(,(  ii  where α
i
 is a decision rule and β

i
(α)  is the ranking corresponding 

to the price vector α=(α
1
,α

2
,…,α

n
) . 
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Recalling that in the first stage each agent knows her state of nature, but does not observe 

the state of other agents; our solution concept is Bayesian equilibrium. 

Definition 2.1. A Bayesian equilibrium is a profile of pure strategies    n
iii 1

, 
  , where 

),...,( 1
  n  and ))(),...,(()( 1

   n , such that for each agent i  

  

for all α
i
∈P

i
 and for all v

i
∈V

i
. 

Alvin Roth in [¡Error! No se encuentra el origen de la referencia.] showed that the 

TTC algorithm is strategy proof, i.e. it is a dominant strategy for each agent to reveal her true 

preferences. So, given that in the second stage of the game described in 2.2 the TTC algorithm is 

used to compute the final assignment, then the next proposition, which will be useful to compute 

the Bayesian equilibrium, is true: 

 

Proposition 2.2. In the second stage of the game described in 2.2 each agent reports her true 

ranking of the baskets (m
i
+p

i
−p

j
,b

j
).  

Proof. We know that the TTC algorithm is strategy-proof. See [¡Error! No se encuentra 

el origen de la referencia.] for more details. Then, for each agent to reveal her true preferences 

is a dominant strategy. So, agents have not incentives to deviate. Therefore, in the second stage 

each agent reports her true ranking. 
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3 The Equilibrium for n = 2 

In this section we compute the Bayesian equilibrium of the game described in the previous 

chapter for n = 2, so, we have a set of agents A = {1, 2}. Each agent i has private information 

about her state of nature v
i
=(v

ii
,v

ji
) , where v

i
∈V

i
. We suppose that V

1
=(V

11
,V

21
)  and 

V
2
=(V

12
,V

22
) are independent random vectors. The probability function f:V

1
×V

2
→R is 

common knowledge to the two players.  

Remember the game described in the previous chapter. In the first stage, each agent i sets 

p
i
 the price of her good. As usual p

i
∈R

+
. In the second stage agents observe all prices and report 

a ranking over the baskets (m
i
+p

i
−p

j
,b

j
). Finally baskets are assigned using the Top Trading 

Cycle Mechanism. Then, the payment function for each agent i is:  

 

Since the second stage is strategy-proof2, all agents report their true ranking over the 

baskets (m
i
+p

i
−p

j
,b

j
) corresponding to the price vector announced in stage 1. So, to compute the 

Bayesian equilibrium we only have to solve the non-cooperative game described in the first 

stage.  

To obtain the Bayesian equilibrium we analyze three different probability functions over 

V
1
×V

2
. First, we suppose two agents uniformly distributed; after it, we suppose that agents 

exponentially distributed; and, finally, we suppose an agent uniformly distributed and an agent 

exponentially distributed to capture different behavior. 

 

3.1 Two agents uniformly distributed 

                                                           
2 See Proposition 2.1 in Subsection 2.3. 
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First, we recall that the vector of valuations is a random vector V
i
=(V

ii
,V

ji
) . We now assume 

that V
ii

 and V
ji

 are independent random variables, valuation’s variables, uniformly distributed, 

for i, j ∈ {1, 2}. Without loss of generality we suppose that V
1
=V

2
=[0,1]×[0,1]. The marginal 

distribution for each random variable is  

 

for all i, j ∈ {1, 2}. 

Given the assumptions made in the previous paragraph, the joint distribution for the 

random variables V
ji

 and V
ii

 is the function  

3 

for all i,  j ∈ {1, 2}. 

By the Bayesian equilibrium definition and the function (1) we need to compute the 

expected utility function for each agent i defined below:  

 

Note that agent i knows v
ji

, v
ii

 and p
i
, but does not know p

j
, v

ij
 and v

jj
. Agent i only 

knows the distribution f
ViiVji

. Rewriting the above expression  

 

Inspired by the methodology of Auction Theory (see Appendix B), we look for the best 

response of i when j uses a linear strategy, i.e. agent i supposes that p
j
=a

j
v
jj
−b

j
v
ij

, where a
j
, b

j
 

are non-negative constants. This assumption is intuitively appealing because, the more I 

appreciate the good that I have, I want to get more money; so, there exists a positive relationship 

                                                           
3 ]1,0[]1,0[]1,0[ 2   
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between p
j
 and the valuation v

jj
. On the other hand, the more I appreciate a good different from 

mine, I want to sell my own good fast to obtain the good b
i
; so, the relation between v

ij
 and p

j
 is 

negative. 

To obtain the expected utility function, we need to calculate the probability 

P(p
j
≤v

ji
−v

ii
,v

jj
−v

ij
≤−p

i
) . This probability depends on the region on which we are integrating. 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

vjj

vi
j

 

Figure 1. Region 1. This region occurs when the intersection between the sets 
[0,1]×[0,1], {(v

jj
,v

ij
):a

j
v
jj
−b

j
v
ij
≤v

ji
−v

ii
}  and {(v

jj
,v

ij
):v

jj
−v

ij
≤−p

i
}  is equal to 

the empty set. 
 

We have three possible regions of integration (see figures (1), (2) and (3)). Regions 1 and 

3, illustrated in figures (1) and (3), correspond to trivial cases. In Region 1 

P(p
j
≤v

ji
−v

ii
,v

jj
−v

ij
≤−p

i
)=0 , so the expected utility is E[u

i
]=m

i
+v

ii
. In Region 3 

P(p
j
≤v

ji
−v

ii
,v

jj
−v

ij
≤−p

i
)=1 , so the expected utility is E[u

i
]=m

i
+p

i
−p

j
+v

ji
. When we are in 

Regions 1 and 3, the first order condition ∂E[u
i
]/∂p

1
 is equal to 0 or 1, respectively. This tells us 

that any response is optimal.  
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Then, we work with the most interesting case to compute the Bayesian equilibrium. We 

consider the probability over Region 2 illustrated in figure (2). We calculate this probability as 

follows:  

 
 

 
Figure 2. Region 2. This region occurs when a

j
/b

j
≤1, so the intersection 

between the sets [0,1]×[0,1], {(v
jj

,v
ij

):a
j
v
jj
−b

j
v
ij
≤v

ji
−v

ii
}  and 

{(v
jj

,v
ij

):v
jj
−v

ij
≤−p

i
}  is different from [0,1]×[0,1] and to the empty set. 

 

substituting the above expression in equation 2, the expected utility function for agent i is:  

 

To get the best response, the first order condition is  
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then, we have to solve the next equation  

 

 

Figure 3. Region 3. This region occurs when the intersection between the 
sets[0,1]×[0,1], {(v

jj
,v

ij
):a

j
v
jj
−b

j
v
ij
≤v

ji
−v

ii
}  and {(v

jj
,v

ij
):v

jj
−v

ij
≤−p

i
}  

is equal to [0,1]×[0,1]. 
 

Therefore, the best response of i when j uses a linear strategy, p
j
=a

j
v
jj

−b
j
v
ij

, is:  

 

Analogously, we seek the best response of j when i uses a linear strategy p
i
=a

i
v
ii
−b

i
v
ji

, 

where a
i
 and b

i
 are positive constants. The best response of j when i uses a linear strategy is  

 

Solving the system formed by equations (3) and (4), the equilibrium is given by: 
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3.2 Two agents exponentially distributed 

The real estate market is a market with substitute goods, then a more realistic assumption is to 

think that V
ji

 and V
ii

 are not independent for i, j ∈ {1, 2}. So, the valuation v
ji

 of agent i about 

the good b
j
 depends on the valuation of her own good.  

 
Figure 4. Region of integration for Exponential Case 

An even more general and realistic assumption is to assume that V
ji

 and V
ii

 are not 

identically distributed. We suppose that V
ji

 and V
ii

 are independent and exponentially distributed 

with parameters λ
ji

, λ
ii
≥0 respectively. The parameters λ

ji
 and λ

ii
 can be different. Moreover, λ

ji
 

can depend on λ
ii

, capturing the fact that there is a relationship between v
ji

 and v
ii

. The marginal 

probability function for each random variable is  

 

and, by independence, the joint distribution is  
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The payment function and the expected utility function is the same that in the previous 

section (see equations (1) and (2). When agents are distributed exponentially, what changes is the 

probability P(p
j
≤v

ji
−v

ii
,v

jj
−v

ij
≤−p

i
) . Again, we compute this probability, and we suppose that 

j uses a linear strategy, p
j
=a

j
v
22
−b

j
v
12

, with a
j
, b

j
 non-negative constants. In this case, we do 

not have trivial probabilities, and we only have one region of integration, see figure (4). So  

 

substituting the above expression in equation (2), the expected utility function for each agent i is  

 

for all i,  j ∈ {1, 2}.  

We follow the same process as in section 3.1 to obtain the equilibrium. The first order 

condition is:  

 

Then, we have to solve the next equation  

  

Therefore, the best response of i when j uses a linear strategy, p
2
=av

22
−bv

12
, is:  
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Analogously, we seek the best response of j when i uses a linear strategy p
i
=a

i
v
11
−b

i
v
21

 

where a
i
, ib  are non-negative constants. Also, we suppose that V

ii
,V

ji
 are independent and 

exponentially distributed with parameters λ
ii

, λ
ji

>0, respectively. Then, the best response of j 

when i uses a linear strategy is  

ji

ijjijjjiiji

ij

vvp
pp


 


1

)(                                              (6) 

Solving the system formed by the equations (5) and (6), the equilibrium is characterized 

by: 

 

Note that parameters λ
ii

 and λ
jj

 are not present in the equilibrium. This result may suggest 

that assuming λ
ij

 as a function of λ
jj

 is feasible. The question is: What is the meaning of the 

exponential distribution parameter λ in the real estate market?   

We believe that λ measures the agent’s willingness to buy houses with a low valuation. 

We are not sure about this intuition because λ is commonly used to describe waiting time 

between counts.  

 

3.3 An agent uniformly distributed and an agent exponentially 

distributed 

We can also think that the valuation vectors, V
i
 and V

j
, are independent, but not identically 

distributed. This is a more realistic assumption because agents do not value goods in the same 

way.  

In this section we suppose that V
ii

 and V
ji

 are independent uniformly distributed; 

therefore, the marginal distribution for V
ii

 and V
ji

 is  
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hence, the joint distribution for V
i
 is  

 

On the other hand, we suppose that V
jj

 and V
ij

 are independent and exponentially 

distributed, with parameters λ
jj
≥0 and λ

ij
≥0 respectively. The joint distribution is  

 

We consider the payment function and the expected utility function described in 

equations (1) and (2) respectively. 

We look for the best response of i when p
j
=a

j
v
jj
−b

j
v
ij

, where ja , jb  are non-negative 

constants. To obtain the expected utility for agent i, we integrate over the region illustrated in 

(4), because V
j
 is exponentially distributed. Then  

 

substituting this expression in (2) we get  

 

The first order condition  

 

generates the equation  

 

The best response of i when j uses a linear strategy is:  
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Moreover, we seek the best response of j when i uses a linear strategy p
i
=a

i
v
ii
−b

i
v
ji

, 

where a
i
, b

i
 are non-negative constants. By assumption, V

ii
,V

ji
 are independent and uniformly 

distributed over [0, 1]. Then, the joint distribution of V
i
 is the probability over the region 

indicated in the first case  

 

To obtain P(v
ji
−p

j
≥v

ii
,v

ij
−p

i
≥v

jj
)  we integrate over the region illustrated in figure (2):  

 

Then, the expected utility function is  

 

By the first order condition  

 

we have to solve the equation:  

 

The best response of j when i uses a linear strategy, p
i
=a

i
v
ii
−b

i
v
ji

, is  

 

Solving the system formed by the equations (7) and (8), the equilibrium is given by:  
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As in Section 2.2, the parameter λ
jj

 is not present in the equilibrium, but the intuition 

respect to the parameter λ
ij

 remains unclear. 

3.4 Summary 

In previous subsections we find some common features in the Bayesian equilibria calculated. 

These features are summarized in the following theorem. To state the theorem, we need more 

notations. To refer to the probability functions over the set V=V
1
×V

2
 used in subsections 3.1, 

3.2, and 3.3 we use f
1
, f

2
, and f

3
. Also, since the second stage of the game is strategy-proof, we 

denote by )( pi

  the true ranking reported by each agent i after see the price vector p.  

Theorem 3.1. Let set of agents A = {1,2}. Agents play the game described in subsection 2.2. 

Suppose that the state of nature of each agent is drawn according to a probability function 

f:V
1
×V

2
→R, with f∈{f

1
,f

2
,f

3
}. Then:  

1. When an agent j assumes that the agent i uses a linear strategy on v
ji

 and v
ii

, i.e. 

p
i
=a

i
v
ii
−b

i
v
ji

 with a
i
, b

i
∈R

+
 and a

i
/b

i
<1, there exists a unique symmetric Bayesian 

equilibrium.  

2. Consider     )(,,)(, 221 pppp i

  , where ),( 21
  ppp , the symmetric Bayesian 

equilibrium of the game for f∈{f
1
,f

2
,f

3
}. Then: 

   

 

Note that equilibria reflect the basic principles of Nash equilibrium: each agent meets and 

adopts her best strategy, and everyone do a correct prediction about the strategies of others. 

Also, this theorem shows that there is a positive relation between the price p
i
 and v

ii
, v

jj
. 

The positive relation between p
i
 and v

ii
 is intuitive. On the other hand, it is obvious that agent i 

knows that p
j
 increases as v

jj
 increases. Then agent i raises p

i
 when she anticipates an increase in 

v
jj

. This can be a measure of i to earn more money when j wants to increase p
j
 through v

jj
, i.e. 

when j wants to earn more money. The negative relation between p
i
 and v

ji
 can be explained as 
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follows: agent i wants to sell her house as soon as possible because her interest in j’s house has 

increased. However, the negative relationship between p
i
 and v

ij
 results counter-intuitive. If 

agent j increases her valuation about b
i
, it is natural to think that she has more willingness to buy 

b
i
, so agent i could take advantage of this situation and increase p

i
. But theorem shows that, in 

this case, the price decline. We investigate further on these insights in a future paper.
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4 Two generalizations 

The results obtained in Section 3 can be generalized in at least two ways. First, when we tried to 

find the equilibrium when n is greater than 2, we identify a geometric problem to compute the 

Bayesian equilibrium. In this Section we illustrate this problem for n = 3. 

The second problem is related to Theorem 3.1. In particular, we analyze whether 

Theorem 3.1 can be generalized to any probability function f for n = 2. 

 

4.1 The Equilibrium for n > 2 

We consider the geometric problem with n = 3. Suppose that we have a set of agents A = {i, j, k}. 

Agent i has private information about her state of nature v
i
=(v

ii
,v

ji
,v

ki
) , where v

i
∈V

i
 is a subset 

of R
3
. Also, the valuation vectors of j y k are unknown to agent i. We suppose that 

V
1
=(V

11
,V

21
,V

31
) , V

2
=(V

12
,V

22
,V

32
)  and V

3
=(V

13
,V

23
,V

33
)  are independent random 

vectors. The probability function f:V
1
×V

2
×V

3
→R is common knowledge to the three players.  

Remember the game described in Section 2. In the first stage, each agent i sets p
i
, the 

price of her good. As usual p
i
∈R

+
. In the second stage, agents observe all prices and report a 

ranking of the baskets (m
i
+p

i
−p

j
,b

j
). Since the TTC algorithm is used to allocate the baskets, 

agents report their true ranking, see Proposition 2.2. 

The payment function for agent i is:  
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Symbol ∨ means ”or”, i.e. since there are more than two possible ways to earn an amount of 

money, we must join the possible events.  

Define the sets Δ
1
, Δ

2
 and Δ

3
 as follow  
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If we follow the procedure to find the equilibrium as in Section 3, we have to calculate the 

following expected utility function defined below  

 

To compute the probabilities over Δ
1
, Δ

2
 and Δ

3
 we follow Fubini’s theorem4, if we want 

to get the probabilities on the sets Δ
1
, Δ

2
 and Δ

3
, we need to visualize the region over the which 

we should integrate. Appendix C shows a region of integration used in Fubini’s Theorem when n 

= 3. Remembering the model, agent i does not know v
j
, v

k
, p

j
 nor p

k
. So, agent i does not know 

8 variables. Inspired by Auction Theory, we can eliminate variables p
j
 and p

k
 assuming that 

there is a relationship between how an agent sets the price and her valuation vector, i.e. agent i 

believes that agents j and k use strategies p
j
=g(v

j
) and p

k
=h(v

k
) , respectively, where 

g:V
j
→R, h:V

k
→R are continuous functions. In Section 3 we suppose that g and h are linear 

functions as particular case. On the other hand, there is a probability function f:V⊂R
6→R of 

common knowledge and the valuation vectors are independent. Then the sets Δ
1
, Δ

2
 and Δ

3
 

                                                           
4 Fubini’s Theorem for n=2. Let f, g:X→R be continuous functions such that g(x)≤f(x) for all x∈X, and let 

)}.()(,:),{( 1
xfyxgXxyxD

n  
 Let Φ:D→R be a continuous function. Then  

 

To more information about Fubini’s Theorem and its applications see Jerrold E. Marsden and Anthony Tromba, 
Vector Calculus, (Madrid, Pearson Educación, 2004) 324-339. 
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describe the region over which we integrate, so this region are contained in R
6
. This is our 

geometric problem: How to describe a region of integration contained in R
6
?  It is impossible to 

visualize sets in R
6
 and determine the region on which to integrate. However, that we cannot 

visualize the region does not imply that the probability of the event described by Δ
1
, Δ

2
 and Δ

3
 

does not exist theoretically. 

Therefore, when n > 2, our problem is to determine the region of integration because we 

have sets of dimension n
2−n. We would like to find a way to simplify this region of integration 

to calculate the probability and verify if the Bayesian equilibrium is also unique when n > 2. 

 

4.2 Arbitrary probability function 

At the end of Section 3 we raised the question of whether it is possible to generalize Theorem 3.1 

for any probability function f. Suppose that A = {1, 2} and we consider the same payment 

function as in Section 3  

 

We suppose that V
1
 and V

2
 area random independent vectors. There is a probability 

function f:V
1
×V

2
→R.  

The equilibrium price vector  
21 , pp  is implicitly defined by the following equation 

system:  

  

where the expected utility function is defined by  
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On the other hand, as in the first price auction of Appendix B, to compute the best response, 

agent i has to believe that the agent j uses a strategy  p
j
=p

j
(v

ij
,v

jj
). Since agent i only knows the 

probability function f, then ),),(Pr( iijjjiijijjijj

i pvvvvvvpP   represents the 

probability to trade with agent j when i believes that j uses the strategy p
j
=p(v

ij
,v

jj
) . 

Applying the chain rule to (11), we can compute the derivative respect to p
i
. So we have 

the following system  

 

Following Section 3, we suppose that agent i believes that agent j acts p
j
=p

j
(v

j
); we can 

suppose that  

 

where ii
hh 21 ,  and ii

gg 21 , . Also, i
h1 , i

h2 , i
g1  and i

g 2  are the functions that describe the region on 

which integrates, when i suppose that j uses a strategy p
j
=p(v

ij
,v

jj
) .  

To determine the relationship between p
i
, p

j
 with v

11
 we have to differentiate (12) with 

respect to v
11

. Then, we solve the following system  
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To determine the sign of 
11

1

v

p




 and  
11

2

v

p




we need to know more about the expressions 

2
1

12

p

P




, 
1

1

p

P




, 
2
2

22

p

P




, 
2

2

p

P




. Unfortunately, the previous expressions depends on the relation 

between P
1
, P

2
 and p

1
, p

2
. Again, we have a geometric problem because P

i
 is determined by the 

functions i
h1 , i

h2 , i
g1  and i

g 2  which describe an elemental region.  

The previous problem arises when we want to know the sign of the relation between p
1
 

and v
22

, v
21

, v
12

. The same occurs for p
2
. Also, we need information about the probability 

function f. Therefore, if we want to generalize Theorem 3.1, we have to study the elemental 

region described by i
h1 , i

h2 , i
g1  and i

g 2 . We will deal with this problem in future work. 
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5 Concluding Remarks 

We construct a model for the real estate market that considers a non-cooperative behavior 

between agents. Also, we break with traditional models assuming that agents can act as buyers 

and sellers. Therefore, our solution concept involves the idea of a matching between agents 

belonging to the same set. 

For two agents in the market, we calculate the Bayesian equilibrium taking different 

probability functions and different behavior of the agent. The cases analyzed preserve the 

relationship between the prices and the valuations of the agents on the goods in the market. Also, 

the Bayesian equilibrium exists and it is unique. 

When we have more than three agents, to compute the Bayesian equilibrium we faced a 

geometric visualization problem. We hope to solve this problem in future work. 
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Appendix A The Existence of Top Trading Cycle 

The Top Trading Cycle algorithm always ends up in an allocation, because we always can find a 

TTC in each step of the algorithm.  

Proposition. Let a finite set of agents A = {1,…, n} be indexed by i. Each agent has one and only 

one indivisible good ω
i
. Let Ω be a set of indivisible goods. Agent i has a preference relation 

denoted by ≿
i
 over Ω. After each agent announces her most preferred good in Ω, at least there is 

a TTC. 

Proof. We proceed by contradiction. After each agent announces her most preferred good 

in Ω, there is no Top Trading Cycle. Then, agent i
1
 points to agent i

2
, where i

1
≠i

2
 because there 

are no cycles. Following this process, we have that i
k
 points to i

k+1
, where i

k+1
≠i

j
 for all 

j∈{1,…,k} because there are no cycles. Hence, i
n

 points to i
n+1

 such that i
n+1

≠i
j
 for all 

j∈{1,2,...,n}, which is a contradiction because there are only n agents. 

The previous proposition tells us that in each step of the TTC algorithm there is at least a 

Top Trading Cycle. So, the algorithm is well defined. Therefore, the TTC algorithm always 

generates an allocation. 
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Appendix B An Example from Auction Theory 

We will sketch the way auction theory looks at the Bayesian equilibrium in first price auctions. 

We consider only two bidders, 1 and 2. Let v
1
>0 denote the value for player 1. Suppose that 

player 1 believes that the other bidder’s values is uniformly distributed over [0, 1]. Each agents 

bids a
i
∈A

i
=R

+
. The pay-off function  

 

Also, player 1 believes that the other bidder uses strategy α(v
2
)=av

2
, so the expected utility 

function for player 1, if player 1 bids b, is  

 

Maximizing implies setting the first derivative equal to zero  

 

Solving for b  

 

Therefore, this is the best response for 1 when she believes that 2 uses strategy av
2
. And it is a 

Bayesian equilibrium because the best response for 2 when 1 uses the strategy v
1
/2 is v

2
/2 by 

symmetry.  
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Appendix C A Region of Integration 

Fubini’s Theorem requires of a region to integrate. Let f and g be continuous function from   to 

 . Let a, b ∈  , we say that  )()(,|),( xfyxgbxayxD   is a region which is 

not a Cartesian product between intervals, this region is illustrated by the next figure  

  

 

Figure 5 Elementary Region on n = 2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 
 

References 

[1]  Corominas-Bosch, M. (2004) ”Bargaining in a Network of Buyers and Sellers”, Journal of 

Economic Theory, 115, 35-77.  

[2] Gale, D. and Shapley, L. (1962) ”College Admissions and the Stability of Marriage”, 

American Mathematical Monthly, 69, 9-15.  

[3] Kelso, A. S. and Crawford, V. P. (1982) ”Job Matching, Coalition Formation, and Gross 

Substitutes”, Econometrica, 6, 1483-1504. 

[4] Mas-Colell, A. (1988) ”Algunos Comentarios sobre la Teoría Cooperativa de los Juegos”, 

Cuadernos Económicos, 40, 143-162.  

[5] Pereira, J. S. (2012) “Housing Markets”, Working Paper. 

[6] Polanski, A. (2007) ”Bilateral Bargaining in Networks”, Journal of Economic Theory, 124, 

557-565.  

[7] Quinzii, M. (1982) ”Core and Competitive Equilibria with Indivisibilities”, Cowles 

Foundation Discussion Paper, 644, 1-43.  

[8] Roth, Alvin E. (1982) ”Incentive Compatibility in a Market with Indivisible Goods”, 

Economic Letters, 9, 127-132. 

[9] Shapley, L. and Scarf, H (1974) ”On Cores and Indivisibility”, Journal of Mathematical 

Economics, 1, 23-37.  

[10] Shapley, L. and Shubik, M. (1971) ”The Assignment Game I: The Core”, International 

Journal of Game Theory, 1, 111-129. 

[11] Toda, M. (2005) ”Axiomatization of the Core of Assignment Games”, Games and Economic 

Behavior, 53, 248-261. 

 

 


