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Abstract

This thesis estimates the Mexican natural interest rate from 1991 to 2022.

Over the period analyzed, the economy has experienced a number of transitory

shocks that have affected the nominal interest rate, inflation, and the real GDP

growth. Using a Time-Varying Bayesian Vector Autorregressive Model, this

thesis demonstrates that these transitory shocks have affected the behaviour

of the natural interest rate. The results show that the natural interest rate

have been drastically decreasing since 1995. More recently, since the Great Re-

cession it has remained low. From 2018 to 2020, the natural interest rate has

marginally increased. Furthermore, from 2020 to 2022 it has shown an accel-

erated upward growth. This increase in the natural interest rate is attributed

to the latest shocks the Mexican economy has experienced, particularly the

Covid-19 pandemic and Russia’s invasion of Ukraine.

Resumen

Esta tesis examina la tasa natural de interes Mexicana de 1991 a 2022. En

el periodo analizado, la economı́a ha experimentado shocks transitorios que

han afectado la tasa nominal de interes, la inflación, y el crecimiento de PIB

real. Utilizando un modelo de Vector Autorregresivo Bayesiano que cambia

en el tiempo, esta tesis demuestra que los shock transitorios más recientes

han afectado el comportamiento de la tasa natural de interés. Los resultados

demuestran que la ha cáıdo drásticamente desde 1995. Después de la Gran

Recesión, permaneció continuamente baja hasta 2018. De 2018 a 2020, la

tasa natural de interés incrementó marginalmente. Además, de 2020 a 2022

ha mostrado un crecimiento acelerado. Este crecimiento se atribuye a los

últimos shocks que la economı́a Mexicana ha experimentado, particularmente

la pandemia causada por la enfermadad Covid-19 y la invasión de Rusia a

Ucrania.
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1 Introduction

The natural interest rate, defined as ”the real short-term interest rate consistent with

output converging to potential output, where potential output is the level of output

consistent with stable inflation” [Laubach and Williams, 2003, pg. 1], plays a key

role in modern macroeconomics and policy. Consider the following straightforward

monetary policy example, where the economy is producing more than the potential

output, causing an increase in inflationary pressure. Assuming a deviation from the

proposed steady state inflation (inflation target), the nominal interest rate should

increase. This generates a chain of events that results in an adjustment in inflation

expectations, potential output, and ultimately the natural interest rate. If the real

interest rate is below the natural interest rate (henceforth, r∗), monetary policy can

be considered expansionary such that, the economy by exceeding the steady state

inflation rate, will generate higher inflation resulting in a reduction in the purchasing

power of consumers and higher costs of production for firms.

On the other hand, if the real interest rate exceeds the natural rate, monetary policy

can be considered contractionary. If output falls below potential output, the economy

is not fully exploiting its goods and services resulting in a negative output gap.

As the above example shows, knowing the value of r∗ relative to the real interest

rate is crucial for policymakers in the setting of monetary policy.1. Consequently,

there is a large literature that has attempted to estimate r* for several countries2.

The main objective of this study is to estimate the Mexican natural interest rate

from January 1991 to June 2022, and analyze how the most recent transitory shocks

have affected it. Mexico has experienced a number of transitory shocks recently.

The presidential election of Donald Trump in the U.S.A in November 2016 and

the presidential election of AMLO in July 2018 saw a shift to populism in North

1Currently, the majority of modernized Central Banks conduct research for estimating its natural

interest rate. For further detail, see Bank of Canada 2020, Bank of Mexico 2019, Federal Reserve

Bank 2022
2See Laubach and Williams [2003], Holston et al. [2017], Carrillo et al. [2018], Lopez-Salido et al.

[2020], Evans [2020], Brand et al. [2018], Garnier and Wilhelsem [2005]
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America. More recently, in March 2020, the global Covid-19 pandemic occurred and

on February 2022 Russia invaded Ukraine.

Given r∗ is an unknown variable which data does not record, a state-space model

is required to estimate it. The particularity of state-space models is that the de-

sired unobserved variable, r∗, can be computed setting a relationship between an

observable variable and the unknown (also called state) variable. Defined as the

measurement equation, this relationship reports the connection between the observ-

able variable and the state variable. The transition equation details the ”evolution of

the state variables as being driven by the stochastic process of innovations” [Pichler,

2007, pg. 2]

Following the notation of Pichler [2007], the transition (1) and measurement (2)

equations can be written as:

zt = Bzt−1 + wt (1)

yt = Hzt + vt (2)

where yt is the observable time series, zt the state variable, vt and wt are the stochastic

process of innovations. Jointly referred as the system parameters matrices, H and

B can be affected by time or remain constant. H is the state-transition parameter

matrix that defines how the state variable changes from period to period. The

measurement parameter matrix, B, specifies the transition between the state and

observable variables, affected by the innovation processes.

State-space models are increasingly popular in macroeconomics and financial econo-

metrics. The usual variables of interest are the natural interest rate, risk beta co-

efficient (see Mergner and Bulla [2008], Mergner [2009], Nath and Brooks [2020]),

uncertainty models (see Onatski and Williams [2002], Luo et al. [2013]), inflation

(see Simone et al. [2000], Basdevant [2003]), yield curves (see Donati and Donati

[2008], Joshi [2021]), among others. Thus, this thesis follows the modern literature

and computes r∗ using a state-space model.

The state-space model used in this thesis is a Time-Varying Bayesian Vector

Autoregressive (TV-BVAR) model. This technique allows for quarterly nonlinear

relationships, enhancing the statistical properties of the time-series signal extrac-
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tion method. The signal extraction relies on the Kalman Filtering process, which

separates the transition data (i.e, the natural interest rate) from the measurement

variable. Data extraction and filtering grants time varying intercepts. Inference

can be done because of the stochastic volatility and Bayesian techniques, generating

efficient time varying standard errors.

The benchmark TV-BVAR model of the thesis uses a Moving Average (4) as expected

inflation. As a robustness exercise, the thesis also considers an alternative TV-

BVARmodel that uses expected inflation taken from Banco de Mexico’s Expectations

Survey (Encuestas sobre las expectativas de los especialistas en economı́a del sector

privado) for the period 1Q-1999 to 2Q-2022. This is a survey of private professional

forecasters (available at banxico.org.mx/Encuestas sobre las expectativas)

In addition to the TV-BVAR models, the natural interest rate is estimated using

traditional band-pass filter methods, from 1991 to 2022. These estimates using tradi-

tional techniques grant some comparisons to measure the accuracy of the TV-BVAR

model. We estimate the natural interest rate using a standard Hodrick-Prescott

(HP) Filter, an adjusted HP-Filter (to avoid potential bias of the HP-Filter), and a

Butterworth Filter.

The main results suggest that the Mexican natural interest rate, r∗m, has been sig-

nificantly decreasing since the Mexican Peso crisis in 1995. The dotcom crisis caused

a slight increase in r∗m in 2001. Nevertheless, r∗m decreased during the 2000’s until

2016, the one exception being in 2010. Since 2016, r∗m has been rapidly increasing.

By 2Q 2020, at the the Covid-19 pandemic, r∗m has experienced faster growth. The

estimations suggest that lately the real interest rate is above the natural rate, imply-

ing that the monetary policy stance of Banxico is contractionary, and the inflationary

period will peak in the third quarter of 2022

The robustness model that uses survey data for expected inflation finds lower esti-

mates for the natural interest rate. However r∗m follows the same upward path as the

benchmark model since 2011. Results from the Band-Pass filters find that before the

Great Recession r∗m continuously increased, peaking in early 2005. Since 2Q 2005,

r∗m has been declining. Similar to the TV-BVAR estimates, from 2015 to 2022, r∗m

has been rising.
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The thesis is structured as follows. In Section 2, the literature is discussed.

Section 3 presents the model and the data employed. Section 4 discuss the benchmark

results and Section 5 undertakes a robustness analysis. Finally, Section 6 concludes.

2 Literature Review

Many recent studies have focused on estimating r∗ using state-space models. The

literature started with Laubach and Williams [2003], who estimated the natural in-

terest rate for the United States using a Kalman Filter (KF) Maximum Likelihood

Estimation (MLE) with Stock and Watson [1998] ratios to correct estimates and

standard errors from the ”pile-up” problem described by Stock [1994]. The pile-up

problem suggests that dynamic estimations using MLE are biased and inefficient, be-

cause estimations will be biased towards zero. Using their proposed ratios, Laubach

and Williams results show that the natural interest rate for the United States has

been constantly decreasing over the last forty years.

For Mexico, Magud and Tsounta [2012] used Band-Pass filters, KF/MLE, A

Dynamic Taylor Rule, and an Implicit Common Stochastic Trend to estimate r∗m

from 2000 to 2012. The average r∗m is 2.1% (pg.15). Nevertheless, they report that

r∗m has a downward trend for the analyzed period.

Carrillo et al. [2018], follow the approach of Laubach and Williams [2003] and

estimate r∗m using a KF/MLE with the adjusted ratios, Band-Pass filters, a Taylor

rule, Affine term structural Model, and a TV-BVAR from 2000 to 2017. Their

estimations also find a downward trend for r∗m in the analyzed period.

Similar to Carrillo et al. [2018], Sánchez Vargas and López-Herrera [2020] r∗m

estimations rely on a KF/MLE, and a Cointegrate Vector Autoregresive (CVAR)

model from 2008 to 2020. Similar to the exiting literature, their results suggest

a downward trend for the Mexican natural interest rate. Furthermore, using the

KF/MLE and CVAR models, they forecast r∗m for the next five years. Their results

suggest that r∗m would have remained steady at 0.1%, from 2020 to 2024, giving
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Banxico enough space to reduce the nominal interest rate by at least 50 or 100 basis

points (pg.13).

Despite the popularity of the KF/MLE estimation method, it is subject to several

serious concerns. For instance, results are biased towards zero (i.e, the pile-up prob-

lem), so alternative estimator ratios have been used. Buncic [2020] claims that the

Median Unbiased Estimator ratio used in Laubach and Williams [2003], and studies

that follow their approach, suffers from misspecification in the model second stage,

causing spuriousness of the results. The spurious relation can lead the adjustment

ratio, λz, to be statically insignificant, affecting all the computations.

KF/MLE models set linear relationships for macroeconomic time series, such as real

GDP, nominal interest rate, and inflation. However, these variables typically follow

nonlinear relationships. This can cause ambiguous conclusions [Maansson, 2014].

Moreover, nonlinear relationships explain better the asymmetries in the response of

external shocks [Lee and Pesaran, 1999], such that inference is more robust for tran-

sitory and stochastic shocks. In addition, the pile-up problem can be erased without

further computations using nonlinear relationships and Bayesian econometric tools.

Given the deficiencies of the KF/MLE method, Time Varying Bayesian Vector

Autoregressions (TV-BVAR) have been put forward as an alternative that allow

nonlinear relationships, acknowledge the importance of external shocks, and generate

unbiased estimations eliminating the pile-up problem [Primiceri, 2005, Kim and Kim,

2013, Ito et al., 2022].

TV-BVAR models ”emphasizes the changes in the transmission mechanism, i.e.

the way macroeconomic variables respond to shocks” Primiceri [2005, pg. 2]. By

allowing time-varying intercepts, transitory shocks can be reflected with nonlinear

relationships. Moreover, the time varying variance-covariance matrix allows for effi-

cient inference and heteroskedasticity.

The econometric technique utilized in TV-BVARmodels are Bayesian and Markov

Chain Monte Carlo algorithms3, specifically Gibbs sampling. Gibbs sampling evalu-

3Primiceri [2005, pg. 7] states ”...deal efficiently with the high dimension of the parameter space

and the nonlinearities of the model, splitting the original estimation problem in smaller and simpler

ones”
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ates the results from the lower conditional prior distribution and provides a primary

method for assessing the posterior distribution obtained from Bayesian Identification.

Hence, this method is good technique to measure r∗.

Using TV-BVAR estimations, Lubik and Matthes [2015a] measure the US r∗

over the period 1961 to 2015, extracting the real interest rate from a matrix which

components include the real GDP growth rate, the PCE inflation rate, and the

real interest rate measured as the current inflation minus expected inflation. Their

results show a downward trend since 1985, reaching the lowest level in 2008 and

being constant since then. Equally important, their estimates for r∗ never became

negative, contrasting with Laubach and Williams [2003].

Changing the definition and stating r∗ as the long-run real interest rate, Jarocin-

ski [2017] use a TV-BVAR to compute r∗ for the Euro Area. The variables used

are the real GDP growth, GDP deflator inflation, and distinct euro interest rates.

Interestingly, their results dfind that the natural interest rate has been negative in

the Euro Area since 2015, with negative rates forecasted until 2025.

For the Mexican natural interest rate, only the papers of Carrillo et al. [2018] and

and Rodrigues [2020] (2020) estimate r∗m using time-varying Bayesian techniques.

Carrillo et al. [2018] estimate r∗m using core inflation, real GDP growth, short-term

real interest rate (consistent with Laubach and Williams [2003]), nominal peso-dollar

exchange rate, and an additional country risk index (pg.22). Their results exhibit

a descending pattern over the last seventeen years. Nevertheless, r∗m never reached

negative levels.

Rodrigues [2020] computations are for the period 1998 to 2018. Defining r∗ for several

economies as the relationship between inflation, short-run real interest rate, and the

short-run nominal interest rate trend, r∗m falls from 3.4% in 1998 to 2.48% in 2013,

remaining steady thereafter. Her estimations are in accordance with Carrillo et al.

[2018] because both studies found that from 2000 to the Great Recession (2008), r∗m

continuously decreased. From 2009 to 2013, both studies show a faster decline and

slight recovery afterwards.
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As mentioned before, TV-BVAR r∗m computations are rare for Mexico. Moreover,

the recent data allows me to investigate the implications of recent events on the

Mexican natural interest rate.

3 Model and Data

3.1 A New Keynesian Model

In order to establish an economic relationship between the variables of interest (in-

flation, real GDP growth rate, and the real interest rate), a Dynamic, Stochastic,

General Equilibrium (DSGE) model is needed to help validate the econometric re-

sults.

The DSGE model employed in this paper is a closed-economy New Keynesian

model which uses a trivariate Vector Autorregressive Model (VAR) developed by

Del Negro and Schorfheide [2004]. The distinctiveness of this model depends on

permitting backward-looking and forward-looking relationships for all the variables,

resulting in better solutions if both dynamics are incorporated (see Giacomini 2013,

Wickens 2014, Del Negro and Primiceri 2015).

This approach is taken for two reasons: First, incorporating future-looking dy-

namics grants external shocks in the model, and second, including both backward-

looking and forward-looking components does not disturb the data [Wickens, 2014].

Thus, the subsequent dynamics between output, inflation, and interest rates are

taken and derived from Del Negro and Schorfheide [2004]4.

The representative household gets utility from the following lifetime utility func-

tion:

Ut = Et

[
∞∑
s=t

βs−t
(
C1−τ
s − 1

1− τ
+ χlog

Ms

Ps
− hs

)]
(3)

where β is the discount factor, C represents consumption, A is the current level of

technology, M/P is the money balances, and h is hours worked by the household.

4For further details, see Del Negro and Schorfheide [2004]

8



τ is the risk aversion parameter and χ is a scale factor.

Inflation, can be expressed as:

πt =
Pt
Pt−1

(4)

The representative household can earn income from supplying labor to firmsWtht and

can earn interest R from bonds B. Additionally the household receives dividends Dt

from firms and pays lump-sum taxes Tt. Therefore, the household budget constraint

is given by:

Ct +
Bt

Pt
+
Mt

Pt
+
Tt
Pt

= Wtht +
Mt−1

Pt−1

+Rt−1
Bt−1

Pt
+Dt (5)

After solving for the First Order Conditions, the optimal choices for the household

are the Euler equation (6), money demand equation (7), and labor supply equation

(8):

(
Ct
At

)−τ
1

AtPt
= βRtEt

[(
Ct+1

At+1]

)−τ
1

At+1Pt+1

]
(6)

χ

(
Mt

Pt

)−1

=

(
Ct
At

)−τ (
1

At

)(
Rt − 1

Rt

)
(7)

1 =
Wt

At

(
Ct
At

)−τ

(8)

Firms are monopolistically competitive with differentiated products, where v is

the elasticity of substitution, Pt(j) is the profit-maximizing price for the production

Yt(j). Then, the demand function for firm j can be represented as

Pt(j) =

(
Yt(j)

Yt

)−1/v

Pt (9)

If any firm wants to change prices beyond πt, and assuming a nominal rigidity over

the demand (quadratic term), the cost function is

ϕ

2

[
Pt(j)

Pt−1(j)
− π∗

]2
Yt(j) (10)
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where the parameter ϕ ≥ 0 is the degree of price stickiness in the economy, and π∗

is the economy state-state inflation rate.

Assuming that production is a linear relationship between labor and the factor pro-

ductivity, Yt(j) = Atht(j), equations (9) and (10) can be expressed as:

Pt(j) =

(
Atht(j)

Atht

)−1/v

Pt (11)

ϕ

2

[(
Atht(j)

Atht

)1/v (
Atht−1(j)

Atht−1

)1/v

πt − π∗

]2

Atht(j) (12)

where At is assumed to follow a unit root process with a stochastic shock, z:

lnAt = lnα + lnAt−1 + zt (13)

where the stochastic innovation, zt, follows a random walk with its own lag, the

parameter ρ, and the stochastic error ϵz,t

z = ρzt−1 + ϵz,t (14)

The central bank sets the nominal interest rate in response to inflation and output

deviations from the steady-states r∗, π∗, Y ∗(nominal target, inflation and potential

output):

Rt

R∗ =

(
Rt−1

R∗

)ρR
[( πt

π∗

)ψ1
(
Yt
Y ∗

)ψ2
]1−ρR

ϵR,t (15)

where ρR describes the degree of interest rate smoothing, ψ1 and ψ2 are the inflation

and output response coefficients, respectively, and ϵR,t is any exogenous monetary

policy shock.

The model collapses to the following market clearing vector, Mc, composed of the

nominal interest target, output and inflation target, which can be represented as:

M⃗c = [ȳt π̄t R̄t] (16)
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Mc is constructed from linear relationships between its own lags, stochastic

shocks, and static parameters. The log-linear equations for the output, inflation,

and nominal interest rate are represented by ȳt, π̄t, R̄t are given by the following

equations:

ȳt = Et[ȳt+1]− τ−1(R̄t − E[π̄t+1]) + ρz
1

τ
z̄t (17)

π̄t =
α

r∗
E[π̄t+1] + kȳt (18)

R̄t = ρRR̄t−1 + (1− ρR)(ψ1π̄t + ψ2ȳt) + ϵR,t (19)

where r∗ is the steady-state natural interest rate and k is a price adjustment function.

After solving using the Sims algorithm,the econometric log relationships are the

following measurement equations for quarterly data:

∆lnyt = lnα +∆ȳt + z̄t + ϵy,t (20)

∆lnPt = lnπ∗ + π̄t + ϵπ,t (21)

∆lnr∗t =
1

4
lnRt + lnπ∗ + R̄t + ϵr∗,t (22)

Despite the solid economic relationships presented, the two main characteristics

of the DSGE-VAR closed economy model is that the parameters do not change over

time or with exogenous stochastic shocks. Moreover, the linear restrictions remove

the complex nonlinear relationships between the variables, weakening the model.

Thus to circumvent these characteristics, the thesis will employ a time-varying VAR

with Bayesian estimators.

3.2 Time-Varying Bayesian VAR Model

In order to improve the weaknesses discussed above and maintain the relationships

between variables, a TV-BVAR model is used. This allows the natural interest rate to

be estimated allowing for time dependent parameters, which are affected by different

exogenous shocks and nonlinear relationships. In this approach, the econometric
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models can be explained by external shocks and lags, where the economic shocks

are modeled through the stochastic errors (ϵy,t, ϵπ,t, ϵr∗,t); this approach has been

widely used in the literature.5. Moreover, this econometric tool allows ”asymmetric

movements of variables over the course of the business cycle” [Lubik and Matthes,

2015a, pg. 7].

Lubik and Matthes [2015b] show that DSGE models can be represented as a

reduced-form with a TV-BVAR. Thus, this estimation technique is appropriate to

uncover the natural interest rate because it allows multiplex relationships that are

unknown under conventional VAR models.

The TV-BVAR model is a vector which extracts r∗m from the short-run real in-

terest rate:

Mc = αt + βtMct−1 + λtMct−2 (23)

whereMc represents the matrix composed of the real interest rate, real GDP growth,

and inflation. Notice the model has two lags, Mct−1 , Mct−2 , the time varying param-

eters βt, λt, and the dynamic intercept αt. These time varying parameters change

every quarter, and represent the effect that the lags have over the matrix Mc.

Random Walk Coefficients

The time varying coefficients (αt, βt, λt) are set to follow a random walk. Lubik

and Matthes [2015b] suggest establishing a prior distribution to these coefficients.

Prior distributions ”represent the information about an uncertain parameter that

is combined with the probability distribution of new data to yield the posterior

distribution” [Gelman, 2002, pg. 1634]. Following the existing literature6, the first

40 observations (1Q 1981:1Q 1991) serve as the prior observations used for correcting

the distribution and setting the posterior distribution.

5Laubach and Williams [2003], Holston et al. [2017], Carrillo et al. [2018], Lubik and Matthes

[2015b], Primiceri [2005], Gaĺı [2015], among other studies incorporate transitory and permanent

shocks through the stochastic errors.
6Lubik and Matthes [2015a,b], Primiceri [2005]
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Posterior Distributions

The posterior distribution is the assigned distribution for the parameters of interest

and delivered from Bayesian conditional distributions. The posterior distribution,

p(θ|yt), is the result from applying Bayes’ Theorem to the prior distribution, p(θ),

and the likelihood function, p(yt|θ) (see Bernardo [1979], Wasserman and Lafferty

[2014], Dall’Aglio [2018] for further details):

p(θ|yt) = p(yt|θ)p(θ)∫
p(yt|θ)p(θ)dθ

(24)

where
∫
p(yt|θ)p(θ)dθ is the marginal data density, defined as ”the integral of the

likelihood function with respect to the prior density of the parameters” [Fuentes-

Albero and Melosi, 2013, pg. 1]

The integral likelihood function, despite its theoretical characteristics, is burden-

some to compute it. Given the nonlinearities and stochastic volatility parameters

present, in his influential study, Primiceri [2005] proposes using Gibbs sampling to

fit, evaluate, and efficiently estimate the posterior distribution.

Gibbs Sampling

Without having to determine the probability density, the Gibbs sampler is a method

for generating random variables in the absence of a marginal distribution, grounded

on Markov Chain Monte Carlo Simulations [Casella and George, 1992]. In this thesis,

55,000 Monte Carlo simulations where conducted to set the Gibbs Sampler, such

that the posterior distribution can be estimated. The model results are the posterior

draws from this procedure. Moreover, the Gibbs sampler provides smoothed results

because it analyzes the entire set, unlike one-tailed estimates that only examine an

specific range.
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The smoothing process is based on a two-sided Kalman Filter, which establishes

the signal extraction relationship (state-space equations) from the data. In this

particular model, the state-space model is given by:

r∗mt+1
= r∗mt

+ ϵt,r∗m (25)

rm = r∗mt
+ ϵt,rm (26)

where rm is the Mexican real interest rate and the stochastic errors, which allow for

external shocks. Notice that the main difference between the real interest rate (rm)

and the natural interest rate (r∗m), is that r
∗
m is the short-run real interest rate that

converges to the potential output. Then, the Kalman Filter extracts7 r∗m from rm to

use it in the Gibbs Sampler and compute the posterior distribution.

The real interest rate (rm) is defined following the Fischer equation:

(1 + rm) =
1 + it

1 + Et(πt+4)

where it is the short-run nominal interest rate, and the current expected inflation for

the one year ahead same quarter, Et(πt+4), delivered from the Moving Average (4).

The main difference between the use of the Kalman Filter in this model compared

to the KF/MLE models is the Maximum Likelihood Estimation (MLE). As previ-

ously discussed, different ratios have to be adjusted in the MLE due to toward-zero

biased estimations. Under the approach taken by this thesis, Kalman Filtering is

used in the posterior draws and evaluated by the Gibbs sampling (via Monte Carlo

Simulations), surpassing any bias or inefficiency. Consequently, the posterior draws

estimations are the base for efficient inference.

Inference

Inference is more efficient using Gibbs sampling given the unobservable state evo-

lution. In addition, Gibbs sampling allows for time varying variance-covariance

7Additional information for the extracting process can be considered in Engle and Watson [1987],

Pei et al. [2019], Poncela et al. [2021]
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stochastic estimates [Casella and George, 1992, Primiceri, 2005]. To compute the

variance-covariance matrix, first, the estimations are delivered in the prior distribu-

tion. After that, the Gibbs sampler draws the variance matrix for the model8.

3.3 Data

The data used in the analysis is as follows. The short-run nominal interest, it, is

the quarterly three-month CETES interest rate, taken given the data availability and

because this rate has been the reference for investors and Banco de Mexico, before the

central bank adopted an inflation targeting policy regime in 2001. As shown in Figure

1, the CETES 3 month rate experienced its peak in 1995, because of the Mexican

Peso Crisis. This currency crisis was caused by large fiscal deficits and a negative

current account, financed by short term bonds. These bonds were paid in dollars,

causing a fragile scenario for international reserves. In 1994, this financing scheme

became unstable, causing a 81% decline in international reserves. Then, the country

experienced massive capital flights and a currency devaluation [Cárdenas Sánchez,

2015]. Thus, from 1995 to 2000, the country offered a high nominal interest rate

as a response to the capital flight. Since 2001, the CETES 3 month rate has been

relatively steady, with a slight decrease after the Great Recession and the most recent

increases during 2021 and 2022.

8The derivation of the variance-covariance matrix for this model is beyond the scope of this

thesis. The reader is referred to Primiceri [2005], Lubik and Matthes [2015b], Gorgi et al. [2017],

Dendramis et al. [2021]

15



Figure 1: CETES 3 Month Interest Rate
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The real quarterly GDP growth and quarterly inflation (computed with the CPI)

are taken from the National Institute of Statistics, Geography and Informatics (IN-

EGI).The data sample annual average growth rate is 2.24%, and the major economic

crises that occurred during the sample period: The Mexican Peso crisis (1994/1995),

Dotcom crisis (2000/01), Great Recession (2008), and the Covid-19 pandemic crisis

(2020/21) explain the steep downturns in the Figure 2.

This Figure reveals the biggest decrease, and increase, the real GDP growth rate

over the last thirty years. In first quarter of 2020, at the beginning of the Covid-

19 pandemic, the (-)18.62% decrease has been the largest reduction in the growth

rate of real GDP in Mexico over the last 30 years. This slowdown was caused due

to the sudden production stop, the massive dismiss the jobs suffered, and the lack

of an expansive fiscal policy to support aggregate demand [Ahmed Hannan et al.,

2020, Vázquez Muñoz et al., 2021]. Nevertheless, one year later, the Mexican econ-

omy recorded the highest quarterly recovery over the last century, with an 19.90%

annualized quarterly growth rate.
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Figure 2: Real GDP Growth Rate
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One of the main differences of this thesis to the existing literature relies on the

use of current expected inflation, Et(πt+4). Similar to Holston et al. [2017], Et(πt+4)

is estimated with an inflation Moving Average (4)9.

As a robustness exercise, a second approach is conducted where expected inflation is

taken from the Banxico Expectations Survey10. It must be made clear that the survey

started from January 1999. Figure 3 compares expected inflation estimates using

the survey data against the inflation estimates from the Moving Average approach

(restricted to same sample period 1999-2022).

9The four lags were significant on the ADF test. The test results are given in the Appendix
10The related study of Carrillo et al. [2018] uses this data series.
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Finally Tables 1, 2, and 3 offer summary statistics for the data for the two proxies for

expected inflation. On average, MA(4) expected inflation is estimated to be lower

using the survey data. Consequently, the real interest rates are on average larger

using the survey data.

Table 1: Data Summary Statistics (%). 1991-2022. Expected Inflation: MA(4)

Value CETES 3-M Inflation MA(4) Expected Inf. MA(4) rm Real GDP %

Min. 2.86 2.1308 2.447 -12.6570 -18.6220

Median 7.64 5.01957 4.9234 0.7891 2.73

Average 11.69 8.9378 9.1815 0.6544 2.2402

Max. 71.2 51.9661 44.2286 23.5618 19.901
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Table 2: Data Summary Statistics (%). 1999-2022. Expected Inflation: MA(4)

Value CETES 3-M Inflation MA(4) Expected Inf. MA(4) rm Real GDP %

Min. 2.860 2.130 2.447 -3.548 -18.622

Median 7.16 4.274 4.282 1.276 2.407

Average 7.316 5.160 5.300 1.455 1.806

Max. 23.86 18.255 17.545 5.981 19.901

Table 3: Data Summary Statistics (%). 1999-2022. Expected Inflation: Banxico

survey data

Value Banxico Expected Inf. Banxico rm

Min. 2.24 -1.99

Median 4.06 1.85

Average 4.9452 2.3714

Max. 15.29 9.47

4 Results

4.1 Time-Varying Bayesian VAR: Benchmark Model

Figure 4 shows the estimations from the TV-BVAR, with 10th and 90th percentile

of standard deviation, whereas Table 4 shows the estimated values for r∗m. Figure 5

compares r∗m with the real interest rate. Notice that r∗m never reaches negative rates

as rm does. The main results suggest after the beginning of the Mexican Pesos crisis,

the so called ”December Error”, r∗m has been constantly falling.

From 1996 to the beginning of the DotCom shock, 2000, the natural interest rate

continued to decline over the years. However, the DotCom crisis, another transitory

shock, affected r∗m such that for 2000, 2001, and 2002, the rate remained relatively

steady at approximately 2%. After the DotCom shock, r∗m declined until the Great

Recession in 2008. From 2007 to 2008, r∗m rose 96.446%.
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Despite this large increase, the Great Recession did not have a significant impact on

r∗m, because it never reached levels similar to 2008 and remained constantly low.

The Mexican economy reached its steady-states (natural interest rate, inflation target

and potential output) for almost a decade, from 2009 to 2016.

While these estimations have similarities with Carrillo et al. [2018] and Rodrigues

[2020], there are several important differences. First, Rodrigues [2020] shows the

same downward trend from 1998 to 2007. However, her estimations are approxi-

mately 1% greater than the results reported here. Second, the results of Carrillo

et al. [2018] model show a marginal rise in the natural interest rate after the Great

Recession, in 2009, contrasting with the large increase computed by this model.
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Figure 4: Time Varying BVAR Natural Interest Rate

Natural Interest Rate
10th and 90th Interval
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Table 4: Natural Interest Rate Values (%)

Date r∗m Date r∗m Date r∗m

1991 4.169407 2002 2.053053 2013 1.1238187

1992 2.770464 2003 1.863588 2014 0.8799161

1993 3.765334 2004 1.532548 2015 1.0083875

1994 12.43778 2005 1.1111135 2016 1.529053

1995 6.999966 2006 0.9013065 2017 1.475148

1996 3.879472 2007 1.1461846 2018 1.564692

1997 3.489829 2008 2.110797 2019 1.736525

1998 2.662739 2009 1.849172 2020 3.366747

1999 2.384954 2010 0.971327 2021 3.097025

2000 2.364834 2011 1.127595 2022 4.82844

2001 2.070923 2012 1.1763042 2023 2.165134

Figure 5: Natural Interest Rate and Real Interest Rate
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Third, our results suggest that r∗m has been increasing since 2015. Carrillo et al.

[2018] and Rodrigues [2020] argue the same pattern, with different years (2013

and 2015, respectively). Interestingly, the model estimations are different from

Sánchez Vargas and López-Herrera [2020] computations, as they suggest that the

r∗m has been decreasing since 2008. The main difference relies from 2015 to their

forecasted dates. Sánchez Vargas and López-Herrera [2020] computations suggest

that r∗m remain steady from 2020 until 2024. However, this model suggests that r∗m

has been rising significantly since 2020. The estimates from this study are preferred

because it takes into account the recent transitory shocks that have hit the Mexican

economy.

From 2013 to 2016, r∗m is estimated to have increased at overly low rate, passing

from 1.1238187% to 1.529053%. Nevertheless, passing 2017, the year the former

president Donald Trump assumed office, r∗m has been constantly increasing. In 2018,

when AMLO was elected and assumed office, r∗m continued rising. These changes

can be accredited to the shocks that real GDP suffered in those years.

In the beginning of the Covid-19 pandemic, r∗m started to rapidly grow in 2020,

2021, and 2022. This growth is attributed to the substantial increase inflation has had

because of the supply-side congestion and issues. Furthermore, the Russian invassion

to Ukraine has worsened the inflationary pressures, suggesting that potential output

may not have returned to its pre-Covid 19 level. Moreover, the proposed forecast

suggest that the ”heated” economy will peak in 2022, and slowly descend through

2023. According to the most recent estimates, Banxico has been successful in raising

the nominal interest rate sufficiently that the real interest rate now exceeds the

natural interest rate.

Given the importance the latest transitory shock have in this thesis, the model

parameters from 1Q 2016 to 3Q 2023 are presented in Table 5 (Appendix offers

parameters from 1Q 2011 to 4Q 2015).

The time-varying parameters show that from 2016 to 2018, the lags firstly had

a constant and compact positive impact on r∗m, resulting in an almost imperceptible

increase. From 2019 to 2020, the parameters are both positive and then negative,

provoking a small change. Nevertheless, from 2021 to the forecast 3Q 2022, the
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parameters show a positive sign, raising r∗m. The dynamic parameters suggests that

from 4Q2022 to the forecast 3Q 2022, r∗m will decrease. It is important to realize

that pre-pandemic levels will be not reached in 2023.

Table 5: Time Varying Parameters 2016-2023.

Date αt βt λt

1Q 2016 0.57682942 0.12327989 0.05690374

2Q 2016 0.57267750 0.12335141 0.05681657

3Q 2016 0.57294380 0.12357915 -0.05687764

4Q 2016 0.5737379 0.12333663 -0.05688689

1Q 2017 0.57414549 0.12350951 -0.05680053

2Q 2017 0.56888753 0.12379176 -0.05676589

3Q 2017 0.57303209 0.12376493 -0.05676693

4Q 2017 0.57622163 0.12373906 -0.05669860

1Q 2018 0.58449791 0.12377107 -0.0566212

2Q 2018 0.5955721 -0.12348896 -0.05662522

3Q 2018 0.5955721 -0.12348896 -0.05658335

4Q 2018 0.5980659 -0.123029447 -0.05604627

1Q 2019 0.6007690 -0.1229599 -0.05658335

2Q 2019 0.6082545 -0.12261062 -0.05658626

3Q 2019 0.6128403 -0.1223764 -0.05663427

4Q 2019 0.6186482 -0.12190784 -0.05667456
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Date αt βt λt

1Q 2020 0.6193888 -0.11182877 -0.05074152

2Q 2020 0.6201590 -0.05211078 -0.01679546

3Q 2020 0.6183596 -0.01426347 -0.00607134

4Q 2020 0.6267074 0.01203096 0.00567608

1Q 2021 0.63105730 0.11480209 0.06778421

2Q 2021 0.63900323 0.14953675 0.04174056

3Q 2021 0.64167187 0.17286580 0.04873796

4Q 2021 0.65162152 0.10167845 0.04173866

1Q 2022 0.06424201 0.06459642 0.08674316

2Q 2022 0.6533068 0.102150879 0.04171421

3Q 2022 0.6623454 0.122354626 0.05171459

4Q 2022 0.6780409 -0.010376629 -0.0515421

1Q 2023 0.6890078 0.00417097 0.008690513

2Q 2023 0.6719936 -0.05213883 -0.01942642

3Q 2023 0.7087219 -0.01221041 -0.04691381
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5 Robustness

5.1 Alternative Data Series

For robustness, expected inflation is proxied using survey data from Banco de Mexico.

Recalling the Fischer equation, the MA(4) Inflation is substituted for the Banxico ex-

pected inflation. Letting EB
t [πt+4] represent the Banxico expected inflation measure,

the short-run real interest rate is defined as:

(1 + rm) =
1 + it

1 + EB
t [πt+4]

.

Given EB
t [πt+4] started being published in 1999, now the priors of the model are

from 1Q 1999 to 1Q 2010. Following the same methodology, Figure 6 presents the

evolution r∗m has had under the alternative measure for expected inflation. Table 6

presents the values and Table 7 shows the time-varying parameters.
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Figure 6: TV−BVAR Natural Interest Rate

Natural Interest Rate
10th and 90th Interval
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Table 6: Alternative Natural Interest Rate Values (%)

Date r∗m

2011 0.6998144%

2012 0.5797798%

2013 0.5010466%

2014 0.4917233 %

2015 0.4936663 %

2016 0.5026344 %

2017 0.5528819 %

2018 0.6492389%

2019 0.8214008%

2020 0.9234476 %

2021 0.9012967%

2022 1.4886636%

2023 1.6280652%
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Table 7: Alternative Time Varying Parameters 2016-2023.

Date αt βt λt

1Q 2016 0.06728113 -0.13180807 -0.02898623

2Q 2016 0.06739478 -0.13185831 -0.02898805

3Q 2016 0.06783157 -0.13189307 -0.02899778

4Q 2016 0.06782229 -0.13189914 -0.02913173

1Q 2017 0.06677387 -0.13193161 -0.02900851

2Q 2017 0.06670471 -0.13194562 -0.02911481

3Q 2017 0.0667116 -0.13193720 -0.02900959

4Q 2017 0.06718003 -0.03200084 -0.02899225

1Q 2018 0.06704945 0.01172181 0.00109973

2Q 2018 0.06658718 0.03201569 0.02914466

3Q 2018 0.06614405 0.05703207 0.02902015

4Q 2018 0.06598905 0.07196945 0.03217978

1Q 2019 0.06563155 0.10194459 0.03926124

2Q 2019 0.06486464 0.10319986 0.04428993

3Q 2019 0.06434361 0.11200598 0.04940040

4Q 2019 0.06447681 0.11198062 0.04953952
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Date αt βt λt

1Q 2020 0.06465452 0.13193490 0.04960975

2Q 2020 0.06438324 0.14198290 0.05170964

3Q 2020 0.06470994 0.14586873 0.05669844

4Q 2020 0.06495826 0.14610345 0.06141681

1Q 2021 0.0646011 0.15331474 0.06997125

2Q 2021 0.06448223 0.15582173 0.05687304

3Q 2021 0.06444874 0.15612067 0.06000062

4Q 2021 0.06452485 0.15848709 0.06796243

1Q 2022 0.06465101 0.15233171 0.05817718

2Q 2022 0.06537411 0.1604007 0.05651455

3Q 2022 0.06040719 0.16844278 0.05041439

4Q 2022 0.06535409 -0.01172985 0.00650241

1Q 2023 0.06445228 -0.13978902 -0.0301422

2Q 2023 0.06456409 -0.13174443 -0.0497303

3Q 20223 0.06461577 -0.1121295 -0.04972705

Figure 7 compares both TV-BVAR estimates for the natural interest rate using

the two alternative measures of expected inflation. Although both proxies of expected

inflation imply a natural interest rate that follows a similar path, the estimates

from the benchmark model, based on a MA(4) inflation, are significantly larger (on

average) than the estimates that use the survey data. This result has significant

implications for the conduct of monetary policy. Using the estimated values for

2022, the natural rate is found to be 4.82844% for the benchmark model and only

1.6991684% when survey data is used.

In the latter case, the central bank only needs to increase the nominal interest rates

by a small amount to get the real interest rate above the natural rate in response to

higher inflation. However, according to the estimates obtained from the benchmark

model, a much more aggressive monetary tightening is required.
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5.2 Band-Pass Filters

Following several authors (see, e.g, Larsen et al. [2003], Manrique Simón and Marqués Sevil-

lano [2004], Krustev [2019]), r∗m can be estimated by decomposing the real interest

rate’s trend using Band-Pass (B-P) filters. These filters rely completely on statistical

methods because no economic composition is imposed in the estimation. B-P Filters

compute r∗ is by extracting the growth component from the cyclical component from

the real interest rate. To do so, several filters have been utilized to extract the cycle,

the most prominent being the Hodrick-Prescott (HP) Filter, HP-adjusted filters, and

Butterworth filter.

The HP filter estimates r∗m by splitting it into two components: trend (growth)

and cycle. Equation (27) sets the real interest rate as the sum of the trend component

plus the cyclical.
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rm = rtrm + rcm (27)

The relationship between rm and r∗m is such that, using the smoothing parameter λ,

an estimate for the natural interest rate is obtained from the trend component:

r∗m = rtrm (28)

Figure 8 estimates r∗m using HP-filtering setting λ=1,600 without additional param-

eters11. Complete values can be found in the Appendix.
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Figure 8: Natural Interest Rate: HP−Filter

Using the HP filter, r∗m has reached negative levels, reaching a minimum -4.93952060%

in 1991. Contrarily to the TV-BVAR estimations, from 1991 until 2005, it expanded

to the maximum 3.66546636%. After the Great Recession, it had been constantly

decreasing until 2014 at -0.00680%. Nevertheless, the HP estimations reached its

minimum in 2014, reporting a -0.00680205. Interestingly, the trend after the Great

Recession follows the path from the TV-BVAR models and Carrillo et al. [2018],

11Setting λ = 1, 600 is consistent with quarterly data
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Rodrigues [2020] estimates. From 2020 to 2022, the curve has became steeper, sug-

gesting an increase in the Mexican nominal interest rate. Values validate this rise,

because of the 0.56392892% differential between the dates. These higher values sug-

gest that the latest shocks the economy has faced have increased r∗m.

There is a large literature criticising the use of the HP filter regarding its bi-

ases, spuriousness, and lack of modern estimations [Bruchez, 2003, Hamilton, 2017,

Phillips and Shi, 2019]. To deal with the Hodrick-Prescott bias, Magud and Tsounta

[2012] suggest forecasting the next 18 months using an univarate ARIMA. Using an

AIC algorith, the best fitted model for the forecast is an ARIMA(3,1,1), with a 95%

confidence interval. Figure 9 shows that even with this correction, the results are

similar (confidence interval shaded in blue).

The third B-P filter used to estimate the natural interest rate is the Butterworth

filter. This method is employed due to the benefits it has, such as avoiding contam-

ination spill on decomposing the trends, ”appropiate to short trended sequences”

[Pollock, 2016, pg. 13]. Gomez [2001] proves that a HP-Filter is a manageable Butter-

worth filter. In addition, applying this filter ”reduces the amount of noise...decreasing

the risk of inducing spurious results” [Harvey and Trimbur, 2003, pg. 365]. Harvey

and Trimbur [2003] hold that the Butterworth filter produces smooth results opti-

mals for non observable variables. Figure 10 depicts the estimates for r∗m using the

Butterworth filter. Values are available from the Appendix.
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Figure 10 demonstrates an unique pattern. From 1991 to 1993, the Butterworth

r∗mreached its minimum at -3.939843% and recovered until 1995. In 1997, another low

was captured. However, similar to the other B-P filters, r∗m continuously increased

until 2005, and then rapidly decrease until 2015. Moreover, the external shocks are

more evident in this B-P Filter because after the presidential elections, r∗m marginally

increased in 2016 to then decrease in 2018.

Despite estimating different values, the B-P filters show the same pattern: After

2005, r∗m had slowly decreased until 2008. After the Great Recession, it drastically

decreased until 2013. From 2013 to mid 2016, it had continuously risen. From 2020

onward, it has been increasing. As discussed, in all the models and filters, r∗m has

shown a rapidly rise since 2020, due to the effects the latest transitory shocks have

had on the Mexican natural interest rate.

33



6 Conclusion

Defining the natural interest rate as the interest rate where output converges

to its potential level implying stable inflation, this thesis estimates the Mexican

natural interest rate for the period 1991 to 2022, using a time-varying Bayesian

vector autoregressive model. The results suggest that the Mexican natural interest

rate, has been affected in different ways by the transitory shocks that the economy

has experienced over the last 30 years.

Since 1995, the natural interest rate is estimated to have been falling and remained

almost constant after the DotCom crisis and the Great Recession until 2016. Since

2016, the natural interest rate has started to rise. The recent economic shocks,

the Covid-19 pandemic and the Russian invasion to Ukraine, has resulted in a rapid

increase in the Mexican natural interest rate and estimations from the thesis forecast

that potential output will not reach pre-Covid 19 levels in either 2022 or 2023. The

thesis also shows that the estimates obtained for the natural interest rate are highly

sensitive to the data used to measure expected inflation in Mexico. Using a Moving

Average (4) measure for expected inflation, the thesis estimates that the natural

interest rate is roughly double the estimate when survey data is used as a measure

for expected inflation. Finally, the thesis has shown that estimates for the natural

interest rate using a variety of Band-Pass filter techniques, support the argument of

a recent large increase in the Mexican natural interest rate.

34



7 References

Thomas Laubach and John C Williams. Measuring the natural rate of interest.

Review of Economics and Statistics, 85(4):1063–1070, 2003.

Dmitry Matveev, Julien McDonald-Guimond, and Rodrigo Sekkel. The neutral rate

in canada: 2020 update. Technical report, Bank of Canada, 2020.

Banco de México. Informe trimestral abril-junio 2019. Technical report, Banco de
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8 Appendix

Augmented Dickey-Fuller Test (Inflation 4 lags)

Dickey-Fuller Coefficient Lag Order p-value

-3.8529 4 lags 0.09812
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Appendix 2: Time Varying Parameters

The parameters describe the evolution from 2011 to 2015 was continually decreasing

at very low levels. In addition, the first lag affects more the estimation than the

second, for all the estimations.

Date αt βt λt

1Q 2011 0.6725780 -0.12645650 -0.05939948

2Q 2011 0.66545278 -0.12586096 -0.05165173

3Q 2011 0.66518699 -0.12496379 -0.05894729

4Q 2011 0.66514330 -0.57743565 - 0.05165620

1Q 2012 0.64518422 -0.12478654 -0.05883855

2Q 2012 0.6441170 -0.12423351 -0.05872306

3Q 2012 0.63800692 -0.12424928 -0.05851781

4Q 2012 0.6327213 -0.1239312 -0.05835449

1Q 2013 0.62668378 -0.12381390 -0.05814202

2Q 2013 0.62056234 -0.12357499 -0.05801014

3Q 2013 0.61972057 -0.12320048 -0.05789137

4Q 2013 0.61269980 -0.12303275 -0.05776478

1Q 2014 0.60913890 -0.12289395 -0.05761465

2Q 2014 0.60154564 -0.12266495 -0.05741741

3Q 2014 0.59810531 -0.12247525 -0.05735679

4Q 2014 0.59160127 -0.12248842 -0.05728005

1Q 2015 0.58394268 -0.12244077 -0.05716231

2Q 2015 0.58258843 -0.12259403 -0.05703865

3Q 2015 0.57793242 -0.12280850 -0.05699638

4Q 2015 0.57587673 -0.12298718 -0.05692178
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Appendix 3: Hodrick-Prescott values

Date r∗m Date r∗m

1991 -4.93952060 2012 0.26018322

1992 -4.14862266 2013 0.04213820

1993 -3.25295370 2014 -0.00680205

1994 -2.22636613 2015 0.14457429

1995 -1.32387584 2016 0.41255347

1996 -0.88661339 2017 0.61882060

1997 -0.64988339 2018 0.71620075

1998 -0.24781576 2019 0.78532948

1999 0.32350612 2020 0.97477086

2000 1.02101008 2021 1.25997789

2001 1.78603462 2022 1.53869978

2002 2.49954722

2003 3.08318815

2004 3.49118750

2005 3.66546636

2006 3.52353393

2007 3.10076041

2008 2.47582880

2009 1.74731195

2010 1.08310594

2011 0.60193452
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Appendix 4: Butterworth Estimates

Date r∗m Date r∗m

1991 -2.847351 2012 0.488283

1992 -3.556488 2013 0.117071

1993 -3.939843 2014 -0.132903

1994 -2.180897 2015 0.754703

1995 -0.039083 2016 0.759481

1996 -0.642139 2017 0.948034

1997 -1.323089 2018 0.71620075

1998 -0.506335 2019 0.4528531

1999 0.32350612 2020 0.7376412

2000 0.227174 2021 1.300152

2001 1.7723652 2022 1.511333

2002 2.45621

2003 2.912776

2004 3.227274

2005 3.673729

2006 3.456102

2007 3.029136

2008 2.499749

2009 1.6085315

2010 0.803646

2011 0.733298
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