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Labor migrant networks: Growth, saturation, and

deflection to new labor markets.

Abstract

We present a stochastic process that models the time evolution of a migrant network.

The process simultaneously captures two conflicting effects inherent to the expansion

of the network: the increase in the job search efficiency and the reduction of vacancies

at destination. In our model, potential migrants decide whether to use a network

to search for jobs in a given destination or migrate to a different location (and start a

network there). Our purpose is to identify the network size that causes the dispersion of

migration. Findings show that when the network members have incomplete information

on job availability, the deflection may occur before the destination runs out of vacancies.

It is also shown that in some cases, the gains of network-driven migration are increased

when creating networks before the critical size is reached.

1 Introduction

The theory of network migration highlights the role that social networks play in the migratory

decision-making. The crucial assumption of this theory is that networks have the ability to
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reduce the costs and risks of migration through the transmission of information and other

resources between its members (Massey et al., 1990). The reduction in the migrating costs

increases the expected value of migrating and this encourages aspiring migrants in the origin

to out-migrate.1 In turn, the newcomers add to the network’s resource stock and reduce the

migrating costs of future immigrants. Needles to say, this prompts additional immigration.

This is the basis of the cumulative causation of migration,2 the main premise is that “each

act of migration alters the social context within which subsequent migration decisions are

made, typically in ways that make additional movement more likely” (Massey, et al. 1998:

45-46).

A remarkable feature of this cumulative process is that it is able to change the composition

of the immigration flow. Although migration initially draws individuals from a specific part

of the skill (or income) distribution (Borjas, 2014), the use of social networks allows a variety

of people from the sending community to migrate (Durand and Massey, 2003). For instance,

McKenzie and Rapoport (2010) show that US destinations with low migrant networks and

high migration costs attract Mexican migrants with higher education, while communities

with high networks and low costs attract less educated individuals. Consequently, Massey

(1990) inferred that the expansion of networks may induce a self-perpetuating migration

process independent of the causes that originated migration in the first place.

In the late 1990’s, scholars began questioning the limits to the theories of migration

network and cumulative causation of migration. Massey, et al. (1998) advanced that at some

point in the expansion of networks, the marginal decrease in the migrating costs is not enough

to encourage individuals to out-migrate their source communities, while Fussell and Massey

(2004) found that the effectiveness of the cumulative causation depends on the quality of the

ties that link the network members. Other authors focused on the effect of the immigration
1Empirical evidence includes Taylor (1984), Massey et al. (1987), Massey and Espinosa (1997), and

McKenzie and Rapoport (2007).
2This construction is adapted from Myrdal’s theory of circular cumulative causation (1957).
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influx on the destination’s wages and resources and suggested that the reduction of economic

opportunities available to immigrants counteracts the effects of cumulative causation. Heer

(2002) showed that a high percentage of Hispanics in US destinations reduced the earnings of

Hispanics immigrants and lowered subsequent immigration influxes. He observed that in this

stage, the role of migrant networks is to deter immigration to unfavorable destinations and to

redirect potential migrants to other locations.3 Light (2006) criticized the fact that migration

network theory ignores the reduction of resources that result from network expansion. More

specifically, he argued that mature networks expose available jobs for immigrants, but if

there is no increase in the supply of jobs, they also aggravate job shortages in destinations:

"the contradiction is a fundamental one: migration networks enhace search efficiency but

diminish resource availability" (Light, 2006: 82). A common factor in these observations

is that when the benefits of network-driven migration decrease, immigration to saturated

destinations is ceased or reduced.

It is of interest to know up to what point migrant networks encourage immigration to a

destination, and as a corollary, what network size deflects migration to new destinations. To

do so, we present a model in which potential migrants have the option of using a migrant

network to search for jobs in a given destination or migrating to a different location without

the use of a network. Every network size has a value of continued search and the critical

value of a network is given by the size for which the value of search is lower than the value

of migrating by oneself. Although the impact of social networks on search behavior and

its outcome has been addressed before,4 a novel factor in this study is that we explicitly

introduce the effect of the reduction of vacancies in the network’s search intensity. As a

result, the evolution of the migrant network reflects the trade-off between job search efficiency
3Monras (2015) showed that the low-skilled immigrant supply shock brough about by the 1994 Mexican

Peso Crisis decreased low-skilled wages in high immigration US states and prompted labor relocation across

the country.
4See for instance Caliendo, et al. (2010), and Calvó-Armengol and Jackson (2007).
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and resource reduction. Our main finding is that potential migrants avoid migrating to the

targeted destination before it runs out of vacant jobs for newcomers. We also show that

in some cases it may be more efficient for the whole immigrant population to open new

networks before our model predicts they should.

This paper adds to the literature in two ways. First, we make a tractable definition of the

economic saturation of networks. The new definition enables the computation of the critical

size of a network given some economic variables from the source and host destinations. As

a consequence, the model allows to predict saturation before it occurs, which is something

previous studies have failed to do. Second, the stochastic nature of our model makes possible

to draw a time dimension to the study of the expansion of social networks. We are thus able to

compute the distribution of the saturation time of a network, a factor that to our knowledge

of the literature has been neglected so far.

2 Model

The aim of this model is to analyze the impact of social networks on the migrating decisions.

In particular, we are interested in finding the size of networks for which the benefits of

network-driven migration are lower than the value of migrating by oneself. This critical

size represents the economic saturation point of migrant networks. Given that migration

networks are believed to be more useful the more uncertain the destination is (Taylor, 1986),

we model international migration decisions. However, the setting of the model is general

enough to apply it to internal migration.

The model relies on the following assumptions. There are two countries. The destination

country has several locations with identical segmented labor markets, each with an exogenous

demand for immigrant labor. The number of jobs for immigrants in each location is a fixed

number N . We assume that potential migrants are identical. An agent in the source country

has the option of staying in the origin, using a network to search for a job in a given
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destination, or migrating on her own to a different location and starting a network there.

Her decision is based on the net discounted value of income across locations.

The key condition that we impose is that the network members do not know where vacan-

cies are. This implies that they must engage in search to find jobs for potential immigrants.

If an agent is willing to search for a job through a network, she pays the search cost incurred

by the network members and gets the present value of income from the search. Two outcomes

may arise. Either the network finds a vacancy, in which case the agent takes it and joins

the network, or no available job is found, and the agent remains in the origin and decides

whether to stay, use a network or migrate to a different location.

We are interested in modeling the impact of an increase of the network size on the value

of search through a network. We will restrict our attention to the effect of the expansion

on the availability of jobs at destination rather than on the wages of immigrants. This is

because the host wages may be affected by several factors other than the volume of labor

supply, so the effect of the expansion might be overshadowed by other variables. We assume

that once an individual has been incorporated to a network, she does not leave it and keeps

her job forever. This implies that the employment status of the network members is not

affected by the arrival of new immigrants, and consequently they have no incentives to alter

their search behavior as the network expands. We also assume that the only way to migrate

to a location with a network is by means of the network. This assumption allows us to isolate

the effects of network growth on the destination’s resources. Note that it also allows us to

use the terms immigrant and network member interchangeably.

The basic idea is that every immigrant that is added to the network increases the job

search efficiency and at the same time reduces the number of available jobs in the destina-

tion.5 This means that an increase of the network size reduces the average time in which

jobs are sampled and simultaneously prolongs the expected time in which available jobs are

selected. The overall time in which the network finds an available job for an immigrant (and
5For simplicity we assume that networks do not create jobs at destination.
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adds a member) is given by the interaction of these conflicting effects. The advantage of

modeling the transitions between network sizes by means of a stochastic process lies in the

fact that the value of search may be easily expressed in a Bellman equation.

In Section 2.1 we set up notation and terminology for the time-evolution process of the

network. It is worth pointing out that this process provides an intrinsic characterization

of the network search intensities, but makes no appeal to the economics involved in the

migrating decision. The principal significance of the network process is that it allows one

to describe the transitions between the different network sizes. Section 3 indicates how the

network intensities may be used to compute the value of search for every network size, it

also presents the values of staying in the home country and starting a network in a host

destination. In Section 4 we make a formal definition of the economic saturation of networks

in terms of these expected values and provide an example. We also address the concept of

network saturation time and derive its density and distribution functions. Section 5 discusses

whether reaching the saturation point of networks is optimal for the immigrant population.

We conclude in Section 6.

2.1 Network process

We call network a non-empty set of immigrants in a given destination, from this definition

it is understood that a network may be composed of one immigrant. Let {X(t) : t ≥ 0} be

the counting process of immigrants in the network. In other words, X(t) gives the size of

the network at time t. Under the condition that immigrants are invited to join the network

only if there are vacant jobs for them, the maximal size of the network is given by the total

number of jobs for immigrants N . Therefore, the state space of {X(t)}t≥0 is the subset of

natural numbers S = {1, 2, . . . , N}.

Note that since immigrants are not allowed to leave the network, the number of network
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members is a non-decreasing function of time. We prove that {X(t)}t≥0 is a birth process6

with rates q1, . . . , qN , where qn gives the net effect of search efficiency improvement and

reduction of vacancies when the network size is n ∈ S. That is, we show that the network

size increases by one, and that transition from size n to n+1 occurs in a random exponential

time of parameter qn.

In what follows we show how the network rates (qi)i∈S are obtained. Since we are in-

terested in describing all the state transitions, we begin our study with a network of size

one and work our way up to the maximum size N . We emphasize that our interest is to

study how the addition of an immigrant to the network affects the time in which the next

immigrant arrives, so for convenience we assume that all the potential immigrants are willing

to use and join the network. In Section 3 we show how to dispense with the assumption.

Let us suppose that a potential immigrant prefers to migrate to a host location with no

network, and thereby start one. This pioneer migrant secures one of the N available jobs

with probability one. We measure time from the moment of her arrival, so we have X(0) = 1.

The arrival of the next immigrant is given by the time in which the pioneer finds a vacancy.

This variable is affected by the search intensity and the number of available jobs left. We

study each factor separately, and then show how their interaction gives rise to the network’s

birth rates.

2.1.1 Job search efficiency

We assume that all the network members search for jobs for potential immigrants. Each

member has a Poisson process of search and the search processes are independent amongst

each other. The realizations of a search process are observations of jobs. An observation

consists on the random selection of a job other than the own. Here, the underlying assump-

tion is that immigrants know that their job is taken (by them), so they do not sample their

own job when looking for a vacancy. Thus, the observations have a uniform distribution on
6See Norris, 1998.
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the rest of the N − 1 jobs.

An observed job can be available or taken. If it is available, the network invites an

aspiring immigrant to take the job and join the network. In turn, this new member will

search for jobs for other potential immigrants. If the observed job is already filled, the

network makes no invitation and by the assumption that immigration to a destination with

a network is possible only through it, the number of network members remains the same.

Immigrants have different search intensities that depend on their order of arrival.7 The

intensity of the nth immigrant is given by λδn−1, where λ is a positive constant, 0 < δ < 1

is a parameter of reduction and n in {1, . . . , N} denotes the order of arrival to the network.

So, the search intensities are: λ for the pioneer immigrant, λδ for the second, λδ2 for the

third, and so forth. Note that the intensities do not depend on time, so the search processes

are homogeneous. This means that a network member will search with the same intensity

throughout time.

By the definition of Poisson process, the times between job observations -also known as

interarrival times- are exponentially distributed. Accordingly, high search intensities corre-

spond to short expected interarrival times, and viceversa. On account of the above remark,

the first immigrants take on average less time to observe jobs than new members. This is in

line with Todaro’s (1980) propositon that longer-term arrived migrants have more contacts

and better information systems than the newly arrived. The condition can be relaxed since

we can make δ arbitrarily close to one.

The network search process is composed of all the job observations made by the network

members. To study the general case, let X(t) = n for some n in S and t ≥ 0. This means

there are n independent search processes with respective parameters λ, λδ, . . . , λδn−1. By

the Superposition theorem,8 the search process of the network is also a Poisson process of
7The mathematical convenience of making this assumption is more extensively discussed in Appendix B.
8See Kingman, 1993.
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intensity

λn =
n∑
i=1

λδi−1 = λ
1− δn

1− δ
.

Given that λ > 0 and 0 < δ < 1, we have that λn > 0 and λn+1 > λn for every n in

S. This implies that the network search intensity is an increasing function of the number of

immigrants. Consequently, every addition to the network reduces the expected time between

job observations.9

It is worth pointing out that while there is no interaction or information transmission

between the immigrants in the network, their combined search efforts reduce the expected

observation interarrival times. We call this effect increase of the job search efficiency.

2.1.2 Reduction of vacancies

Thus far we have that as the network grows, the expected frequency of job observation

increases. The crucial fact here is that under the assumptions of fixed labor demand and no

exit from employment, the expansion also reduces the number of vancancies. This implies

that the network should make -on average- more observations to find an available job.

Suppose that the size of the network is n, for some n in S. Then conditional on making

an observation, the probability of selecting a vacancy is pn = N−n
N−1 . Note that as long as

the network size remains the same, every job observation is a Bernoulli trial with success

probability pn. Therefore, we can think of the number of observations before selecting a

vacant job as a geometric variable of parameter pn, with support on {1, 2, . . .}. It follows

that the average number of observations in which a network of size n finds a vacancy is 1/pn.

One sees immediately that an increase of the network size enlarges the average number of

observations needed to find a vacant job.
9If we were to assume the number of immigrants in the network is a continuous variable, we would have

∂2λn

∂n2 = λδnlog2(δ)
δ−1 < 0. This implies that the marginal increase in efficiency is smaller as the network expands.

Evidently, this is due to the decreasing nature of the immigrant search intensities.
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It is worth pointing out that once an available job is found and in consequence, an

immigrant is added to the network, both the network search efficiency and the probability

of success adjust to the new network size. Hence, the principal significance of the reduction

of vacancies is that it induces a thinning10 of the process of observations. In other words,

the expansion of the network induces a higher intensity search process in which successful

observations occur with a lower probability. This amounts to saying that the search process

of the network is a Poisson process whose rates vary according to the counting process of

immigrants.11

2.1.3 Interaction between search efficiency and decreasing vacancies

In exploring the events that lead to network expansion, we noted that the immigrant inter-

arrival times are affected by the number of job observations in which the network selects a

vacancy and the frequency of these observations. What is still lacking is an explicit descrip-

tion of the distribution of the interarrival times.

We begin with the observation that the interarrival times of immigrants are given by the

time in which the network observes an available job. For the general case, set X(t) = n,

for some n in S. Let Tn denote the time that elapses before one of the n immigrants in the

network makes the first observation of a vacant job and invites a potential migrant to join

the network. Another way of stating this is to say: Tn is the time spent by {X(t)}t≥0 in

state n before jumping to state n+ 1. We refer to Tn as the holding time in state n, or the

interarrival time of the (n+ 1)-th immigrant.

Proposition 1. The holding time Tn has an exponential distribution of parameter qn = λnpn,

where λn = λ1−δn
1−δ is the network search intensity, and pn = N−n

N−1 is the probability of observing

a vacancy when the network size is n.12

10See Grimmett and Stirzaker, 2001
11See Scott and Smyth (2003) for the definition of Markov Modulated Poisson Process.
12For the proof we refer the reader Appendix A.
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Therefore, conditional on X(0) = 1, the holding times T1, T2, . . . , TN , are independent13

exponential random variables of respective parameters q1, q2, . . . , qN . This actually proves

that the counting process of immigrants is a birth process of rates (qn)n∈S.14

It is worth pointing out that since the probability of observing a vacancy when X(t) = N

is zero, we conclude from Proposition 1 that qN = 0, hence that TN ∼ exp(0), and finally

that E(TN) = ∞. This means that the network size spends an infinite time in state N .

Thus, N is an absorbing state of the counting process of immigrants. This is consistent with

the fact that once there are N immigrants in the destination, no job may be offered to the

(N + 1)th immigrant, and so the network size remains unchanged.

For a deeper discussion of the behavior of the birth rates (or network search intensities),

we exemplify the effect of a change in the network search effiency -through the parameter of

search intensity reduction δ- on the overall intensities (qn : 1 ≤ n ≤ N).

Example 1. We set a maximum network size of N = 10. Since λ is a scale parameter,

there is no loss of generality in assuming λ = 1. For this exercise we consider four cases

of intensity reduction, δ ∈ {0.01, 0.50, 0.75, 0.99}. The first case accounts for a low network

search efficiency, since in the limiting case δ = 0 only the pioneer immigrant searches for

jobs.15 The last case portrays a high efficiency of search, given that in the limit δ = 1, all

the network members search at the same full search intensity λ. The second and third cases

represent intermediate search efficiencies.

Figure 1 shows the network search intensities that correspond to each value of δ and

network size n in {1, . . . , 10}. In the plot, low values of δ and therefore low network intensities

have light colored graphs, and the intensity of color increases as δ grows. The rates are joined

by lines to exhibit their trend as the network expands. It can be seen that when δ = 0.01, the
13Independence follows from the Markov property of the immigrant counting process:

P
(
X(Tn) = n+ 1

∣∣X(Tn−1) = n, . . . ,X(0) = 1
)
= P

(
X(Tn) = n+ 1

∣∣X(Tn−1) = n
)
.

14See Norris (1998).
15We adhere to the convention that 00 = 1, so when δ = 0 the search intensities are λ1 = λ for the first

immigrand, and λn = 0 for every 1 < n ≤ N .
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network search intensities appear to be linear. This is because as δ approaches zero we have

lim
δ→0

qn =
λ

N − 1
(N − n) for every n ∈ S. (1)

Clearly, when the network search efficiency is low, the prevailing effect in the birth rates is

that of the increased occupation of jobs. This explains the decreasing behavior of the overall

search intensities as the network expands. Since the interarrival times of immigrants have

exponential distribution of parameters (qn)n∈S and consequently, expected interarrival times

E(Tn) = 1
qn
, we see that every addition to the network increases the average times in which

subsequent immigrants arrive.

Figure 1: Network search rates by search efficiency and network size

On the other hand, as δ approaches 1, the birth intensities take the form

lim
δ→1

qn =
λ

N − 1
n(N − n). (2)
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In this case, the rates are symmetric around the network size N
2

if N is even, or N+1
2

if N is odd. This means that the average time in which n immigrants make a successful

job observation is equal to that of N − n immigrants.16 The reason for this is that when

n immigrants look for jobs, the expected times between observations are longer than when

there are N − n members, but the probability of success is higher, and this counteracts the

small search efficiency effect. On the other hand, when N −n immigrants search, the overall

search efficiency is higher than when there are n immigrants, but the probability of selecting

one of the n vacancies is small. From this we deduce that the net effect is the same for both

network sizes.

We now consider the behavior of the birth rates for any other δ in (0, 1). The important

point to note here is that sequential increases in the network search efficiency take the birth

rates function from a decreasing ‘line’ to a discrete parabola that opens down, as seen in

Figure 1. Our proof starts with the observation that for any δ in (0, 1), we have q1(δ) = 1

and qN(δ) = 0, so the birth rates functions have the same start and end points. To study the

rest of the cases, take any δ0 and δ1 in (0, 1) such that δ0 < δ1, and note that for every state

n ∈ S we have δn0 < δn1 . Given that λ > 0, it follows easily that λn(δ0) < λn(δ1). As pn is

not affected by δ, this clearly forces

qn(δ0) < qn(δ1) for every n in S. (3)

It follows that the network seach intensities are increasing in δ, and thus in the network

search efficiency. This can be confirmed graphically in Figure 1, where we see that qn(0.5) <

qn(0.75) for every 1 < n < 10.

We emphasize that the birth rates associated to δ in {0.5, 0.75, 0.99} have an initial ten-

dency to increase, reach an stationary point and decrease from that point on. This suggests

that the network search efficiency overpowers the reduction of job opportunities at first, but

once the network reaches a critical size, the dominance of effects acts in reversed order.
16Without loss of generality we are assuming N is even.
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As the birth rates functions are increasing in the search intensity, we have that the critical

network sizes go from one (the size where the line given in Equation (1) reaches its local

maximum), to N
2
(where Equation (2) has its critical point). The interest of the stationary

point is that it allows one to determine the dominating effect in the network search rates, we

will see however, that this critical size may not correspond to the economic saturation point

of the network.

Summarizing, we have established the evolution of a labor migration network, from the

arrival of its first member until the maximum size is reached. We worked under the assump-

tion that every potential immigrant that is invited to join the network does it. We know this

is not necessarily true, however the assumption allowed us to derive the state transitions of

{X(t)}t≥0 and its corresponding birth rates (qn)n∈S. In the following section, we show how

to derive the expected returns to network-driven migration from the rates we obtained.

3 Expected returns

Recall that the allocation of a potential migrant is the result of her optimal choice when

comparing the expected values of staying in the home country, migrating to a location with

a network and starting a network elsewhere. This comparison will allow us to determine

whether joining a network of size n ∈ S is the optimal strategy of a worker. Needles to say,

this will let us dispense with the assumption of potential immigrants joining the network

unconditionally. This basic idea will also allow us to make an economic formulation of the

network saturation point.

In this section we define the expected returns of the options available to potential mi-

grants: stay in the origin, migrate to a new location in the receiving country and look for a

job in a destination through a network of size n ∈ S. We follow Todaro (1969) in assuming

that: the planning horizon for potential migrants is identical and infinite, there is an ini-

tial fixed cost of migration and relocation for the first immigrant ca, and the probability of
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employment in the home country is one.

In addition, we make a few assumptions trying to keep the model as simple as possible.

The sending country has a relative low wage ws when compared to the host wage w > ws.

The underlying assumption is that the labor supply shifts due to migration are small enough

that their impact on the source and destination wages is inconsequential.17 Clearly, this

assumption allows us to do only a partial-equilibrium analysis. We also assume that the real

instantaneous rates of interest at origin rs and destination r are constant and exogenous. In

addition, we consider that there are costs involved with the use of networks to search for

jobs.

Let Vs denote the payoff of staying in the origin country, and h be the length of a period.

Since workers are employed with probability one in the origin, it is easily seen that

Vs =
1

1 + rsh
[wsh+ Vs].

This implies:

Vs =
ws
rs
. (4)

We define Va to be the expected return to start a network in a host destination. Since the

host wage is the same in all locations and the cost of starting a network does not depend on

the migration distance, we have that the payoff Va is the same in all the destinations. Given

that the pioneer immigrant secures one of the N jobs in the host market with probability

one, and pays the fixed cost ca it follows easily that

Va =

∫ ∞
0

we−rtdt− ca.

17Since we are interested in modeling the effect of the reduction of vacancies -rather than the effect of the

wage distribution- on the migrating decision, the choice of constant wages seems to be the best adapted to

our theory. However, as Borjas (2014) points out, a general equilibrium framework requires to endogenize

the parameters of the income distributions and allow them to depend on the size of the migration flows.
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This yields

Va =
w

r
− ca. (5)

Condition to migrate

Let us orient the decision to migrate by the requirement that the expected return differential

between starting a network and staying in the origin be non-negative. Then, by Equations

(4) and (5) international migration occurs if

ca ≤
w

r
− ws
rs
. (6)

This constraint is unambiguous as long as ws
rs
< w

r
. Geometrically speaking, (6) ensures

that the pioneer’s expected return Va is above (or the same as) Vs.

Expected return to use a network

It is our interest to see if the use of networks to search for jobs increases the expected gains

of aspiring immigrants. The basic idea is that workers pay the network’s search cost (cn

for a network of size n in S) and get the present value of income from search. Two results

may arise: either the network finds a vacancy for the worker -in which case she takes the

job and joins the network-, or no available job is observed -in which case the worker stays in

the source country and decides whether or not to engage in search again-. In terms of the

counting process of immigrants {X(t)}t≥0, the search results in the addition of one or zero

members to the network.18 In what follows, we determine the contribution of each of these

events to the expected return of network-driven migration.

For the general case, set X(t) = n. By the infinitesimal definition of {X(t)}t≥0,19 the

probability of transitioning from a network size n to a size m ∈ S in a short interval of time

h is given by:
18We will prove that the likelihood of having two or more additions in a small time frame is negligible.
19See Norris, 1998.
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pnm(h) =


qnh+ o(h) if m = n+ 1,

1− qnh+ o(h) if m = n,

(7)

where the term o(h) is a function of h such that lim
h→0

o(h) = 0.

We prove the first equation to shed light on the infinitesimal definition and its relation

with the birth rates (qn)n∈S. We are interested in computing the probability that at time

t+h the network size is n+ 1 given that X(t) = n. Let us first observe that the distribution

of the network size X(t+ h) conditionally on X(t) does not depend on t, so

P(X(t+ h) ≥ n+ 1 | X(t) = n) = P(X(h) ≥ n+ 1 | X(0) = n)

= P(Tn ≤ h | X(0) = n).

As the holding time Tn has an exponential distribution of parameter qn, we have P(Tn ≤

h | X(0) = n) = 1− e−qnh = qnh+ o(h), so

P(X(t+ h) ≥ n+ 1 | X(t) = n) = qnh+ o(h). (8)

One may prove by a similar argument that P(X(t + h) ≥ n + 2 | X(t) = n) = o(h),

which implies that the probability of adding two or more members in a small time frame is

negligible. It suffices to use this observation together with Equation (8) to get the desired

result.

Equation (7) may be summarized by saying that the network members find a vacancy

with probability qnh+ o(h). In this event, the aspiring immigrant gets the job and earns the

host wage w forever. On the other hand, it may happen that the network members make

no job observations in the time interval (t, t + h), or that one of them observes a filled job.

These events occur with total probability 1− qnh+ o(h). In this case, the cardinality of the

network remains the same and consequently, so does the expected return to use the network.

It follows that the expected return to search through a network of size n, Vn, is given by

Vn =
−cnh
1 + rh

+
qnh

1 + rh

∫ ∞
h

we−rxdx+
1− qnh
1 + rh

Vn + o(h), (9)
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where cn is the network search cost function. The classical literature on network driven

migration suggests that the expansion of networks lowers the costs of migration (Massey,

1990; Massey et al., 1994.), so the cost function is so chosen that cn ≤ cn−1 for all n > 1 in

S.

It is worth stressing an important difference between Equation (9) and standard job

search Bellman equations. It is derived from the fact that the host wage distribution F (x) is

deterministic,20 so the search that the network carries is not aimed at finding an ‘acceptable’

job, but simply at finding a job. This is the reason why the payoff of a job offer is not a

random variable of the form
∫ ∞
0

max
{
Vn,

x

r

}
dF (x), but simply the infinite accumulation

of the host wage w.

Rearranging terms in (9) and taking limit as h→ 0 yields:

Vn =
−cn
r + qn

+
qn

r + qn

(
w

r

)
. (10)

It is clear that the expected value of using a network is decreasing in the search costs and

the interest rate, and increasing in the host wage. However, the relation of Vn with respect

to the search intensities is not evident given the non-monotonic behavior of the birth rates

function qn.

Condition to use networks

We assume that a potential immigrant searches through a network of size n if the expected

return to do so is greater than the expected return to start a network elsewhere. We em-

phasize that there is no guarantee that for any non-decreasing cost function cn, the expected

returns of network-driven migration are higher than the expected return to start a network.

In the extreme case, cn may be such that Vn < Va for every n in S. Geometrically speaking,

this would imply that the network value function is always below the line Va. Needless to
20By assumption, the wage distribution function F (x) takes the value 0 if x < w, and 1 if x ≥ w.
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say, this means that there are no incentives to use the network. Clearly, we must impose an

additional condition on cn to ensure that networks are in fact used.

Under the assumption stated above, a necessary and sufficient condition for network use

is that Va < V1.21 Thus, the requirement on c1 is that:

car − c1 > w − λca. (11)

This is nothing but the statement that networks of size one are used when the (per period)

opportunity cost of being a pioneer car − c1 is greater than the migration payoff w plus the

expected gain of starting a network, which in this case is the probability that the network

finds a job λ, times the expected increase in value associated with starting a network −ca.

Constraints (6) and (11) combined give c1 < λ(w
r
− ws

rs
)− ws rrs .

4 Economic saturation of networks

Different authors have proposed definitions of network saturation, either in terms of the

migration costs (Massey et al., 1990), the earnings of immigrants in a destination relative to

earnings in the country (Heer, 2002), or the number of jobs for immigrants in a given desti-

nation (Light, 2006). These measures place saturation in a classic supply-demand framework

in which the expansion of networks increases the immigrant labor supply and decreases the

wages/jobs of subsequent immigrants. What is still lacking is an analytic model of this inter-

action and an explicit description of the network saturation point. The aim of this paper is

to provide an economic criterion of network saturation that accounts for the increase in the

job search efficiency and the reduction of vacancies that the expansion of networks brings

about.

Definition 1. We define the network saturation point to be the smallest network size for

which the value of using the network is smaller than the value of starting a new one. In
21Note that if this does not hold, immigrants will create networks but not use them.
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other words, the saturation point gives the maximum network size for which network-driven

migration is optimal. In our notation, this critical network size n∗ is given by

n∗ = inf{n ∈ S : Vn ≤ Va}. (12)

Although it would be desirable to obtain an explicit formula of the saturation point, we

have not been able to do this because the network search intensities (qn)n∈S are not analyt-

ically tractable. Nonetheless, we find that the saturation point can be uniquely determined

once the parameters of the model are set. We give a few examples below.

Example 2. Consider the previous example in which N = 10, λ = 1 and δ in {0.01, 0.5, 0.75, 0.99}.

For the instantaneous origin and destination wages we use Albrecht et al. (2009) Latin Amer-

ican average informal and formal-sector wages. The crucial assumption is that immigrants

in the origin get the informal-sector wage ws = $0.20, and a wage in the destination coun-

try that is equivalent to the formal-sector wage w = $0.40.22 For simplicity we assume that

r = rs and set r = 0.015. We set ca = $10 and cn = $5 for every n in {1, . . . , 10}. It is

evident that the chosen costs satisfy conditions (6) and (11).

Figure 2 pictures the expected network values generated with these parameters. We adhere

to the convention that the depth of color reflects the network’s intensity of search, so the

darkest graph is associated to δ = 0.99 and the lightest to δ = 0.01. The expected value of

staying in the origin is given by the dotted line (Vs = $13), while the straight line gives the

expected return to start a network (Va = $17). We see that the expected returns to network-

driven migration are increasing in the network’s search intensity.23 From this we deduce that

higher network search intensities give greater expected returns and in consequence, bigger

saturation sizes. It is worth stressing that aspiring immigrants take the network size and
22The average formal-sector wage used by Albrecht (2009) is 0.363.
23We prove this result in general. We conclude from (3) that 0 < δ0 < δ1 < 1 implies qn(δ0) ≤ qn(δ1) for

every 1 ≤ n < N − 1, hence that qn(δ0)
r+qn(δ0)

≤ qn(δ1)
r+qn(δ1)

, and finally that Vn(δ0) ≤ Vn(δ1). The strict equality

holds for n = 1.
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search intensity as given and decide whether using the network maximizes their discounted

value of income stream.

Figure 2: Expected return of network-driven migration.

Note that if the cost of starting a network were to decrease, ceteris paribus, there would

be an upward shift of the pioneer’s expected return line. Consequently, the critical size of the

network would be reduced. The obvious intuitive meaning is that a decrease in ca makes the

option of starting a network more appealing to potential immigrants.

Figure 2 points out another interesting aspect of the expected returns to using a network:

their behavior is similar to that of the network intensities. We see that in the early stages of

network evolution, the expected returns associated with δ in {0.50, 0.75, 0.99} have a tendency

to increase, reach a maximum and decrease. We infer that this is the result of network search

efficiency overpowering resource reduction first, and then overturning.24 As it is expected,
24A similar result is found when the search costs account for the search efficiency, so cn = cλn for every
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when δ = 0.01, the average returns to network migration decrease with every immigrant join-

ing the network. This follows from the network’s lack of search efficiency and the assumption

of constant search costs.

Table 1 presents the expected returns to network-driven migration by network size and

value of δ. The saturation values that correspond to each case, Vn∗(δ), are marked with an

asterisk. One sees that the saturation point is not necessarily equal to the maximum size of

the network N = 10. In our example, the saturation sizes for δ in {0.01, 0.5, 0.75, 0.99} are

6, 8, 9 and 10 respectively. This result shows that the creation of networks in new locations

may occur before the targeted destination runs out of vacancies. Incidentally, we have shown

that it is not necessary to account for the reduction of wages to observe an early deflection of

migration. It suffices to consider the diminishment of jobs for immigrants and its negative

effect on the network search intensities. We emphasize that this outcome does not neglect

the increasing (geometric) efficiency of search accomplished by the network members. This

is our main result.

We claim that the immigration of a single worker to the host country is a sufficient

condition for the proliferation of networks. This is because the arrival of an immigrant

implies that starting a network is revealed preferred to staying in the source. If condition (11)

holds, the pioneer’s network will be used by aspiring immigrants until it becomes saturated.

In this point, the remaining allocation strategies are staying in the source and migrating to a

new location. It is optimal for workers to start a network since Vs ≤ Va. It remains to prove

that if (11) does not hold, networks will be created constantly. We conclude that V1 > Va,

and given that Va > Vs, networks will always be created but not used. This completes the

proof.

n in S, and c a positive constant. This case contradicts the network theory assumption of falling costs and

this is our reason for excluding it from the main analysis.
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Table 1: Expected returns to network-driven migration by network size and search intensity

δ

n 0.01 0.50 0.75 0.99

1 21.35 21.35 21.35 21.35

2 20.75 22.66 23.23 23.64

3 19.92 22.74 23.69 24.34

4 18.82 22.40 23.73 24.62

5 17.29 21.72 23.51 24.69

6 15.03* 20.60 23.01 24.60

7 11.31 18.68 22.05 24.30

8 4.12 14.87* 20.04 23.55

9 -15.78 3.86 13.99* 21.13

10 -333.33 -333.33 -333.33 -333.33*

Note: The saturation values V ∗n = inf{Vn : Vn ≤ Va = 17} are marked with an asterisk.
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4.0.1 Network saturation time

Although literature on network migration provides a general description of the conditions for

network saturation, rather less attention has been paid to the time in which networks become

saturated. This is to be expected, since the theory of network migration only assumes that

networks find jobs for potential members, yet it does not explicitly describe the times in

which such jobs are found. The advantage of our model lies in the fact that it provides a

natural characterization of the immigrant interarrival times. This feature allows us to shed

new light on the economic saturation time of a network.

We begin by noting that the time in which a network reaches its saturation point is

given by the accumulation of the interarrival times of the n∗−1 immigrants arrived after the

pioneer. Since these interarrival times are exponential variables of parameters q1, . . . , qn∗−1, it

follows that the expected saturation time is
n∗−1∑
n=1

E(Tn) =
n∗−1∑
n=1

1

qn
. Although this average time

is descriptive, it is of interest to know the actual distribution of the economic saturation time

of the network. The main difficulty in this task is that the interarrival times of immigrants

are not identically distributed.

Instead of computing the characteristic or moment generating function of the saturation

time we use some results of phase-type distributions, a class of distributions of the time in

which some Markov processes (like our finite-state birth process) reach their absorbing state.

We will touch only a few aspects of the theory trying to keep our exposition self-contained.25

Let τ be the time it takes the network reach its absorbing state,

τ := inf{t : X(t) = N}.26 (13)

By definition, τ denotes the time until complete network saturation, so we also have

τ = WN =
N−1∑
i=1

Ti,

25See Mogens (2005) for a general reference of phase-type distributions.
26τ is also known as the time until absorption.
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where the holding times T1, . . . , TN are exponential random variables with respective param-

eters q1, . . . , qN .

Proposition 2. The density function of τ is given by

fτ (x) =
N−1∑
i=1

qie
−qix

 N−1∏
j=1,j 6=i

qj
qj − qi

 .27 (14)

This proposition states that the complete saturation time has a hypoexponential distri-

bution of parameters {qn}n={1,...,N−1}.

Proposition 2 gains in interest if we realize it also allows us to compute the economic

saturation time of networks. It suffices to note that saturated networks are not used by

potential immigrants. Explicitly, this means that once a network reaches the critical size n∗,

its cardinality will not change. This allows us to think of n∗ as an economic absorbing state

of {X(t)}t≥0. By the above, we can think of N = n∗ to be the ‘new’ maximum size. It is

immediate that the network’s time until economic absorption is given by

τ ∗ = inf{t : X(t) = n∗}.

From Proposition 2 we conclude that τ ∗ is a hypoexponential random variable with

parameters {qn}n={1,...,n∗−1}.28

This section was intended as an attempt to motivate the study of network saturation

in the presence of frictions. Central to our viewpoint is the notion that the network must

engage in search to find vacancies, and that the search itself takes time. There has since been

little systematic work on migration network models with frictions, yet the time approach is

not much different from (unemployment) duration analysis with time-varying hazard rates.
27For the proof we refer the reader to in Appendix C.
28The distribution of τ∗ is given by Fτ∗(x) = p1,n∗(x). See Appendix C for the proof.
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5 Efficiency

One may ask whether it is efficient for the immigrant population to reach the saturation

point of networks. To answer this we next introduce the notion of expected gains of network

migration. Let Vn − Va denote the expected gain that immigrant n + 1 gets from using a

network of size n rather than starting one on her own, for 1 ≤ n < N . Clearly, the expected

gains are zero or negative if i is in {n∗, . . . , N−1}. We define the expected gain of a network

to be the sum of the expected gains of all the network members except the pioneer,29 and the

expected gains of network migration to be the sum of the expected gains of all the networks

in the destination country. The task is now to determine whether reaching the saturation

point of networks n∗ maximizes the expected gains of network migration.

For simplicity we assume that there is only one network in the host contry and that it

has size n∗. The expected gain of the network is then

n∗−1∑
n=1

(Vn − Va). (15)

To prove that reaching the saturation point is not efficient amounts to finding a different

arrangement of n∗ immigrants in more networks that yields a higher expected gain than this.

For instance, there could be an arrangement such that

n∗−1∑
n=1

(Vn − Va) <
k∑

n=1

(Vn − Va) +
n∗−k−2∑
n=1

(Vn − Va), (16)

where the right side of the inequality gives the expected gain when there are two networks:

one of size k+1 and one of size n∗−k−1. If no such arrangement exists, we say it is efficient

to reach the saturation point.

Note that the number of networks in the new arrangement is constrained by the saturation

point n∗ and the fact that pioneer immigrants have no gains of network migration.
29It is obvious that the pioneer does not rely on networks to migrate, therefore she has no expected gains

of network migration.
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Example 3. Consider the case in Table 1 where δ = 0.5. The saturation point associated

to this parameter is n∗ = 8 and its corresponding network’s expected gain is
7∑

n=1

(Vn − 17) =

$33.48. Note that if instead of having a network of size 8, workers form two networks of size 4,

the expected gain of network migration becomes 2
3∑

n=1

(Vn−17) = $33.50. This means that the

value k = 3 satisfies (16). We conclude that in this case, it is more efficient for immigrants

to create a new network after reaching the highest network expected gain V3−Va = 6.08, than

to wait until the saturation point n∗ = 8 is reached.

This example demonstrates rather strikingly that it may be more efficient for immigrants

as a whole to deflect migration before the model predicts it should.

6 Conclusions

The aim of this paper is to propose a tractable definition of the saturation point of labor

migration networks. For this purpose we constructed a stochastic process that models the

evolution of migrant networks. The model provides an intrinsic characterization of the

expansion of networks when its members have incomplete information about the location of

vacant jobs. This construction relaxes the standard assumption on social network theory

that networks instantaneously find jobs for aspiring immigrants.

The main idea is that workers in the origin may use networks to search for jobs in host

locations. Our basic assumption is that aspiring immigrants pay the search costs incurred by

the network and get the present value of income from search. The behavior of the network

search intensities reflects the fact that as networks grow, the job search efficiency increases

and vacancies in the targeted destination decrease. Accordingly, the network samples jobs

faster (on average), but takes longer to select a vacant job (also on average). The expected

return to search through a network is computed by means of a Bellman equation.

We are interested in finding the size of networks for which the expected return to network
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migration is lower than the average return of migrating by oneself. This criterion allows to

express the saturation point as the maximum size for which the use of networks is an optimal

strategy. We give a few examples that demonstrate that the saturation point does not

necessarily correspond to the maximum size of the network. This important result suggests

that the use of networks is not always preferred by migrants. We also show that in some

cases, the average gains of network-driven migration may be increased by creating networks

of smaller size than the one predicted by the model. This implies that an early deflection

of migration to new destinations could be more efficient for the immigrant population as a

whole.

Lastly, we discuss the network saturation time. To our knowledge of the literature, no

attempt has been made to develop a theory of the time in which networks become satu-

rated. We find that under the above assumptions, the saturation time of networks is a

hypoexponential random variable with parameters given by the network search intensities.
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Appendix A Holding times

Proposition 3. Suppose that X(t) = n for some n in S and t ≥ 0. Then, the holding time

Tn has exponential distribution with parameter λnpn, where λn = λ1−δn
1−δ and pn = N−n

N−1 .

Our proof starts with the observation that when the cardinality of the network is n, the

rate of the network search process is λn = λ(1−δn)
1−δ . This means that as long as the number of

immigrants in the network remains the same, the interarrival times of observations denoted

by S1, S2, . . . are independent exponential variables of parameter λn.

Let K stand for the number of observations made by the network members until one

of them observes an available job. Here, it is natural to assume K is independent of the

sequence (Si)i=1. Under the assumption that there are n immigrants employed at destination,

the probability of making a successful observation is given by pn = N−n
N−1 . We thus claim that

K is a geometric random variable of parameter pn.

The holding time in state n, is given by

Tn =
K∑
i=1

Si. (17)

To deduce the behavior of the distribution of Tn, we proceed to compute its characteristic

function.
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Let us first condition on K to obtain

ΦTn(t) = E
[
eitTn

]
= E

exp
it

K∑
i=1

Si




=
∞∑
k=0

E

exp

it
k∑
i=1

Si

∣∣∣∣∣∣K = k


P(K = k)

=
∞∑
k=0

E

exp

it
k∑
i=1

Si


P(K = k)

The last equality holds by independence of K and the sequence of interarrival times

(Si)i=1.

Given that S1, . . . , Sk are independent exponential variables of parameter λn, it follows

easily that E

exp

it
k∑
i=1

Si


 is the characteristic function of a Gamma variable of pa-

rameters k and λn valued at t. This gives

ΦTn(t) =
∞∑
k=0

(
λn

λn − it

)k
P(K = k) = E

[(
λn

λn − it

)K]
. (18)

We can rewrite
(

λn
λn−it

)K
as eiK

1
i
log
(

λn
λn−it

)
, and make the variable change u = 1

i
log
(

λn
λn−it

)
,

so Equation (18) can be expresed as

ΦTn(t) = E
[
eiuK

]
. (19)

Note that by definition of K, E
[
eiuK

]
is the characteristic function of a geometric random

variable of parameter pn valued at u. Now Equation (19) becomes:

ΦTn(t) =
pne

iu

1− (1− pn)eiu
. (20)
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Substituting the value of u on equation (20) yields

ΦTn(t) =
λnpn

λnpn − it
. (21)

It is clear that this is the characteristic function of an exponential random variable of pa-

rameter qn = λnpn valued at t. This is the desired conclusion.

Appendix B Markov semigroup

The forward and backward systems of equations of a birth process with finite state space

S = {1, . . . , N} and intensities {q1, . . . , qN}, are respectively:

p′nm(t) = pn,m−1(t)qm−1 − pnm(t)qm for m ≥ n, (22)

and

p′nm(t) = qnpn+1,m(t)− qnpnm(t) for m ≥ n (23)

with the convention that q0 = 0 and the boundary condition

pnm(0) =


0 if m 6= n,

1 if m = n.

It is easy to check that the following probabilities satisfy Equations (22) and (23):

pnm(t) =



e−qnt if m = n,

qn · · · qm−1
m∑
k=n

e−qkt

m∏
j=n,j 6=k

(qj − qk)
if m > n,

0 if m < n.

(24)

We follow the usual notation and let P (t) denote the S × S matrix with entries pnm(t)

especified in Equation (24).

33



It is worth pointing out that the transition probability pnm(t) with m > n becomes

undefined if
m∏

j=n,j 6=k

(qj − qk) = 0. Evidently, this occurs if there are at least two intensities

qj and qk such that qj = qk.

Suppose the intensities of {X(t)}t≥0 are given by qn = λn(N−n)
N−1 for all n in S. It is easily

seen that qn = qN−n holds for every state n. Therefore the transition probabilities pnm(t) are

not defined for m > N
2
if N is even, or for m > N−1

2
if N is odd. This case occurs when every

immigrant in the network has a search process of rate λ, and consequently the network’s

search process is a simple birth of rates λn = nλ.

To avoid singularities in the semigroup, we have refrained from this case by diminishing

the rate of each immigrant through a fixed parameter δ. At the same time the insertion

of this parameter follows technical reasons, we believe it makes the migration model more

realistic. This is because the assumption of diminishing search rates illustrates that longer-

term arrived immigrants have more information and more contacts in the host destination

and this allows them to observe jobs with a higher frequency than newly added members.

Conversely, when the search rates are equal, immigrants have the same average observation

interarrival times. This result somewhat ignores what the migration literature says about the

improvement of immigrant information systems as the elapsed time since migration increases

(Todaro, 1969).

From Equation (24), we see that transition in t = 0 yields

P (0) = I, where I is the S × S identity matrix. (25)

Note that Equation (25) together with the observation that (24) satisfies (22) actually proves

that the family {P (t) : t ≥ 0} is the transition semigroup of the birth process {X(t) : t ≥ 0}.

34



Appendix C Density and distribution functions of the

time until absorption

We follow the notation used in Mogens (2005) throughout this Appendix.

Let πn denote the probability that the counting process of immigrants {X(t)}t≥0 starts

in state n for all n in S. Given time is measured from the arrival of the first immigrant we

have π1 = P(X(0) = 1) = 1 and πn = P(X(0) = i) = 0 for all n > 1. The initial distribution

of {X(t)}t≥0 (defined on its transient states) is then π = (π1, . . . , πN−1) = (1, 0, . . . , 0).

The infinitesimal generator of {X(t)}t≥0 is given by the matrix

Q =

Θ t

0 0

 , (26)

where Θ is the subgenerator matrix

Θ =



−q1 q1 0 · · · 0 0

0 −q2 q2 · · · 0 0
... . . . . . . . . . . . . ...

0 0 · · · 0 −qN−2 qN−2

0 0 · · · 0 0 −qN−1


,

t is a (N − 1)-dimensional column vector t =

(
0 0 · · · 0 qN−1

)T
, and 0 a (N − 1)-

dimensional vector of zeros. Under the assumptions stated above, the time until absorption

τ has a phase-type distribution with initial distribution π = (1, 0, . . . , 0) and subgenerator

matrix Θ.30

For the general case, the density function of the time until absorption of a Markov jump

process when τ ∼ PH(π,Θ) is

fτ (x) = πeΘxt, (27)
30See Mogens, 2005.
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where eΘx is the transition probability matrix to the transient states of {X(t)}t≥0 at time-lag

x .

Substituting the initial distribution π = (1, 0, . . . , 0) and t =

(
0 · · · 0 qN−1

)T
into

Equation (27) yields

fτ (x) =

(
1 0 · · · 0

)

p11(x) p12(x) · · · p1,N−2(x) p1,N−1(x)

0 p22(x) · · · p2,N−2(x) p2,N−1(x)
... . . . . . . . . . . . .

0 0 · · · 0 pN−1,N−1(x)




0
...

0

qN−1


.

From this it follows that the density function of τ is given by

fτ (x) = p1,N−1(x)qN−1. (28)

The value of p1,N−1(x) can be directly obtained from (24), combining it with Equation

(28) we obtain

fτ (x) =
N−1∑
i=1

qie
−xqi

 N−1∏
j=1,j 6=i

qj
qj − qi

 .

This establishes that τ has hypoexponential distribution of parameters q1, . . . , qN−1.

The task is now to find the distribution of function of τ . We begin with a general result

on the distribution function of the time until absorption of a Markov process:

Fτ (x) = 1− πeΘxe. (29)

Note that in our case,

πeΘxe =
N−1∑
i=1

p1i(x).

As P (x) is a stochastic matrix we have
N∑
j=1

pij(x) = 1 for all i in S. By virtue of this we can

rewrite πeΘxe as 1− p1N(x). Substituting πeΘxe into (29) we see that

Fτ (x) = p1N(x). (30)
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On substituting the value of p1N(x) into (30) we obtain

Fτ (x) =
N−1∏
i=1

qi

N∑
i=1

e−qix

N∏
j=1,j 6=i

(qj − qi)
,

which provides an explicit description of the distribution function of τ .
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Voting with preference for alternation

Latin American countries like Colombia, Guatemala, Mexico, and Paraguay have one term

presidential limits in the hopes of preventing dictatorships and promoting partisan balance.

The idea is that open seat races reduce incumbency advantages, and increase the opposition’s

chances of winning the presidency. In this regard, party alternation is thought to be both a

defining aspect of democracy, and a mechanism for advancing democratization in countries

with authoritarian regimes. More precisely, the prospect of alternation, and thus of losing

office and power, makes parties create democratic institutions like government agencies, and

electoral commissions, to protect them if and when, they find themselves on the opposition

side (Maltz, 2007). An example of this occurred in Mexico, when the first opposition party

that came to power in 2000 after dethroning the dominant party, proposed a law, which

eventually lead to the creation of an institution, to make government information available

to the public.

Party alternation is also linked to political accountability. As Carbone and Pellegata point

out: “When elections lead to changes in government, the underlying implication is that the

performance of the ousted government did not satisfy the voters’ demands and expectations,
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and that the latter are thus requesting policy adjustments” (2017: 9).1 Discontent towards

the ruling party may arise from corruption or bribery scandals (Cos̨kun 2016), cronyism

(Klor et al. 2017), or the lack of change in electoral reforms. Regarding this latter cause,

Pilet and Bol (2011) analyze the effect of party tenure on the preference for political reform,

and find that the longer parties are in power, the less likely they are to seek reforms.

It is not the case however, that term limits necessarily lead to party rotation. Take for

example Mexico, who despite having a single six year term limit for presidents since 1934,

kept the Institutional Revolutionary Party (PRI) in power for 66 consecutive years. Diaz-

Cayeros and Magaloni (2001) argue that party dominance was due to electoral rules that

disincentivized coordination among opposition parties, yet it is also true that part of the

electorate had developed a sympathy, or at the very least, a tolerance for the ruling party.

Voters often justified their choice for PRI candidates with the phrase “better the devil you

know than the devil you don’t”. Hence, the almost 7 decade-long dominance of PRI could

be partially explained by the voters’ attitude towards risk; in particular, by a prevalence

of individuals who shied away from uncertainty, and voted for PRI’s official candidates, by

a lack of individuals drawn to uncertainty who would have voted for challengers, or by a

combination of both. The main reference is Eckles et al. (2013), who show that risk-averse

individuals are prone to vote for incumbents, while risk accepting individuals are more likely

to vote for challengers.

Support for the incumbent party’s candidate can also be explained by partisan incum-

bency advantage, defined by Fowler and Hall as ‘the electoral benefit a candidate receives

purely because her party is the incumbent party, regardless of whether she herself previously

served’ (2014: 502). They distinguish two kinds of partisan advantage: positive, where of-
1While it would be tempting to link this to the research on constituency service, or federal money spending

(see Gaines 1998, King 1991, and Klingensmith 2015), most studies focus on the effect of the incumbency of

politicians, rather than that of parties. So, the even though balance of power is a relevant concept in this

strand of literature, it is not the kind we wish to explore.
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ficial candidates benefit from the voters’ favor for incumbents, and negative, which signals

that voters have a preference for partisan balance. Note that if positive partisan advantage

is present at the time of elections, then political competition decreases, and alternation is

not an immediate implication of open seat elections.

In this work, we introduce a concept closely related to risk aversion and partisan advan-

tage called preference for alternation. Preference reflects the voters’ evaluation of outside

options, so it comprises the utility of voting for the opposition when a given party is in-

cumbent. The evaluation may be driven by the voters’ emotions, rational motivations, or a

combination of both. Lerner et al. (2004) claim that emotions like anger or sadness can lead

to risk-seeking choices, whereas disgust evokes avoidance to try something new. Emotions

towards the incumbent party may arise from rational situations, like anger stemming from

corruption scandals,2 but also from exogenous factors of which politicians have no control.

Wolfers (2002) shows that voters reward or punish governors for oil price raises, based on

whether their state is an oil producer or consumer, in spite the fact that oil prices are thought

to exhibit random behavior (Serletis and Andreadis, 2004).

We are interested in investigating to what extent preference for alternation affects the

voters’ evaluation of candidates and consequently, the results of elections. In addition, we

analyze whether term limits can alleviate the confounding effect of preference for alternation.

The idea is that uncertainty, and therefore heterogeneous attitudes of voters towards risk,

arise from open seat elections, but re-elections carry a higher degree of information about

at least one candidate: the incumbent. So, even if voters are prone to alternation, they

may end up re-electing the incumbent if she proves to be competent. We emphasize that

incumbents may not necessarily reveal their competence through their actions, see Aghion

and Jackson (2016) for an account of the strategies available to principals to induce agents

to reveal their types.
2An example would be Peru’s former president Pedro Pablo Kuczynski, who was linked to vote-buying,

and had to resign after videos of his allies bribing lawmakers were made public.
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To the best of our knowledge, our study along that of Eckles et al. and Fowler, is one

of the few that analyze incumbency from the perspective of voters, and not of politicians

or political parties. Typically, the scholarly literature focuses on the mechanisms that lead

to incumbency advantages such as redistricting and gerrymandering (Cox and Katz, 2002),

campaign finance (Meirowitz, 2008), and returns to experience (Lee, 2001), or the way in

which the advantage is perpetuated: either by positive electoral selection (Ashworth and

Bueno de Mesquita, 2008), or by scaring off experienced challengers and lowering the quality

of candidates from the opposition. Hall and Snyder (2015) find that this accounts only for

5-7 percent of the incumbency advantage in U.S. elections.

The closest reference to our work is that of Fowler (2018), where voters receive noisy sig-

nals about candidate quality, and update their beliefs about incumbents. Under uncertainty,

incumbency is a positive signal that tends to favor incumbents, even when they are not

intrinsically better than challengers. Just like Fowler, we analyze the effects of incumbency

in terms of the voter’s decision to elect an incumbent over a high quality challenger, but

make a more detailed analysis of the implications of this for party rotation. Our dynamic

setting also allows us to extend time beyond the finite period horizon, which is standard for

games with voting, see Dekel and Piccione (2000), and Battaglini (2005) for a full treatment

of sequential voting, and Jackson and Tan (2012) for information revelation via voting rules.

This implies that we can analyze which party spends more time on average in power in the

long-run.

In our model, voters elect the contender that they think is most suitable for office. The

catch is that the voters’ evaluation of candidates is affected by their own preference for

political alternation. The characterization we make is that voters that prefer stability have

an enhanced perception of the candidates of the ruling party because they want to keep it in

power, while voters that have a preference for alternation think lower of them because they

want to try something new. Candidates are completely characterized by valence, which is

a variable that comprises individual conditions beyond the left-right Downsian ideological
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dimension, and that are positively valued by voters (Stokes, 1963). Roughly speaking, valence

can be viewed as the intrinsic appeal of a candidate, irrespective of her own, or her party’s

policy positions. Some authors classify candidate valence issues into those that are useful in

elections, and those useful for governing (Adams et al. 2011). We do not disaggregate valence

into its components, but treat it as a general indicator of candidate appeal. On account of

the fact that voters make their decision based on candidate appeal and not policy, in other

words, because they are strictly valence motivated, our model cannot be situated in the

classical Downsian coordinate system. Unlike other models that have introduced the half-

dimension of valence into the voters’ utility function (see Serra 2010 for a deeper discussion

of the relationship between valence and policy), our model is situated in its own dimension.

Although the assumption that voters only value non-ideological characteristics of can-

didates may seem little realistic, empirical evidence suggests that a fair proportion of the

electorate relies on factors different from economic or social policies when electing their lead-

ers, and instead focuses on issues in other dimensions. As Stokes points out “A few voters,

as we have seen, impose a clear ideological structure on political conflict. But the vast ma-

jority rely on assorted non-ideological ways of structuring the political world” (1963: 375).

Confirming this view, is Nyhuis’ (2016) finding that candidate valence,3 is positively and

significantly associated with vote share. Empirical studies have also shown that physical fea-

tures of candidates are correlated with election outcomes. Todorov et al. (2005), and Ballew

and Todorov (2007) show that the evaluation of candidate competence made by participants

based on politicians’ facial appearance, correctly predicted 68% of US gubernatorial races,

and 72% of US Senate races. Voters that lack information about candidates tend to rely more

on these judgments of quality based on physical attributes or characteristics. McDermott

(1997) shows that in low-information elections, voters use gender as a cue for policy position,

and in particular, finds that women candidates from the Democratic party are preferred over
3Nyhuis’ indicator of candidate valence is the residual between vote recommendation based on the prox-

imity between the preferred policy of voters and that campaigned by candidates, and actual vote.

43



men among liberal voters.

Even if voters are perfectly informed, and cast their vote in a rational way, there could be

scenarios where valence is a tie-breaking determinant for choosing from similar alternatives.

Downs (1957) suggests that as parties converge towards the same ideological point, there is

less ground for distinction, and the voters’ decision may boil down to ‘some irrational basis’,

or in other words, a valence issue. Serra (2013) describes a scenario in the 2012 presidential

election in Mexico, where the three main runners proposed a similar strategy to address

security issues, namely, to keep the army in the streets (Mexico was experiencing considerable

violence as a result of the war on drug traffickers declared by the former president). Although

candidates differed in other concerns, this is an example where voters could have relied on

criteria different from the candidates’ policies to make their choice. We highlight the fact

that campaign teams have also noticed the value of campaigning on valence, at least more

than on ideology, if candidates lack certain attributes like charisma, or if the electorate

is relatively sensitive to political ideology. Serra (2013, 2018) argues that Hillary Clinton

campaigned on her experience in government, a character valence issue, to compensate for

her lack of charisma, while Peña Nieto refrained from making explicit policy proposals, and

instead relied on his appeal, which was also portrayed in different sources of media.

We assume that a voter against alternation, or prone to stability, thinks that the candi-

date of the ruling party has a higher valence than she actually does, while a voter in favor of

alternation thinks that it is lower. A voter that is indifferent to alternation perceives valence

without distortion. Note that preference for alternation has the same effect on voting as

risk aversion or positive partisan advantage, while preference for stability is consistent with

risk acceptance or negative partisan advantage. The difference is that partisan advantage is

intrinsic to parties, even though it affects voter behavior, while risk aversion and preference

for alternation pertain solely to voters.

In this setting, the lack of political alternation can be explained by a series of combinations

of preferences for alternation and candidate valences. For instance, an uninterrupted winning

44



streak, or party dominance, can occur if voters are indifferent to alternation and all the

candidates of a given party have higher valences than their challengers. Alternatively, voters

can be consistently against alternation, and their loyalty to the party in power can either

boost strong official candidates, or compensate for less competitive ones. Another possibility

is that voters are always drawn to alternation, but the candidates of the opposition lack

sufficiently high valences to win office. Even though we have named a few examples in which

the preference type of voters remains the same throughout time, we can consider scenarios

in which the preference for alternation changes every election. In such dynamic settings,

there are still combinations of preferences and valences that lead to consecutive victories of

a single party.

We find that preference factors have a bigger effect on the probability of electing the

lesser candidate in the two term limit, than they do when there is a single term limit.

Explicitly, if the valence of an incumbent and that of a new candidate are affected by the

same preference factor (different from the null), then it is more likely that voters elect the

lowest valence valued candidate: this could be the challenger, if the incumbent has a higher

valence, or vice versa. The reason being that when voters have a distorted evaluation of the

incumbent, the information about her previous performance is discarded, and this involves a

bigger loss of information than modifying the perception of a new candidate. This suggests

that if voters have preferences for, or against alternation, then legislative single terms lead to

higher average valence politicians in office. The closest empirical estimate of the preference

of voters is partisan incumbency advantage, defined by Fowler (2014) as Wj(1)−Wj(0)

2
, where

Wj(1) is the party vote share received by the Democratic party in an open seat election

in district j where the previous incumbent was a Democrat, and Wj(0) is the vote share

received by the Democratic Party’s candidate in the same district in the counter factual

scenario where the incumbent was a Republican. Using U.S. state legislative elections data,

he finds that partisan advantage is indistinguishable from zero, which in our case implies

that preference for alternation is negligible. Regarding the average number of victories of
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parties, we find that two term limits decrease partisan balance, whereas single term limits

carry more rotation, but the differences between the two schemes attenuate over time. This

suggests that a policy on legislative terms can have a limited scope.

In Section 1 we present the election process with a single term limit and preference for

alternation. We compute the probability of observing streaks, and analyze the long-run

behavior of election results. In Section 2, we extend the model to allow for two consecutive

terms in office. We include a detailed explanation of the computational challenges of the

extension, and provide intuition for an analytical solution. We study the long-run behavior

of elections through simulations. Section 3 deals with efficiency and provides an example

of the effect of preference for alternation on the probability of choosing the less qualified

candidate.

7 Single term model

The discrete-time model we consider is one where there are two political parties, A and B.

Every period t in {0, 1, 2, . . .}, a candidate from each party runs for office. It is assumed that

candidates are completely characterized by valence, and that the electorate prefers high over

low valence candidates. The valence of each candidate is a random variable that takes non-

negative values. Let {υit}t∈{0,1,...} be the sequence of independent and identically distributed

(i.i.d) valences of the candidates of party i in {A,B}. We emphasize that we do not require

{υAt }t∈{0,1,...} and {υBt }t∈{0,1,...} to be drawn from the same distribution, this allows to model

situations in which a party has higher valence candidates, or higher variance across valences.

We make the assumption that υAt is independent of υBt for all t ≥ 0.

Each period voters have a preference for party alternation, and this alters their evalua-

tion of the incumbent party’s candidate valence. Preference at time t, denoted by εt, is a

random variable that takes strictly positive values, and affects the perception of the official

candidate’s valence via multiplication. So, if party i in {A,B} is in power at time t − 1,
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voters value the valence of i’s candidate at time t as εtυit.4 If the realization of εt is such

that the valence evaluation εtυit is higher than υit, we regard preference as positive partisan

incumbency advantage. If the evaluation is lower than the original valence, then preference

acts as negative partisan advantage.

For simplicity, we assume that {εt}t∈{1,2,...} are i.i.d random variables, and that εt+1 is

independent of υit for all t ≥ 0. Both are strong assumptions, as the first implies that

voters have no consistent attitudes towards incumbent parties, or in other words, there is no

cumulative (dis)content effect from having the same party in office for a number of terms.

The second assumption implies that the incumbent’s valence and the voters’ preference in

the following period are uncorrelated. This implies that our model has no party reputation

effect. In other words, if an incumbent performs exceptionally well, the following official

candidate will not benefit from her good reputation, and likewise, if the incumbent performs

badly, voters will not transfer the blame to the sitting party’s nominee.

We make the assumption that any candidate that contends for office in a given period

is not allowed to run in any subsequent period regardless of the outcome of the election.

Timing is as follows.

1. At the beginning of period 0, the candidate with the highest valence wins the office.
4The implicit assumption is that voters are identical, and thus have the same preference for alternation.

This simplifying condition can be relaxed by allowing each voter k in {1, 2, 3, . . . , N} to have her own

preference factor εkt . This extension is not particularly difficult to handle, as it implies there would be a finite

number of valence evaluations {ε1tυit, ε2tυit, . . . , εNt υit} to be compared against the valence of the challenger, υjt ,

with j 6= i in {A,B}. More precisely, the candidate of party i in {A,B} would win the election, if the number

of voters that deem her more suitable for office than the challenger, namely
N∑
k=1

1{εkt υit > υjt }, is bigger than

the number of voters that prefer the challenger over her,
N∑
k=1

1{εkt υit < υjt } = N −
N∑
k=1

1{εkt υit > υjt }. We

believe this result could be confounded by the size of the voting population N , and this is the reason why we

have imposed the condition of voter homogeneity. Nevertheless, the analysis is possible, and, under proper

handling of variables, could lead to interesting comparative statics with respect to the size of the electorate.
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At the end of her term, the incumbent vacates her position.

2. In period t ≥ 1, the valence of the incumbent party’s candidate is drawn from the

distribution of the product of the voter’s preference and the ruling party’s valence

distribution. The valence of the challenger is drawn from her own party’s valence

distribution. So, if i in {A,B} won the election in period t − 1, the valence of the

official candidate is εtυit. The valence of the challenger, that is, the valence of j’s

candidate is υjt , with i 6= j. As before, the candidate with the highest valence wins the

office. Once her term is over, the incumbent vacates her position.

Let xt in {A,B} be the ruling party of period t in {0, 1, 2, . . .}. So, the vector (x0, x1, . . . , xt−1, xt)

gives the sequence of winning parties from period 0 to period t. We denote by Xt = xt the

t-th state of our process. It is worth pointing out that transitions from the current party in

power to the next depend only on the present party in power, and not on the previous ones,

thus {Xt}t∈{0,1,...} is a Markov chain with state space S = {A,B}. The probability that the

first party in power is x0 is given by

P(X0 = x0) =


P(υA0 ≥ υB0 ) if x0 = A,

P(υB0 ≥ υA0 ) if x0 = B.

It is of interest to know the effect of preference for alternation on political transitions.

We first focus on winning streaks to determine under what conditions there may be an effect

of party incumbency advantage. We later examine if preference for alternation affects the

long-run number of victories of each party.

7.1 Streaks

Let us first note that by definition of the election process, the conditional transition probabil-

ities are P(Xt+1 = xt+1 | Xt = xt) = P(X1 = x1 | X0 = x0) for every t ∈ {0, 1, 2, . . .}. As the
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transition probabilities are independent of t, and the valences {υAt }t∈{0,1,...} and {υBt }t∈{0,1,...}
are identically distributed (respectively), the transition matrix of {Xt}t≥0 denoted P , is

P =


A B

A P(ε1υ
A
1 ≥ υB1 ) P(υB1 > ε1υ

A
1 )

B P(υA1 > ε1υ
B
1 ) P(ε1υ

B
1 ≥ υA1 )

.
We emphasize that finding the distribution of the product of random variables, in this case

ε1υ
A
1 and ε1υ

B
1 , is by no means a trivial task. In general, if X and Y are two indepen-

dent continuous random variables with respective probability density functions fX(x) and

fY (y), then the probability density function of Z = XY is fZ(z) =

∫ ∞
−∞

fX(x)fY (z/x)
1

|x|
dx.

However, the implementation of this result is usually not straightforward.

Since our intention is to provide a general feel of voting with preference for alternation,

we restrict our attention to easily tractable distributions of the product of random variables.

In particular, we work with the easiest continuous product distribution we can think of:

that of an exponential random variable and a positive constant. As the reader will see, even

this simple case allows for multiple characterizations of candidate valence and preferences

of voters. Moreover, since the family of exponential distributions is closed under scaling

by a positive factor, the choice of exponential and constant variables allows for a different

interpretation of the events leading to alternation. In what follows, preference for alternation

εt is defined to be a constant random variable. That is, preference is a deterministic variable

with degenerate cumulative distribution

Fεt(x) =


0 if x < c,

1 if x ≥ c,

(31)

as mentioned before, this is assumed only for simplicity. However, we provide in Appendix G

a program that samples preference factors from a customizable distribution for every period

t, this allows us to obtain numerical results.
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Proposition 4. If the candidate valences υAt and υBt are independent exponential variables

with respective parameters λA and λB, and voters prefer stability, so εt > 1, then the evalua-

tion of the official candidate’s valence εtυ, is drawn from a higher average distribution than

her original valence.

The result asserts that voters prone to stability have on average, a higher evaluation of

the incumbent party’s candidate valence than she originally does.

Proof. Without loss of generality, let us condition on the event A being the ruling party at

time t − 1 > 0. Observe that by definition of the single term model, the voter’s evaluation

of A’s candidate is εtυAt , while the valence of her challenger is simply υBt . If εt > 1, then

E(εtυ
A
t ) = εt

λA
> E(υAt ) = 1

λA
, which implies that valence evaluation of A’s candidate is drawn

from a higher average distribution than her original valence. Equivalently, the perceived

valence of the challenger υjt
εt

is drawn from a lower average distribution than the valence

υjt .

The interest of Proposition 4 is in the assertion that a positive bias for the ruling party

can be interpreted as a negative bias for the opposition. This implies that a single parameter

like εt can potentially portray the voter’s ideological preference, if such interpretation of the

model were to be made.

Lemma 7.1. If the valences of the candidates of A and B are exponential variables with

respective rates λA and λB, then preference for stability increases the probability of observing

uninterrupted winning streaks, while preferring alternation reduces it.

Let us denote by SAn the uninterrupted winning streak of length n + 1 that starts with

party A in power at time 0, and that ends with party A in power at time n. We see that

P(SAn ) = P(X0 = A,X1 = A,X2 = A, . . . , Xn−1 = A,Xn = A)

= P(υB0 ≤ υA0 , υ
B
1 ≤ ε1υ

A
1 , υ

B
2 ≤ ε2υ

A
2 , . . . , υ

B
n−1 ≤ εn−1υ

A
n−1, υ

B
n ≤ εnυ

A
n )

= P(υB0 ≤ υA0 )P(υB1 ≤ ε1υ
A
1 )P(υB2 ≤ ε2υ

A
2 ) · · ·P(υBn−1 ≤ εn−1υ

A
n−1)P(υBn ≤ εnυ

A
n ),
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where the last equality is due to the fact that {υAt }t∈{0,1,2,...}, {υBt }t∈{0,1,2,...}, and {εt}t∈{1,2,3,...}
are independent variables.

Assuming that the valences are exponentially distributed with respective parameters λA

and λB, and that {εt}t∈{1,2,3,...} is a sequence of positive numbers, then P(SAn ) = (λB)n+1

n∏
i=0

(
λA
εi

+ λB

) ,

where ε0 ≡ 1. If voters were indifferent to alternation, elections would become independent

Bernoulli trials where the probability that A wins office is inversely proportional to the

average valence of B’s candidates.

7.2 Long run behavior

We wish to analyze the amount of time that parties spend in power as a function of the

average candidate valence and the voters’ preference for alternation. To do this, we compute

the average number of victories of each party as time goes to infinity. Let πi denote the long

run proportion of victories of party i in {A,B}, so πi = limt→∞

∑t
j=0 1{Xj=i}

t
.

Theorem 1. If {υAt }t∈{0,1,2,...} and {υBt }t∈{0,1,2,...} are i.i.d exponential variables with re-

spective parameters λA, λB, and εt ≡ ε > 0 for all t in {1, 2, 3, . . .}, then the stationary

distribution of {Xt}t∈{0,1,2,...} is

π = (πA, πB) =

(
λAλB + ελ2B

2λAλB + ε(λ2A + λ2B)
,

λAλB + ελ2A
2λAλB + ε(λ2A + λ2B)

)
. (32)

Proof. This follows from the fact that pA + pB = 1, 0 ≤ πi ≤ 1, and πi =
∑

k∈{A,B} πkpki,

where the conditional transition probabilities pki are given by the transition matrix of the

process {Xt}t∈{0,1,2,...},

P =


A B

A
ελB

λA+ελB

λA
λA+ελB

B
λB

λB+ελA

ελA
λB+ελA

.
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We mention briefly another interpretation of the stationary distribution. We have that

πi = 1
µi
, where µi is the expected first return time to state i. The formula says that the long

run proportion of victories of party i is inversely related to the expected number of elections

before the next victory of i, given that its candidate was elected in period 0. The intuition

is that the faster it takes to i to return to power, the higher its average number of victories

in the long run.

An interesting interpretation of µi is that it gives, by definition, the average length of

j’s first winning streak. Indeed, the events before i’s first return to power correspond to

uninterrupted victories of j. While this is true for the first streak, it extension to the rest of

the streaks is immediate, as transitions depend only on the states, and not on time (this is

due to the assumption of constant preference factors). This means that µA =
2λAλB+ε(λ2A+λ

2
B)

λAλB+ελ2B

gives the expected length of B’s winning streak, while µB =
2λAλB+ε(λ2A+λ

2
B)

λAλB+ελ2A
gives that of A.

From now on, we continue with the interpretation of the stationary distribution as the

long-run average number of victories of parties, and refer the interested reader to Norris

(1998) for more details of the Ergodic theorem for Markov chains.

7.2.1 Analysis

From (32), we have that ∂πi
∂λi

< 0, this means that when the average valence of the candidates

of a political party increases, so does its long-run time in office. We also have that ∂πi
λj

> 0,

which implies that when the average candidate valence of a party increases, the proportion

of victories of the opposition decreases.

Perhaps less evident is the effect of the voters’ preference on the amount of time that

parties spend in power, given the non-monotonic behavior of πi with respect to ε. We

proceed to analyze the preference value that maximizes a A’s time in power given its valence

parameter and that of B. This involves no loss of generality, as the stationary entries are

symmetric. There are three cases to consider.

Corollary 7.1. If λA = λB, then ∂πA
∂ε

= 0.
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The corollary asserts that if both parties have the same average valence, then the voters’

preference for alternation has no significant effect in the average tenure of each party in

government. The intuition is the following. First note that ceteris paribus, if the voters’

preference for stability ε grows, the probability that the official candidate wins her election

P(Xt+1 = A | Xt = A) = P(Xt+1 = B | Xt = B) = ε
1+ε

increases, and the probability that

the challenger wins P(Xt+1 = B | Xt = A) = P(Xt+1 = A | Xt = B) = 1
1+ε

decreases.

Accordingly, we expect to see long uninterrupted winning streaks for large values of ε.

Nevertheless, since the probability of political alternation is positive 1
1+ε

> 0 for all values of

ε, we expect to see an eventual transition of power to the opposition. Once this transition

occurs, the voters’ preference for stability will keep the party in power for a long time until

another transition is made.

Conversely, if voters have a strong preference for partisan balance, that is if ε is small,

we expect to have short winning streaks and frequent alternations between A and B. Not

surprisingly, the steady state distribution of the chain is π = (1
2
, 1
2
) for all ε > 0. This is

nothing but the statement that regardless of the preference for alternation, each party spends

on average half of the time in power. Figure 3 illustrates the symmetry of the election chain

with equal valence distributions.

Figure 3: Equal valence chain

Corollary 7.2. If λA < λB, then ∂πA
∂ε

> 0.

This result states that the party with the highest average valence benefits most from

preference for stability. In particular, note that when the preference factor is very large,
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the long run proportion of victories of A becomes lim
ε→∞

πA =
λ2B

λ2A + λ2B
. This proportion is

maximized when λA is infinitesimally small, that is, when A’s average candidate valence

extremely large. Indeed, in the limit when λA → 0 and ε → ∞, we have πA = 1. In this

case, we can think of party A as being an absorbing state of the election chain, in the sense

that once a candidate of A is elected, its extremely well qualified official candidates will be

elected with very high probability.

Therefore, the long run proportion of victories of each party, π = (πA, πB), depends on

the result of the first election. The stationary distribution of the chain is not unique, as

all the vectors of the form π = (α, 1 − α) with 0 ≤ α ≤ 1 satisfy πP = π. Intuitively, we

can think of this as a Bernoulli distribution stating the probabilities of flipping a coin and

choosing the winning party in period 0.

Figure 4 presents the diagram of the chain with a low preference for alternation.

Figure 4: High valence and low preference for alternation chain

One sees immediately that each state communicates only with itself, that is, in the limit

when voters are very much against alternation, there is a single dominant party.

Corollary 7.3. If λA > λB, then ∂πA
∂ε

< 0.

If party B has higher valence-valued candidates than party A, the latter wants voters

to have a strong preference for alternation. In particular, A benefits most from a scenario

where voters alternate every period. This preference may seem counter intuitive, as constant

alternation prevents long winning streaks. More precisely, a strong preference for alternation

virtually eliminates the possibility that parties make self-transitions, and instead places this
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weight on transitions to the opposition. Nevertheless, A knows that its relatively weak

contenders have little chance of successively beating B’s challengers (let alone if these latter

enjoy the preference of voters, that is if ε > 1). Thus, A prefers to have constant rotation

(in other words, it prefers voters to have a preference such that ε < 1) as opposed to long

losing streaks.

Note that we can interpret a ‘negative’ preference factor ε < 1 as discontent towards the

ruling party, since both have the effect of diminishing the appeal of official candidates.5 In

this particular scenario, discontent may arise from voters having extremely high expectations

for the incoming party. Serra (2013) argues for instance, that Vicente Fox, the first president

from the opposition, faced unrealistic expectations of the electorate, and that despite many

political and economics improvements, could not fully deliver on them.

Given the periodic behavior of this process, it is not surprising that A wins half of the

elections and B the other half. The stationary distribution of this limiting case is given by

π = (1
2
, 1
2
).

The periodicity of this election chain is represented in Figure 5.

Figure 5: Low valence and high preference for alternation chain

5See Serra (2018) for an account of a popular discontent parameter δ in [0, 1] that affects candidate

charisma. The main difference is that his parameter affects the valence of challengers, while ours influences

the valence of official candidates.
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8 Two term model

We continue to make the assumptions of the no re-election model, and assume that in-

cumbents are nominated for re-election. To simplify notation, we assume that whenever

an incumbent runs for re-election, the candidate that would have run had the incumbent

not been nominated is lost. So, if B’s candidate is elected in period 0, then she runs for

re-election in period 1, and the candidate whose valence is υB1 is forgotten. Timing is as

follows.

1. At the beginning of period 0, the candidate with the highest valence is elected to office.

2. The incumbent is nominated to the election. Her valence evaluation is the product

of her original valence, and the voter’s preference factor. Her challenger is a new

candidate from the opposing party. The nominee with the highest valence wins the

election.

3. There are two cases to consider in period t ≥ 2.

3.1. The incumbent was re-elected in period t− 1. Given that the incumbent is ineli-

gible to seek re-election to a third term, the winning party selects a new nominee

at the beginning of period t. Her valence is multiplied by the preference factor εt.

Her challenger is also chosen at the beginning of period t. The nominee with the

highest valence is elected. The process continues as described in 2.

To illustrate the dynamics, suppose that B’s candidate is elected in period 0.

In period 1 she runs for re-election, her perceived valence is ε1υB0 , and that of

her challenger is υA1 . In the event that she gets elected, she remains in office for

another term and in the next period, her party picks a new candidate. Her valence

evaluation is ε2υB2 .

3.2. The challenger won the election in period t − 1. In this case, the incumbent
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is nominated by its party to the election in period t. The process continues as

described in 2.

It is worth noting that the variable Xt, defined to be the ruling party of period t in

{0, 1, 2, . . .} does not comprise all the information needed to predict future election outcomes.

To name a simple example, suppose that A’s candidate is incumbent in period 1, so X1 = A.

This can happen in two ways: either A’s candidate was elected in period 0 and then re-

elected, or B’s candidate was elected first, and lost re-election to A. Both cases imply that

the valence of A’s candidate will be affected by the preference factor ε2 in period 2, but there

is an important difference: for the next election, the latter case conveys more information

about the incumbent than the former.

To be precise, the path X0 = A → X1 = A gives information about the incumbent’s

competitiveness, but this information will be lost because the incumbent is in her second

term, which means that a new candidate will run in period 2. In contrast, the path X0 =

B → X1 = A implies that the valence of the incumbent was greater than the distorted

valence of B’s successor, and this is relevant since that the incumbent will run for re-election

in the following period. In this example, one sees that X1 = A alone does not allow to

unequivocally determine the conditions under which the next election will take place, this is

nothing but the statement that {Xt}t∈{0,1,...} does not satisfy the Markov property. Simply

put, the Markov property says that given the present information, the information of the

past is irrelevant to know what will happen in the future.

Incidentally, the example sheds light on a crucial aspect of the re-election dynamics:

every election following the second term of an incumbent has two new candidates from each

party, and their valences are independent of those of previous contenders. This means that

the only relevant information about the ruling party sequence, no matter how long it may be,

is the party affiliation of the last office holder. In other words, the process renews itself every

period that follows a re-election. We present here three trajectories of different lengths, all

of which involve the re-election of B’s incumbent at some given point in time. The vertical
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lines indicate that there is a renewal, or that we can dispense with the sequence to the left,

as long as we keep in mind that in the following period, voters have a distorted perception

of B’s candidate valence.

BB | AB · · · ABABB | BA · · · ABA · · ·︸︷︷︸
k

ABB | AA · · ·

We emphasize that the sequences AA and BB unambiguously indicate the re-election of the

incumbent only in the case where A or B were elected in the first period. To see why this

may not always be a good indicator, consider the simple case where B’s candidate is elected

the first three periods, so X0 = B,X1 = B,X2 = B. If we were to make a note of the party

in power at time 2 and go backwards in time to check if the same party was in power the

previous period we would be tempted to mark a renewal in period 2, BBB |, whereas an

extra step behind would have shown us that the renewal occurred in the previous period

BB | B.

8.1 Long-run behavior

The renewal property of re-election allows us to condense history and to deal with a smaller

state space than we would have had initially. What remains to show is that re-elections

occur in a finite time, in which case, we can guarantee renewals.

Theorem 2. If εt ≥ 1 for all t ≥ 1, the probability of observing an infinite cycle of perfect

alternation is zero.

Proof. We refer the reader to Appendix A.

The theorem asserts that under the condition described above, there will be at least one

re-election in the long-run. This is due to the fact that preference for stability increases

the appeal of incumbents. If voters are indifferent to alternation, the probability of perfect

alternation decreases with every passing period. The idea is that at time t, there are 2t party
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sequences, but only two of them guarantee perfect alternation, that is ABAB · · ·BA and

BABA · · ·AB. As time elapses, the total number of outcomes increases geometrically, but

the number of favorable events remains the same. This leads to the result that, as t tends to

infinity, the probability of perfect alternation becomes negligible. We emphasize that even

though Theorem 3 assures a re-election will occur, it does not specify when we might expect

it.

8.1.1 Analysis

It would be desirable to obtain analytical formulas for the convergence of the two term

process, but due to the complexity of the state space, we have not been able to do this. Nev-

ertheless, we present a few simulations of elections that lead to some numerical results. The

program, which is reproducible in R is provided in Appendix G. We compare these results

with the predictions of the single term model, and discuss the differences and similarities

between them.

In these simulations, we assume that both parties draw the valence of their candidates

from an exponential distribution with rate 1. Partisan advantage is drawn from 4 uniform

distributions with respective parameters
(
0, 1

2

)
, (0, 1), (0, 2), and (0, 4). For each advantage

distribution, we run 100 simulations of elections with re-election dynamics, and compute

the average number of victories of party A. Figure 6 plots the per period averages. The

more continuous lines correspond to low advantage parameters, while the more spaced lines

correspond to higher parameters.

We see that the continuous lines have a faster convergence to 0.5 than the spaced ones

do, nevertheless convergence is apparent. We deduce that the higher the preference for

alternation, the fastest the balance of power is achieved, while the higher the preference for

stability, the longer it takes to reach a point of equity.

Recall that the result on single term with equal valence is that each party wins half of the

elections in the long run, independent of the partisan advantage. This is consistent with our
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Figure 6: Stationary state with equal valence distributions

findings for the two term, where all the graphs end up reaching the same stationary state.

A straightforward comparison of the term schemes is presented in figure 7, where we plot

the average number of victories of A for the single and two term dynamics. We assume

that the average candidate valence of both parties is 1, and that the voters’ preferences for

alternation are uniformly distributed between 0 and 2.

One sees that the single term scheme reaches the stationary state 0.5 faster than the two

term limit does. Despite this fact, the behavior of both functions is remarkably similar. We

attribute the difference in the averages to electoral selection, but note that as time elapses,

the difference reduces significantly. A possible explanation is that voters do not account for

the margin of victory, and this may create an incumbency effect similar to that in Fowler

(2018), where Bayesian updating about the incumbent beliefs leads to a higher chance of

electing the incumbent for a second term, even if the challenger is equally, if not better suited

for office.
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Figure 7: Stationary state with equal valence distributions

9 Efficiency

We wish to investigate if any of the term limit cases has a lower probability of electing

the candidate with the lowest valence. Given that the calculations for the two term model

are quite involved, we present an illustrative example of the election of the less qualified

candidate in the second period. We do not do a formal generalization but present intuitive

arguments for it. In what follows, we make the assumptions that the valences of A and B’s

candidates are exponential variables with respective parameters λA and λB, we also assume

that the voters’ preference in period 1 is the positive constant ε.

There is no loss of generality in assuming that the candidate of party B is elected in the

first period. We are interested the probability that in the next election, voters choose the

candidate with the lowest valence. There are two cases to consider:

1. Voters prefer alternation, ε < 1.

In this case, voters have an enhanced perception of the challenger’s valence in period 1.
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An inefficiency would arise if they were to elect the challenger over the official candidate,

whether it be the incumbent herself or a new candidate, if the official candidate has

in fact a higher valence than the challenger. In other words, if voters choose what is

new just for the sake of it being different, but not better. We present the probability

of the aforementioned event for each term limit case.

(a) Single term

P(X1 = A | X0 = B, υA1 < υB1 ) =
(1− ε)λB
ελA + λB

. (33)

(b) Two terms

P(X1 = A | X0 = B, υA1 < υB0 ) =
(1− ε)λB
ελA + λB

· ελA + 2(λA + λB)

ελA + (λA + λB)
. (34)

Both probabilities have negative ε-derivative, which means that the probability of

electing the less qualified contender is decreasing in the preference for alternation. The

reason for this is that as ε tends to one, the bias towards the challenger decreases, so

voters have a clearer perception of her true valence. The result is (33)<(34) for all

values of λA, λB, and ε < 1.

2. Voters prefer stability, ε > 1.

In this case, voters have an enhanced perception of the incumbent party’s candidate in

period 1. An inefficient thing would be to elect her over the challenger if the challenger

is better suited for office. We present the probability of this event for each term limit

case.

(a) Single term

P(X1 = B | X0 = B, υB1 < υA1 ) =
(ε− 1)λA
ελA + λB

. (35)

(b) Two terms

P(X1 = B | X0 = B, υB0 < υA1 ) =
(ε− 1)λA
ελA + λB

· ελA + 2(λA + λB)

ελA + λA + λB
. (36)
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Both probabilities have positive ε-derivative, which means that the probability of elect-

ing the lesser candidate is increasing in the preference for stability. In fact, as the ε

factor grows, the bias towards the official candidate increases and the less realistic the

perception of her valence becomes (on average). We have that (36)>(35) for all values

of λA, λB and ε > 1.

We conclude from these examples that the preference factor ε has a stronger effect on the

probability of electing the candidate with the lowest valence in the two term case than it

does in the single term limit. The intuition is that in this scheme, voters observe the true

valence of the incumbent in period 0. Any preference factor in the following period different

from that of indifference (ε = 1) has the effect of distorting the acquired information, which,

as we have mentioned is the true one. Simply put, knowing the truth and then modifying

it has more consequences than not knowing the truth about something new and taking a

guess.
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Appendix D

Theorem 3. If εt ≥ 1 for all t ≥ 1, the probability of observing an infinite cycle of perfect

alternation is zero.

Proof. The idea of the proof is to compute the probability of observing a cycle of perfect

alternation of any given length, and to show that it goes to zero in the limit when length

goes to infinity. We begin by proving the following useful lemma.

Lemma D.1. Let X1, X2, . . . , Xt, be t > 1 i.i.d exponential variables with respective param-

eters λ1, λ2, . . . , λt. Then,

P (X1 ≤ X2 ≤ · · · ≤ Xt) =

t−1∏
i=1

λi

t−1∏
i=1

t∑
j=i

λj
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Proof. The proof is by induction on t. Consider t = 2, we have that P(X1 ≤ X2) = λ1
λ1+λ2

,

so the statement holds for the first case.

Assume Lemma D.1 holds for k, so P(X1 ≤ X2 ≤ · · · ≤ Xk) =

k−1∏
i=1

λi

k−1∏
i=1

k∑
j=i

λj

, we prove it for

k + 1 ≤ t. By definition,

P(X1 ≤ X2 ≤ · · · ≤ Xk+1) =

∫ ∞
0

∫ ∞
x1

· · ·
∫ ∞
xk

λ1λ2 · · ·λk+1e
−(λ1x1+λ2x2+···+λk+1xk+1)dxk+1 · · · dx2dx1

=

∫ ∞
0

· · ·
∫ ∞
xk−1

λ1 · · ·λke−(λ1x1+···+λkxk)
∫ ∞
xk

λk+1e
−λk+1xk+1dxk+1 · · · dx2dx1

=

∫ ∞
0

· · ·
∫ ∞
xk−1

λ1 · · ·λke−(λ1x1+···+λk−1xk−1+(λk+λk+1)xk)dxk · · · dx1dx1

=
λk

λk + λk+1

[∫ ∞
0

· · ·
∫ ∞
xk−1

λ1 · · ·λk−1λk′e−(λ1x1+···+λk−1xk−1+λk′xk)dxk · · · dx1

]
,

note that the term in brackets corresponds to P(X1 ≤ X2 ≤ · · · ≤ Xk′), where Xk′ is an

exponential random variable with parameter λk′ = λk + λk+1. The induction hypothesis

leads to

P(X1 ≤ X2 ≤ · · · ≤ Xk+1) =

k∏
i=1

λi

(λk + λk+1)(λk−1 + λk + λk+1) · · · (λ1 + · · ·+ λk+1)
,

which is the desired conclusion.

Without loss of generality, we assume t is even. Let us denote by RA
t , where R stands for

rotation, the probability of observing a cycle of perfect alternation of length t + 1 starting

in state A. By lemma D.1, we have
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RA
t := P(X0 = A,X1 = B, . . . , Xt−1 = B,Xt = A)

= P(υB0 ≤ υA0 , ε1υ
A
0 ≤ υB1 , . . . , εt−1υ

A
t−2 ≤ υBt−1, εtυ

B
t−1 ≤ υAt )

= P

υB0 ≤ υA0 ≤
υB1
ε1
≤ υA2
ε1ε2

≤ · · · ≤
υBt−1
t−1∏
i=1

εi

≤ υAt
t∏
i=1

εi



=

λ
t/2
A λ

(t+2)/2
B

t−1∏
i=1

(εi)
t−i

(t−2)/2∏
k=−1

λA t/2∑
j=k+1

2j∏
i=0

εi + λB

(t−2)/2∑
j=k

2j+1∏
i=−1

εi

 (t−2)/2∏
k=0

λA t/2∑
j=k

2j∏
i=0

εi + λB

(t−2)/2∑
j=k

2j+1∏
i=−1

εi

 ,

where ε−1 = ε0 = 1.

Our proof starts with the observation that the index k on the left-hand side product

of the denominator affects the lower bounds of both summations j = k + 1 and j = k,

but not the upper ones. This implies that each of the t+2
2

terms in the product on the

left contains the expression given by the upper bounds t
2
and t−2

2
respectively, which is

λA
∏t

i=0 εi + λB
∏t−1

i=−1 εi. Moreover, all the terms but the last are greater than or equal to

this last expression. It follows that

(t−2)/2∏
k=−1

λA t/2∑
j=k+1

2j∏
i=0

εi + λB

(t−2)/2∑
j=k

2j+1∏
i=−1

εi

 ≥
λA t∏

i=0

εi + λB

t−1∏
i=−1

εi

(t+2)/2

.

Similarly, we can bound the second term in the denominator by

(t−2)/2∏
k=0

λA t/2∑
l=u

2l∏
k=0

εk + λB

(t−2)/2∑
j=k

2j+1∏
i=−1

εi

 ≥
λA t∏

i=0

εi + λB

t−1∏
i=−1

εi

 t
2

.
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Thus,

(t−2)/2∏
k=−1

λA t/2∑
j=k+1

2j∏
i=0

εi + λB

(t−2)/2∑
j=k

2j+1∏
i=−1

εi

 (t−2)/2∏
k=0

λA t/2∑
j=k

2j∏
i=0

εi + λB

(t−2)/2∑
j=k

2j+1∏
i=−1

εi


≥

λA t∏
i=0

εi + λB

t−1∏
i=−1

εi

t+1

It follows that RA
t ≤

λ
t/2
A λ

(t+2)/2
B

t−1∏
i=1

(εi)
t−i

λA
t∏
i=1

εi + λB

t−1∏
i=1

εi


t+1 . Algebra implies

RA
t ≤

λ
t/2
A λ

(t+2)/2
B

(εtλA + λB)t+1
t−1∏
i=1

εi+1
i

. (37)

Note that the right-hand side term of the inequality trivially goes to zero if any preference

value εi with i in {1, 2, . . . , t} is infinitely big. The intuition is that if voters greatly prefer

stability at any given point in time, it is likely that the incumbent will win re-election, if

this occurs the alternation cycle is broken. The condition that voters are prone to stability,

or are at least indifferent to alternation implies that εt ≥ 1 for all t ≥ 1, (37) shows that

RA
t ≤

λ
t
2
Aλ

t+2
2
B

(λA + λB)t+1 . (38)

Let us assume that λA = λB, so both parties have the same average candidate valence.

Substituting λB for λA into (38) yields RA
t ≤

(
1
2

)t+1, which converges linearly to zero with

rate 1
2
. Explicitly, this means that if candidates are indistinguishable in terms of valence and

voters are loyal to the party in power, the probability of perfect alternation is decreasing

with time. In other words, we will observe re-election in finite time almost surely.

To study a more general case, we take logarithm in (38) to obtain

ln(RA
t ) ≤ t

2
ln(λA) +

t+ 2

2
ln(λB)− (t+ 1) ln(λA + λB). (39)
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Let us assume that the valence parameter of B is of the form λB = cλA with c > 0. This

form comprises all three possible scenarios: when the candidates of A have a higher average

valence than those of B (c > 1), when both parties have the same candidate valence (c = 1),

and when the candidates of B are better suited for office those of A (c < 1). We have that

(t+ 1) ln(λA) +
t+ 2

2
ln(c) < (t+ 1) ln(λA + λB) for all c > 0.

This implies

lim
t→∞

t

2
ln(λA) +

t+ 2

2
ln(λB)− (t+ 1) ln(λA + λB)→ −∞. (40)

We conclude from (39) that RA
t ≤ e

t
2
ln(λA)+

t+2
2

ln(λB)−(t+1) ln(λA+λB), hence that

lim
t→∞

RA
t ≤ elimt→∞

t
2
ln(λA)+

t+2
2

ln(λB)−(t+1) ln(λA+λB),

and finally from (40) that limt→∞R
A
t → 0, which is our assertion.

Appendix E

# R is double the number of periods

R=200

# E’s are the uniform advantage vectors

# E1∼U(0,1), E2∼U(0,4), E3 ∼U(0,.2),

E4∼U(0,2)

E1=NULL

E2=NULL

E3=NULL

E4=NULL

# P’s are vectors of A’s partial victories

P1=NULL

P2=NULL

P3=NULL

P4=NULL

# K’s average of partial victories vectors

K1=NULL

K2=NULL

K3=NULL

K4=NULL

# X candidate valence vector

X=NULL

# W’s indicator functions of victories of

A (0 if A loses, 1 if it wins)

W1=NULL

W2=NULL

W3=NULL

W4=NULL

# N’s vector of number of terms in power

N1=NULL

N2=NULL

N3=NULL

N4=NULL

# Sample R exponential variables with
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parameter 1, these are the candidate

valences

for (i in 1:R){

X[i]=rexp(1,rate=1)

}

# Sample the uniform advantages for

R/2 periods

k=R/2

for (i in 1:k)

{

E1[i]=runif(1, min=0, max=1)

E2[i]=runif(1, min=0, max=4)

E3[i]=runif(1, min=0, max=0.2)

E4[i]=runif(1, min=0, max=2)

}

# Obtain the first winning party

if (X[1]<X[2]){

W1[1]=0

W2[1]=0

W3[1]=0

W4[1]=0

} else {

W1[1]=1

W2[1]=1

W3[1]=1

W4[1]=1

}

# Set the first number of terms to 1

N1[1]=1

N2[1]=1

N3[1]=1

N4[1]=1

# Election simulations with

re-election dynamics

for (i in 2:k){

j=2*i

if (N1[i-1]==2){

if (W1[i-1]==1){

if (E1[i]*X[j-1]>X[j]){

W1[i]=1

N1[i]=1

} else if

(E1[i]*X[j-1]<X[j]){

W1[i]=0

N1[i]=1

}

} else if (W1[i-1]==0){

if (X[j-1]<E1[i]*X[j]){

W1[i]=0

N1[i]=1

} else if

(X[j-1]>E1[i]*X[j]){

W1[i]=1

N1[i]=1

}

}

} else if (N1[i-1]==1){

if (W1[i-1]==1){

if (E1[i]*X[j-3]>X[j]){

W1[i]=1

N1[i]=N1[i-1]+1

} else if

(E1[i]*X[j-3]<X[j]){

W1[i]=0

N1[i]=1

}

} else if (W1[i-1]==0){

if (X[j-1]<E1[i]*X[j-2]){

W1[i]=0

N1[i]=N1[i-1]+1

} else if

(X[j-1]>E1[i]*X[j-2]){

W1[i]=1

N1[i]=1

}

}

}

}

for (i in 2:k){

j=2*i

if (N2[i-1]==2){
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if (W2[i-1]==1){

if (E2[i]*X[j-1]>X[j]){

W2[i]=1

N2[i]=1

} else if

(E2[i]*X[j-1]<X[j]){

W2[i]=0

N2[i]=1

}

} else if (W2[i-1]==0){

if (X[j-1]<E2[i]*X[j]){

W2[i]=0

N2[i]=1

} else if

(X[j-1]>E2[i]*X[j]){

W2[i]=1

N2[i]=1

}

}

} else if (N2[i-1]==1){

if (W2[i-1]==1){

if (E2[i]*X[j-3]>X[j]){

W2[i]=1

N2[i]=N2[i-1]+1

} else if

(E2[i]*X[j-3]<X[j]){

W2[i]=0

N2[i]=1

}

} else if (W2[i-1]==0){

if (X[j-1]<E2[i]*X[j-2]){

W2[i]=0

N2[i]=N2[i-1]+1

} else if

(X[j-1]>E2[i]*X[j-2]){

W2[i]=1

N2[i]=1

}

}

}

}

for (i in 2:k){

j=2*i

if (N3[i-1]==2){

if (W3[i-1]==1){

if (E3[i]*X[j-1]>X[j]){

W3[i]=1

N3[i]=1

} else if

(E3[i]*X[j-1]<X[j]){

W3[i]=0

N3[i]=1

}

} else if (W3[i-1]==0){

if (X[j-1]<E3[i]*X[j]){

W3[i]=0

N3[i]=1

} else if

(X[j-1]>E3[i]*X[j]){

W3[i]=1

N3[i]=1

}

}

} else if (N3[i-1]==1){

if (W3[i-1]==1){

if (E3[i]*X[j-3]>X[j]){

W3[i]=1

N3[i]=N3[i-1]+1

} else if

(E3[i]*X[j-3]<X[j]){

W3[i]=0

N3[i]=1

}

} else if (W3[i-1]==0){

if (X[j-1]<E3[i]*X[j-2]){

W3[i]=0

N3[i]=N3[i-1]+1

} else if

(X[j-1]>E3[i]*X[j-2]){

W3[i]=1

N3[i]=1
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}

}

}

}

for (i in 2:k){

j=2*i

if (N4[i-1]==2){

if (W4[i-1]==1){

if (E4[i]*X[j-1]>X[j]){

W4[i]=1

N4[i]=1

} else if

(E4[i]*X[j-1]<X[j]){

W4[i]=0

N4[i]=1

}

} else if (W4[i-1]==0){

if (X[j-1]<E4[i]*X[j]){

W4[i]=0

N4[i]=1

} else if

(X[j-1]>E4[i]*X[j]){

W4[i]=1

N4[i]=1

}

}

} else if (N4[i-1]==1){

if (W4[i-1]==1){

if (E4[i]*X[j-3]>X[j]){

W4[i]=1

N4[i]=N4[i-1]+1

} else if

(E4[i]*X[j-3]<X[j]){

W4[i]=0

N4[i]=1

}

} else if (W4[i-1]==0){

if (X[j-1]<E4[i]*X[j-2]){

W4[i]=0

N4[i]=N4[i-1]+1

} else if

(X[j-1]>E4[i]*X[j-2]){

W4[i]=1

N4[i]=1

}

}

}

}

# Partial number of victories of A

at time t

P1[1]=W1[1]

P2[1]=W2[1]

P3[1]=W3[1]

P4[1]=W4[1]

for (i in 2:k)

{

P1[i]=P1[i-1]+W1[i]

P2[i]=P2[i-1]+W2[i]

P3[i]=P3[i-1]+W3[i]

P4[i]=P4[i-1]+W4[i]

}

# Average number of victories

for (i in 1:k)

{

K1[i]=P1[i]/i

K2[i]=P2[i]/i

K3[i]=P3[i]/i

K4[i]=P4[i]/i

}

# Plotting the average functions

plot(K3, type="l", lwd=2,

lty=1, col="black", xlab="Time",

ylab="Average", xlim=c(0.15, 100),

ylim=c(0.15, 1))

legend("bottomright",legend=c("U(0,0.2)",

"U(0,1)","U(0,2)","U(0,4)"), lty =

c(1,5,4,3), bty ="n")

points(K1, type="l", lwd=2,lty=4,

col="black")

points(K4, type="l", lwd=2, lty=3,

col="black")
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points(K2, type="l", lwd=2, lty=5, col="black")
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Empowering of candidates and parties in single term vs

re-election schemes

January 22, 2019

The agenda-setting literature aims to elucidate who are the agents that directly or indi-

rectly push policy issues, and the means by which they successfully steer the agenda towards

their interests. We highlight two type of theories: one, in which parties see for their own

interests, taking advantage of their position in the political control (Green and Mortensen,

2010), and the other in which parties pay attention to the voters’ cues, and incorporate their

policy concerns into their manifestos (Klüver and Sagarzazu, 2016). Something that stands

out is that candidates do not appear to play significant roles in shaping the agenda, at least

not directly. In fact, studies of agenda-setting tend to focus more on the role of media in

the perception of candidates (Flowers et al. 2003, and McCombs, 2004), than on the role of

candidates themselves. Kahn (1994) argued that the media agenda seemed to coincide with

that of U.S. Senate male candidates, who got higher and more positive coverage in televised

advertisements than their female counterparts.

Nevertheless, the figure of candidates should be revisited insofar as it is the elected

representatives the ones that implement the policies, giving rise to the classic problem of

the principal-agent. As Holcombe and Gwartney (1989) point out, if the party’s ability to

monitor politicians decreases, then opportunities for deviation in the form of special interest
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legislation appear. Moreover, there is a strand of literature on the organizational form of

parties that claims that parties are shaped and driven by coordinated legislators (Aldrich

(1995), and Cox and McCubbins (1993)), which ultimately implies that politicians, and not

parties, determine the policy issues. In contrast with this view, the theory of extended party

networks (EPN) asserts that parties, along interest groups and activists, selectively support

candidates who align with their policy positions, and are likely to advance the party agenda

if they are elected (Bawn et al., (2012), Desmarais et al. (2015), and Skinner et al. (2012)).

Given that the discussion of empowerment is dramatically polarized, we propose a con-

ciliatory model that grants both parties and candidates some degree of legislative leeway,

or agenda-setting power, where the share of power of each is negotiated by both sides. In

this sense, candidates and parties care about the policy they will implement if they come to

power, and thus are policy-motivated. We do not explicitly model how the share of power

translates into a proper policy in the Downsian ideological space (Downs, 1957), but refer

the reader to the work of Serra (2010 and 2018) for a discussion of the impact of candidate

valence on policy proposals and polarization.

Our interest is to study the changes in the share by virtue of who is the side that

makes the offer. We analyze two situations: one where parties are the proposers, and one

where candidates are. The former situation is realistic in strongly ideological parties, where

programs are subject to votes by militants, which shapes the primary campaigns, and the

latter captures the situation in which candidates raise funds to campaign in primary elections,

or where leader’s culture matters as much as ideology. Specifically, we propose a dynamic

model where parties/candidates offer their preferred candidate/party a share of their ruling

power, and the agents that receive the offers pick the option that maximizes their utility.

At the end of the process, party-candidate matchings are achieved, and voters decide which

pair to support. The first contribution of our work is that we are able to specify the degree

to which the parties and the candidates agree on the policies they implement, as opposed to

inferring who has the bigger control of the two.
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It is worth pointing out that we deal with limits on time in office, explicitly, we conduct

our research under the single and two term limit scenarios. The reason is that limits (or

their absence) have proven to have behavioral effects on politicians in office, so we wish to

investigate if and to what extent, the restriction changes the agenda-setting powers. Our

analysis is particularly timely for Mexico, given that in 2014, Mexican President Enrique

Peña Nieto announced the end of the ban on re-election for legislators of the Congress,

Senate, and mayors, allowing them to serve up to four and two consecutive terms respectively.

Carey et al. (2006) found that the 1990s adoption of term limits on U.S. legislators changed

the priorities of representatives, making their policies less self-interest driven. This result

proves Glazer and Wattenberg (1996) conjecture that term limits reduce the incentives of

campaigning for re-election through constituency service, and instead direct their efforts

towards policy initiatives, it is also one of the arguments of term-limit advocates.

We find that parties get a bigger share of power when they propose to candidates than

when they are proposed to. The intuition is that parties take advantage of the preference of

candidates and offer as little as possible to secure their preferred match. This also holds for

the case where candidates propose first. The implication is that whoever negotiates first, has

more power in terms of setting the agenda. More interestingly, moving first has a larger effect

on empowering candidates than changing the legal number of terms. Because of this, we

expect that the 2014 electoral reform has a minor effect on the political agenda of legislators.

The work is structured as follows. In Section 1 we present the offer-making by parties

model under the single term and two term schemes. We obtain and analyze the subgame

perfect Nash equilibria. In Section 2 we introduce the models of offer-making by candi-

dates. We compute and interpret the subgame perfect Nash equilibria. Section 3 contains

a comparison of the models in terms of convergence to a stationary state, the percentage of

elections in which voters choose the candidate with the lowest valence, and the difference in

power shares.
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10 Offer-making by parties

10.1 Single term model

We consider a dynamic model where two parties, A and B, compete for candidates,1 offering

them a share of their ruling power. Time is discrete, and in each period t in {1, 2, 3, . . .},

there is a draft to allocate candidates to parties. The pool consists of two politicians, c1,t

and c2,t, denoted by c1 and c2 whenever there is no confusion. It is assumed that politicians

are characterized by their respective valences υ1,t and υ2,t, or υ1 and υ2, which are random

variables that take positive values. The electorate prefers high over low valence candidates.

In considering which match to make, parties and candidates take into account the partisan

incumbency advantage ε, a random variable that takes positive values and affects the voter’s

evaluation of the official candidate . If party A is incumbent and nominates candidate

c1, then the voters regard her valence as ευ1 rather than υ1 alone. A positive advantage

ε > 1 enhances the evaluation of the incumbent party’s candidate valence, while a negative

advantage 0 < ε < 1 diminishes it. The evaluation of the challenger’s valence remains the

same, namely ε = 1 if the party is not in power. We formalize the per period competition

between parties for candidates with the following three stage game.

The first move, by nature, determines the candidate valences υ1 and υ2, as well as the

incumbency advantage factor of party i, εi. The realizations are observed by both parties

and candidates. In stage 2, parties simultaneously state their most preferred candidate c,

and make her an offer of ruling power 0 ≤ k ≤ 1. That is, the strategies of party i in {A,B}

are si in {c1, c2} × [0, 1], where si = (c, k) means that party i makes an offer to candidate

c, proposing k percent of the power if they win. Let σi be the mixed strategy of i, that is,
1Admittedly, parties tend to select their candidates from disjoint pools, where potential nominees are

aligned with each party’s platform. An advantage of maneuvering in a valence dimension independent

of ideological issues, is that the same candidate could be appealing for both parties, on the basis of her

campaigning skills (See Serra (2011) for a treatment of the effect of valence on the nomination of candidates).

80



σi = (pcr , 1 − pcr), where 0 ≤ pcr ≤ 1 is the probability that party i makes an offer k to

candidate cr, and 0 ≤ 1− pcr ≤ 1, is the probability that it makes the offer to cs. In stage 3,

candidates pick the offer that maximizes their utility. We denote the strategies of candidate

c in {c1, c2} by qc, with qc in {Oc
i , O

c
j}, where Oc

i means that candidate c accepts the offer

of party i. Let σc be the mixed strategy of c, so σc = (pi, 1 − pi), where 0 ≤ pi ≤ 1 is the

probability that c accepts the offer of party i, and 0 ≤ 1− pi ≤ 1 is the probability that she

accepts the offer of j 6= i. If a candidate gets no offer, she is matched with the party rejected

by her contender. Once the candidate and party assignments are made, the payoffs are the

observed.

The utilities of the winning politician and her party are proportional to the margin of

victory.2 That is, they are positive functions of the distance between the elected candidate’s

valence and that of the unelected candidate. Let Ucr(i, ki) denote the utility that candidate

cr gets from running under i’s label and having ruling power ki, and let Ui(cr, ki) be the

utility that party i gets from running with candidate cr and granting her power ki. Then,

Ucr(i, ki) =


0 if εjυs > εiυr

ki(εiυr − εjυs) if εjυs < εiυr

(41)

(where εj = 1 if i is the governing party, or εi = 1 if j is). The utility of the winning

party is the complement of the politician’s utility, so Ui(cr, ki) = (1− ki)(εiυr − εjυs). The

extensive-form game is portrayed in Figure 8.

Theorem 4. Let i in {A,B} be the governing party of period t, and let 0 < εi ≤ 1 be its

incumbency advantage. The requirement on candidates cr and cs in {c1, c2} is that υr < υs.

1. If εi ≤ υr
υs
, then subgame perfect Nash equilibria are s∗i = σi, where σi is any mixed

strategy with k in [0, 1], s∗j = (cs, 0) with j 6= i, q∗cr = σcr , and q∗cs = Ocs
j .

2This functional form corresponds to a proportional representation system, where the number of seats

that each party gets, and indirectly its control over policy issues, is proportional to the votes the party gets.
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Figure 8: Single term game with offers by parties

2. If υr
υs
< εi < 1, then subgame perfect Nash equilibrium is unique and is s∗i = (cs, 1),

s∗j =
(
cs,

εiυs−υr
υs−εiυr

)
, q∗cr = σcr , and q∗cs = Ocs

j .

3. If εi = 1, then subgame perfect Nash equilibria are s∗i = (cs, 1), s∗j = (cs, 1), q∗cr = σcr

and q∗cs = σcs, where σcr and σcs are any mixed strategies.

The theorem shows that when the partisan incumbency advantage is negative, and such

that no candidate that runs under the governing party’s label stands a chance of winning,

that is when εi <
υr
υs
, then any offer from the opposition kj is preferred over any offer

from the governing party ki. The opposition takes advantage of this, and in equilibrium

offers no power to the best candidate cs, knowing its offer will be accepted with certainty.

The incumbent party is aware that none of its offers is appealing to either candidate, so it

randomly picks a ki in [0, 1] and offers this share to the best candidate as well. Evidently,

the number of possible offers from i is infinite, and therefore the equilibrium is not unique.
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If however, the advantage is negative but its effect is not enough to prevent candidates from

winning, that is if υr
υs
≤ εi < 1, then parties compete for the candidacy of the highest valued

politician through their offers. The assertion is that the incumbent party grants her all the

ruling power in order to secure the match, while the opposition offers the bare minimum

amount kj that makes cs indifferent between accepting ki = 1 or kj. It is a simple matter

to check that there is no other pair of best responses on the parties’ side, so the equilibrium

is unique. We refer the reader to Appendix F for equilibria when the partisan advantage is

positive; it suffices to say that the reasoning is analogous to the described above.

Finally, when the partisan incumbency advantage is negligible, so εi = 1, the best politi-

cian is guaranteed to win under the label of either party, this implies that parties compete

in offers for her candidacy. The parties’ best response is to offer cs the maximum amount of

ruling power.

Proof. Throughout the proof, we assume that the valences of c1 and c2 are such that υ1 < υ2,

and that party A is incumbent at time t. This involves no loss of generality.

Given the sequential nature of the game, we use backward induction to compute the subgame

perfect Nash equilibria. Since the third stage corresponds to the choice-making of candidates,

we restrict our attention to the case where a single candidate receives offers from both parties.

From the definition of utilities given in (41) we have

Uc1(A, kA) =


0 if εA ≤ υ2

υ1

kA(εAυ1 − υ2) if εA > υ2
υ1

Uc1(B, kB) =


kB(υ1 − εAυ2) if εA < υ1

υ2

0 if εA ≥ υ1
υ2

,

(42)

Uc2(A, kA) =


0 if εA ≤ υ1

υ2

kA(εAυ2 − υ1) if εA > υ1
υ2

Uc2(B, kB) =


kB(υ2 − εAυ1) if εA < υ2

υ1

0 if εA ≥ υ2
υ1

,

(43)
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Preference �c2
kA
kB

< c = c > c

Most B A/B A

Least A B/A B

Table 2: Preference order with negative incumbency advantage

this leads to the following observation.

Step 1. If εA < υ1
υ2
, then Uc1(A, kA) < Uc1(B, kB) for all kA ≥ 0 and kB > 0. If εA ≤ υ1

υ2
,

then Uc2(A, kA) < Uc2(B, kB) for all kA ≥ 0 and kB > 0. If υ1
υ2
≤ εA ≤ 1, then Uc1(A, kA) =

Uc1(B, kB) = 0 for all kA, kB ≥ 0. If υ1
υ2
< εA ≤ 1, then Uc2(A, kA) = kA(εAυ2 − υ1) and

Uc2(B, kB) = kB(υ2 − εAυ1).

This allows one to see that when εA < υ1
υ2
, both candidates have a dominant strategy, which

is to accept any positive offer from B. It also implies that if υ1
υ2
≤ εA ≤ 1, then c1 is

indifferent between running under A or B. If υ1
υ2
< εA ≤ 1, the preference of c2 is determined

by the offers she gets. The following table shows the preference of c2 when υ1
υ2
< εi ≤ 1, as

a function of the ratio of offers kA
kB

. We define c = υ2−εAυ1
εAυ2−υ1

to be the indifference curve of

offers, it is obtained by equalizing Uc2(A, kA) and Uc2(B, kB), and clearing the ratio kA
kB

. The

information is displayed graphically in Figure 9.

The preceding observation and the interpretation of Figure 9, lead to the following step.

Step 2. We define c := υ2−εAυ1
εAυ2−υ1

. If εA < υ1
υ2
, then c1 has the dominant strategy to accept any

positive offer from B. If εA ≤ υ1
υ2
, then c2 has the dominant strategy to accept any positive

offer from B. If υ1
υ2
≤ εA ≤ 1, then c1 is indifferent between accepting any offer from A or

B. If υ1
υ2
< εA ≤ 1 and kA

kB
< c, then c2 has the dominant strategy to accept B’s offer. If

υ1
υ2
< εA ≤ 1 and kA

kB
> c, then c2 has the dominant strategy to accept A’s offer. Lastly, if

υ1
υ2
< εA ≤ 1 and kA

kB
= c, then c2 is indifferent between accepting the offer of A and B. Thus,

the strategies of c1 and c2, qc1 and qc2, are
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Figure 9: Preferences of c2 with negative incumbency advantage

• qc1(sA, sB) = Oc1
B for all εA < υ1

υ2
and kA

kB
≥ 0

• qc1(sA, sB) = σc1 for all υ1
υ2
≤ εA ≤ 1 and kA

kB
≥ 0

• qc2(sA, sB) = Oc2
B for all εA ≤ υ1

υ2
and kA

kB
≥ 0

• qc2(sA, sB) = Oc2
B for all υ1

υ2
< εA ≤ 1 and kA

kB
< c

• qc2(sA, sB) = Oc2
A for all υ1

υ2
< εA ≤ 1 and kA

kB
> c

• qc2(sA, sB) = σc2 for all υ1
υ2
< εA ≤ 1 and kA

kB
= c.

Given the best responses of candidates, our next concern is the decision-making of parties in

stage 2. Here again, we turn to the definition of utilities given in (41), plugging the dominant

strategies of candidates established at step 2, we find that the only strictly positive utilities
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are

UA((c2, kA) | qc1(kA, kB), qc2(kA, kB)) = (1− kA)(εAυ2 − υ1) if
υ1
υ2

< εA ≤ 1 and
kA
kB
≥ c

UB((c1, kB) | qc1(kA, kB), qc2(kA, kB)) = (1− kB)(υ1 − εAυ2) if εA <
υ1
υ2

and
kA
kB
≥ 0

UB((c2, kB) | qc1(kA, kB), qc2(kA, kB)) = (1− kB)(υ2 − εAυ1) if εA ≤
υ1
υ2

and
kA
kB
≥ 0

UB((c2, kB) | qc1(kA, kB), qc2(kA, kB)) = (1− kB)(υ2 − εAυ1) if
υ1
υ2

< εA ≤ 1 and
kA
kB
≤ c.

Note that UA((c1, kA) | qc1(kA, kB), qc2(kA, kB)) < UA((c2, kA) | qc1(kA, kB), qc2(kA, kB))

only if εA > υ1
υ2

and kA
kB

> c, and UB((c1, kB) | qc1(kA, kB), qc2(kA, kB)) < UB((c2, kB) |

qc1(kA, kB), qc2(kA, kB)) for all kA
kB
≥ 0 if εA ≤ υ1

υ2
, or for all kA

kB
> c if υ1

υ2
< εA ≤ 1.

Therefore, if the negative advantage is such that no candidate associated with A has a chance

of winning the election, that is if εA ≤ υ1
υ2
, then A is indifferent between making any offer k

in [0, 1] to c1 or c2, as all of them will be rejected. It is only when υ1
υ2
< εA ≤ 1 that A has

incentives to compete for c2’s candidacy against B’s offer, for if υ1
υ2
< εA ≤ 1 and kA

kB
> c,

then it gets a positive utility. Given that A is guaranteed to lose the election if εA < υ1
υ2
,

B is the preferred party of both candidates, and they accept any positive offer kB from it.

Since UB(c1, kB) < UB(c2, kB) when εA ≤ υ1
υ2
, B makes its offer to c2. If υ1

υ2
< εA ≤ 1, then

B also prefers to run with c2, nevertheless, it knows it competes against A’s offer kA. Thus,

for B to achieve a positive utility, it must be the case that it offers kB such that kA
kB

< c.

This argument leads to the following strategies of parties.

Step 3. Let c = υ2−εAυ1
εAυ2−υ1

. If 0 < εA ≤ 1, the strategies of parties A and B, sA and sB, are

• sA(kA, kB) = σA if εA ≤ υ1
υ2

• sA(kA, kB) = (c2, kA) with kA such that kA ≥ ckB if υ1
υ2
< εA ≤ 1

• sB(kA, kB) = (c2, kB) with kB in (0, 1] if εA ≤ υ1
υ2

• sB(kA, kB) = (c2, kB) with kB such that kA ≤ ckB if υ1
υ2
< εA ≤ 1.
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Our last step concerns the utility maximization of parties. To this end, we analyze their best

responses.

Step 4. First note that if εA ≤ υ1
υ2
, then sA(kA, k

∗
B) is not a function of k∗B, nor is sB(k∗A, kB)

of k∗A. This implies that each party maximizes its utility with respect to its own offer. Thus,

1. s∗A = σA if εA ≤ υ1
υ2

2. s∗B = (c2, 0) if εA ≤ υ1
υ2
.

If υ1
υ2
< εA ≤ 1, then sA(kA, k

∗
B) and sB(k∗A, kB) are indeed functions of the strategy of the

other party. Holding them as given, and reacting accordingly leads to the following.

1. s∗A = (c2, 1) if υ1
υ2
< εA ≤ 1

2. s∗B =
(
c2,

εAυ2−υ1
υ2−εAυ1

)
if υ1

υ2
< εA ≤ 1.

Incidentally, we have proved that when εA = 1, the best responses of A and B are to offer

kA = kB = 1 to c2. We provide the intuition behind this result. Note that if party i in

{A,B} were to offer ki = k with 0 ≤ k < 1, then the opposition would secure c2 by offering

kj = k + ε, where ε is an infinitesimally small quantity. It is clear that i would increase its

offer to ki = kj + ε. Repeating this argument leads to the desired result.

Steps 2 and 4 lead to Theorem 4.

10.2 Two term model

We consider a dynamic model with two parties, A and B. We assume that time is discrete,

and that each period t in {1, 2, 3, . . .}, candidates are matched to parties. The difference

with respect to the previous model is that politicians are now allowed to spend two terms

in office. This implies that incumbents can run for re-election if they have been in office one

term, it also means that incumbents vacate their position after their second term, and that

in this period an open election is held. We emphasize that by definition, an open election has
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no personal incumbency advantages, but it does involve a partisan advantage. In this regard,

in the period following a re-election, there is a game like the one described in the single term

model. Since this case has been discussed in section 10.1, we restrict our attention to the

case where an incumbent runs for re-election.

We assume that the incumbent runs for the governing party, and that the opposition has

to pick its challenger. The opposition is myopic in the sense that, in electing its candidate,

it only considers the utility of the current period. That is, it disregards the fact that if the

challenger were to win the election, she would run for a second term. The pool consists

of two politicians, c1,t and c2,t, denoted by c1 and c2 whenever there is no confusion. It is

assumed that politicians are characterized by their respective valences υ1,t and υ2,t, or υ1

and υ2, which are random variables that take positive values. The electorate prefers high

over low valence candidates. We formalize the opposition’s choice for the challenger with the

following three stage game.

In the first stage, nature determines the candidate valences υ1 and υ2. The realizations are

observed by both parties and candidates. In stage 2, the opposition states its most preferred

candidate c, and makes her an offer of ruling power k in [0, 1]. That is, the strategies of the

opposition j in {A,B} are sj in {c1, c2} × [0, 1], where sj = (c, k) means that party j makes

an offer to candidate c, proposing k percent of the power if they win. Let σj be the mixed

strategy of party j, that is, σj = (pcr , 1 − pcr) where 0 ≤ pcr ≤ 1 is the probability that j

makes an offer k to candidate cr, and 0 ≤ 1 − pcr ≤ 1 is the probability that it makes the

offer to cs. In stage 3, the preferred candidate c in {c1, c2} evaluates the offer and decides

whether to accept it or to reject it. So, her strategies, denoted by qc, are qc in {A,R}, where

A stands for accepting, and R stands for rejecting the offer. Let σc be the mixed strategy

of c, that is, σc = (pA, pR), where 0 ≤ pA ≤ 1 is the probability that candidate c accepts

the offer, and 0 ≤ pR = 1 − pA ≤ 1 is the probability that she rejects it. We make the

assumption that if indifferent between taking the offer and not running, she decides to run

for office under the opposition’s label. Once the candidate and party assignments are made,
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the payoffs are observed.

We continue to assume that the utilities of the winning politician and her party are

proportional to the margin of victory. Thus, they are by definition, the same as those given

in (41). The extensive-form game is portrayed in Figure 10.

Figure 10: Two term game with offers by parties

Theorem 5. Let i in {A,B} be the governing party of period t, and let εi > 0 be its

incumbency advantage. Thus, j 6= i is the opposition. The candidates cr and cs in {c1, c2}

are such that υr < υs. The subgame perfect Nash equilibria are s∗j = (cs, 0), q∗cr = σcr , where

σcr is any mixed strategy, and q∗cs = A.

Proof. Throughout the proof, we assume that the valences of c1 and c2 are such that υ1 < υ2,

and that party A is incumbent at time t. We also assume that the valence evaluation of the

incumbent is εAυA, with εA > 0. This involves no loss of generality.

Given the sequential nature of the game, we use backward induction to compute the sub-

game perfect Nash equilibrium. Since the third stage corresponds to the choice-making of

candidates, we restrict our attention to the case where a politician receives an offer from the

opposition.
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From the definition of utilities given in (41) we have

Uc1(A, k) =


0 if υ1

υA
≤ εA

k(υ1 − εAυA) if υ1
υA
> εA

Uc1(R, k) = 0,

Uc2(A, k) =


0 if υ2

υA
≤ εA

k(υ2 − εAυA) if υ2
υA
> εA

Uc2(R, k) = 0.

Step 1. From the above utilities we have that Uc(R) ≤ Uc(A) for all c in {c1, c2}, εA > 0,

and k ≥ 0. In other words, accepting is a weakly dominant strategy for both parties.

This, in conjunction with the fact that indifferent candidates accept the candidacy of the

opposition, lead to the following strategies.

Step 2. If candidate c receives an offer k > 0 from party B, then

• qc(k) = A for c in {c1, c2}.

Given these strategies, our next concern is the decision-making of the opposition. Here

again, we turn to the definition of utilities given in (41), plugging the dominant strategies of

candidates established at step 2, we find that the only strictly positive utilities are

UB((c1, k) | qc1(k), qc2(k)) = (1− k)(υ1 − εAυA) if
υ1
υA

> εA and k ≥ 0

UB((c2, k) | qc1(k), qc2(k)) = (1− k)(υ2 − εAυA) if
υ2
υA

> εA and k ≥ 0.

By the assumption that υ1 < υ2, we have UB((c1, k) | qc1(k), qc2(k)) ≤ UB((c2, k) | qc1(k), qc2(k))

for all k ≥ 0. This leads to the following strategy.

Step 3. Given that UB(c1, k) ≤ UB(c2, k) for all k ≥ 0, making an offer to the highest valued

candidate c2 is a weakly dominant strategy for B. That is,

• sB(c, k) = (c2, k) for all k ≥ 0 and εA > 0.
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The last step concerns the utility maximization of B.

Step 4. By definition of utility, B maximizes its payoff by offering the least amount of power

to its candidate. Thus,

1. s∗B(c, k) = (c2, 0) for all εA > 0.

Steps 2 and 4 lead to Theorem (5).

11 Offer-making by candidates

11.1 Single term model

We consider a dynamic model where two politicians c1 and c2, present their candidacy to

a political party, A or B, offering them a share of ruling power. Time is discrete, and

each period t in {1, 2, 3, . . .}, politicians are matched to parties. The two politicians are

characterized by their respective valences, υ1 and υ2, which are random variables that take

positive values. The electorate prefers high over low valence candidates.

In considering which match to make, politicians and parties take into account the partisan

incumbency advantage ε, a random variable that takes positive values and affects the voter’s

evaluation of the official candidate just as described in section 10.1. We formalize the per

period competition between politicians for a given candidacy with the following three stage

game.

In stage 1, nature determines the valences of politicians c1 and c2, υ1 and υ2, as well as

the incumbency advantage of party i, εi. The realizations are observed by both parties and

politicians. In stage 2, politicians simultaneously offer their most preferred party i in {A,B}

a share 1 − k in [0, 1] of the power if they win. So, the strategies of politician c in {c1, c2},

denoted by qc, are qc = (i, k) in {A,B} × [0, 1], where qc = (i, k) means that politician c

offers party i, 1−k percent of power, or alternatively, offers to keep k percent to herself. Let

σc be the mixed strategy of c, that is, σc = (pi, 1 − pi), where 0 ≤ pi ≤ 1 is the probability
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that politician c makes an offer k to party i, and 0 ≤ 1 − pi ≤ 1 is the probability that c

makes the offer to party j 6= i. In stage 3, parties pick the offer that maximizes their utility.

We denote the strategies of party i in {A,B} by si, with si in {Oi
cr , O

i
cs}, where O

i
cr means

that party i accepts the offer of candidate cr. Let σi be the mixed strategy of party i, so

σi = (pcr , 1− pcr), where 0 ≤ pcr ≤ 1 is the probability that party i accepts the offer k from

politician cr. If a party gets no candidacy, it is matched with the politician rejected by the

other party. Once the politician and party assignments are made, the payoffs are observed.

The utilities of the winning politician and her party are proportional to the margin of

victory. Let Ucr(i, kr) denote the utility that candidate cr gets from running under i’s label

and having ruling power kr, and let Ui(cr, kr) be the utility that party i gets from running

with politician cr, and keeping 1− kr of power. Then,

Ucr(i, ki) =


0 if εjυs > εiυr

ki(εiυr − εjυs) if εjυs < εiυr

(44)

(where εj = 1 if i is the governing party, or εi = 1 if j is). The utility of the winning

party is the complement of the politician’s utility, so Ui(cr, ki) = (1− ki)(εiυr − εjυs). The

extensive-form game is portrayed in Figure 11.

The following result may be proved in much the same way as Theorem 1.

Theorem 6. Let i in {A,B} be the governing party of period t, and let εi ≤ 1 be its

incumbency advantage. The requirement on candidates cr and cs in {c1, c2} is that υr < υs.

1. If υr
υs
≤ εi, then subgame perfect Nash equilibria are q∗cr = σcr , q∗cs = (B, 1), s∗i = σi,

and s∗j = Oj
cs.

2. If εA < υr
υs
≤ 1, then subgame perfect Nash equilibrium is q∗cr = (B, 0), q∗cs =

(
B, 1− υr−εiυs

υs−εiυr

)
,

s∗i = σi, where σi is any mixed strategy, and s∗j = Oj
cs.

We refer the reader to Appendix G for equilibria when the partisan advantage is negative.

The reasoning is analogous to the described above.
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Figure 11: Single term game with offers by candidates

Proof. Throughout the proof, we assume that the valences of c1 and c2 are such that υ1 < υ2,

and that party A is incumbent at time t, this involves no loss of generality.

Given the sequential nature of the game, we use backward induction to compute the subgame

perfect Nash equilibria. Since the third state corresponds to the choice-making of parties, we

restrict our attention to the case where a single party receives offers from both politicians.

From the definition of utilities given in (41) we have

UA(c1, k1) =


0 if εA ≤ υ2

υ1

(1− k1)(εAυ1 − υ2) if εA > υ2
υ1

UA(c2, k2) =


0 if εA ≤ υ1

υ2

(1− k2)(εAυ2 − υ1) if εA > υ1
υ2

,

(45)
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Preference �B
m1

m2
< c = c > c

Most c2 c1/c2 c1

Least c1 c2/c1 c2

Table 3: Preference order with negative incumbency advantage

UB(c1, k1) =


(1− k1)(υ1 − εAυ2) if εA < υ1

υ2

0 if εA ≥ υ1
υ2

UB(c2, k2) =


(1− k2)(υ2 − εAυ1) if εA < υ2

υ1

0 if εA ≥ υ2
υ1

,

(46)

Step 1. From the above utilities, we have that if εA ≤ υ1
υ2
, then UA(c1, k1) = UA(c2, k2) for

all k1, k2 ≥ 0. If υ1
υ2
< εA ≤ υ2

υ1
, then UA(c1, k1) < UA(c2, k2) for all k1 ≥ 0 and k2 > 0.

If εA ≥ υ1
υ2
, then UB(c1, k1) < UB(c2, k2) for all k1 ≥ 0 and k2 > 0. If εA < υ1

υ2
, then

UB(c1, k1) = (1− k1)(υ1 − εAυ2), and UB(c2, k2) = (1− k2)(υ2 − εAυ1).

In other words, if εA ≤ 1, then accepting any offer k2 > 0 from c2 is a weakly dominant

strategy for A. If εA ≥ υ1
υ2
, then accepting any offer k2 > 0 from c2 is a dominant strategy

of B. If εA < υ1
υ2
, then the preference of B is determined by the offers she gets. Table 3

shows the preference of B when εA < υ1
υ2
, as a function of the ratio m1

m2
, where m1 = 1− k1 is

the percentage of power B gets if c1 wins the election, and m2 = 1− k2 is the percentage it

gets if c2 does. We define c = υ2−εAυ1
υ1−εAυ2

to be the indifference curve of power offers for B, it is

obtained by equalizing UB(c1, k1) and UB(c2, k2), and clearing the ratio m1

m2
. The information

is displayed graphically in Figure 12.

The preceding observation and the interpretation of Figure 12, lead to the following step.

Step 2. We define c := υ2−εAυ1
υ1−εAυ2

.

• sA(qc1 , qc2) = σc2 for all εA ≤ υ1
υ2
, k1 ≥ 0, and k2 ≥ 0
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Figure 12: Preferences of B with negative incumbency advantage

• sA(qc1 , qc2) = OA
c2

for all υ1
υ2
< εA ≤ 1, k1 ≥ 0, and k2 > 0

• sB(qc1 , qc2) = OB
c2

for all εA < υ1
υ2
≤ 1, and 1−k1

1−k2 < c

• sB(qc1 , qc2) = OB
c1

for all εA < υ1
υ2
≤ 1, and 1−k1

1−k2 > c

• sB(qc1 , qc2) = σB for all εA < υ1
υ2
≤ 1, and 1−k1

1−k2 = c

• sB(qc1 , qc2) = OB
c2

for all υ1
υ2
≤ εA ≤ 1, k1 ≥ 0, and k2 > 0

Given the best responses of parties, our next concern is the decision-making of candidates in

stage 2. We turn to the definition of utilities given in (44), plugging the dominant strategies

of parties established at step 2, we find that the only strictly positive utilities are

Uc1((B, k1) | sA(k1, k2), sB(k1, k2)) = k1(υ1 − εAυ2) if εA <
υ1
υ2

and
1− k1
1− k2

≥ c

Uc2((A, k2) | sA(k1, k2), sB(k1, k2)) = k2(εAυ2 − υ1) if
υ1
υ2

< εA ≤ 1 and
1− k1
1− k2

≥ 0

Uc2((B, k2) | sA(k1, k2), sB(k1, k2)) = k2(υ2 − εAυ1) if εA ≤
υ1
υ2

and
1− k1
1− k2

≤ c

Uc2((B, k2) | sA(k1, k2), sB(k1, k2)) = k2(υ2 − εAυ1) if
υ1
υ2

< εA ≤ 1 and
1− k1
1− k2

≥ 0.
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Note that Uc1((A, k1) | sA(k1, k2), sB(k1, k2)) < Uc1((B, k1) | sA(k1, k2), sB(k1, k2)) if εA < υ1
υ2

and 1−k1
1−k2 ≥ c, and Uc2((A, k1) | sA(k1, k2), sB(k1, k2)) < Uc2((B, k1) | sA(k1, k2), sB(k1, k2)) if

εA ≤ υ1
υ2

and 1−k1
1−k2 ≤ c, or if υ1

υ2
< εA ≤ 1 and 1−k1

1−k2 ≥ 0. This leads to the following strategies

of candidates.

Step 3. Let c = υ2−εAυ1
υ1−εAυ2

, the strategies of candidates c1 and c2, qc1 and qc2, are

• qc1(k1, k2) = (B, k1) with k1 such that 1− k1 ≥ c(1− k2) if εA < υ1
υ2

• qc1(k1, k2) = σc1 with k1 ≥ 0 if υ1
υ2
≤ εA ≤ 1

• qc2(k1, k2) = (B, k2) with k2 such that and 1− k1 ≤ c(1− k2) if εA < υ1
υ2

• qc2(k1, k2) = (B, k2) with k2 in (0, 1] if υ1
υ2
≤ εA ≤ 1

Our last step concerns the utility maximization of candidates. To this end, we analyze their

best responses.

Step 4. First note that if υ1
υ2
≤ εA ≤ 1, then qc1(k1, k

∗
2) is not a function of k∗2, nor is

qc2(k
∗
1, k2) of k∗2. This implies that each candidate maximizes her utility with respect to her

offer. Thus,

1. q∗c1 = σc1 if υ1
υ2
≤ εA ≤ 1

2. q∗c2 = (B, 0) if υ1
υ2
≤ εA ≤ 1

If εA < υ1
υ2
, then qc1(k1, k

∗
2) and qc2(k∗1, k2) are indeed functions of the strategy of the other

candidate. Holding them as given, and reacting accordingly leads to the following.

1. q∗c1 = (B, 0) if εA < υ1
υ2

2. q∗c2 =
(
B, 1− υr−εiυs

υs−εiυr

)
if εA < υ1

υ2
.

Steps 2 and 4 lead to Theorem 6.
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11.2 Two term model

We consider a dynamic model where two politicians compete for candidacy in parties, offering

a share of their ruling power. Time is discrete, and each period t in {1, 2, 3, . . .}, politicians

are matched to candidates. Incumbents run for re-election if they have been in office for one

term, and they vacate their position after their second term. We proceed with the analysis

when an incumbent runs for re-election.

We assume that the incumbent runs for re-election under the governing party’s label, and

that two politicians compete for the candidacy on the opposition’s side. They are myopic,

in the sense that they only consider the utility of the current period, and disregard the fact

that if they were to win the election, they would run for a second term. The two politicians,

c1,t and c2,t, denoted by c1 and c2, whenever there is no confusion, are characterized by their

respective valences υ1 and υ2. Valences are random variables that take positive values. The

electorate prefers high over low valence candidates. We formalize the per period competition

between politicians for the candidacy of the opposition with the following three stage game.

In stage 1, nature determines the valences of politicians c1 and c2, υ1 and υ2. The

realizations are observed by both politicians and the opposition. In stage 2, politicians make

simultaneous offers to the opposition. So, the strategy of politician c in {c1, c2}, denoted

by qc, is qc in [0, 1], where qc = k means that politician c makes an offer to the opposition,

proposing to keep k percent of power if she wins. In stage 3, the opposition picks the offer

that maximizes its utility. We denote the strategy of the opposition i in {A,B} by si in

{Oi
c1
, Oi

c2
}, where Oi

c means that the unseated party i accepts the offer of politician c. Let σi

be the mixed strategy of i, that is, σc = (pc1 , 1−pc1 , where 0 ≤ pc1 ≤ 1 is the probability that

i accepts the offer of politician c1, and 0 ≤ 1− pc1 ≤ 1 is the probability that it accepts the

offer of c2. Once the candidate and party assignments are made, the payoffs are observed.

We continue to assume that the utilities of the winning politician and her party are

proportional to the margin of victory. Thus, they are the same as those given in (46). The
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extensive-form game is portrayed in Figure 13.

Figure 13: Single term game with offers by candidates

The following result may be proved in much the same way as Theorem 6.

Theorem 7. Let i in {A,B} be the governing party of period t, and let the valence of its

incumbent be εiυi. The requirement on politicians cr and cs in {c1, c2} is that υr < υs.

1. If υr
υi
≤ εi, then subgame perfect Nash equilibrium is q∗cr = 1, q∗cs = 1, and s∗j = Oj

cs.

2. If υr
υi
> εi, then subgame perfect Nash equilibria are q∗cr = 0, q∗cs = 1 − υr−εiυi

υs−εiυi , and

s∗j = Oj
cs.

Proof. Throughout the proof, we assume that the valences of c1 and c2 are such that υ1 < υ2,

and that party A is incumbent at time t. We also assume that the candidate of A has valence

εAυA, where εA is the incumbency advantage, and υA is her initial valence.

Given the sequential nature of the game, we use backward induction to compute the subgame
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Preference �B
m1

m2
< c = c > c

Most c2 c1/c2 c1

Least c1 c2/c1 c2

Table 4: Preference order of B

perfect Nash equilibria. From te definition of utilities given in (46) we have

UB(c1, k1) =


0 if εA ≥ υ1

υA

(1− k1)(υ1 − εAυA) if εA < υ1
υA

UB(c2, k2) =


0 if εA ≥ υ2

υA

(1− k2)(υ2 − εAυA) if εA < υ2
υA

.

(47)

Step 1. From the above utilities, we have that if εA ≥ υ2
εA
, then UB(c1, k1) = UB(c2, k2) = 0

for all k1, k2 ≥ 0. If υ1
υA
≤ εA < υ2

υA
, then 0 = UB(c1, k1) < UB(c2, k2) for all k1 ≥ 0,

and k2 > 0. Lastly, if εA < υ1
υA
, then UB(c1, k1) = (1 − k1)(υ1 − εAυA), and UB(c2, k2) =

(1− k2)(υ2 − εAυA). In other words, if εA < υ1
υA

, then the preference of B is determined by

the offers it gets from the politicians. Table 2 shows the preference of B when εA < υ1
υA

, as

a function of the ratio m1

m2
, where m1 = 1 − k1 is the percentage of power B gets if c1 wins

the election, and m2 = 1− k2 is the percentage it gets if c2 does. We define c = υ2−εAυA
υ1−εAυA

to

be the indifference curve of power offers for B, it is obtained by equalizing UB(c1, k1) and

UB(c2, k2), and clearing the ratio m1

m2
. The information is displayed graphically in Figure 14.

The interpretation of Figure 14 leads to the following step.

Step 2. We define c := υ2−εAυA
υ1−εAυA

.

• sB(qc1 , qc2) = σB for all εA ≥ υ2
υA
, and k1, k2 ≥ 0

• sB(qc1 , qc2) = OB
c2

for all υ1
υA
≤ εA <

υ2
υA
, k1 ≥ 0, and k2 > 0

• sB(qc1 , qc2) = OB
c2

for all εA < υ1
υA
, and 1−k1

1−k2 < c
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Figure 14: Preferences of B

• sB(qc1 , qc2) = OB
c1

for all εA < υ1
υA
, and 1−k1

1−k2 > c

• sB(qc1 , qc2) = σB for all εA < υ1
υA
, and 1−k1

1−k2 = c

Given the best responses of the opposition, our next concern is the decision-making of politi-

cians in stage 2. We turn to the definition of utilities given in (44), plugging the dominant

strategies of the opposition established at step 2, we find that the only strictly positive

utilities of politicians are

Uc1((B, k1) | sB(k1, k2)) = k1(υ1 − εAυA) if εA <
υ1
υA

, and
1− k1
1− k2

≥ c

Uc2((B, k2) | sB(k1, k2)) = k2(υ2 − εAυA) if
υ1
υA
≤ εA <

υ2
υA

, and
1− k1
1− k2

≥ 0

Uc2((B, k2) | sB(k1, k2)) = k2(υ2 − εAυA) if εA <
υ1
υA

and
1− k1
1− k2

≤ c.

Note that 0 < Uc1((B, k1) | sB(k1, k2)) if εA < υ1
υA

and 1−k1
1−k2 ≥ c, and 0 < Uc2((B, k2) |

sB(k1, k2)) if υ1
υA
≤ εA <

υ2
υA

and 1−k1
1−k2 ≥ 0, and 0 < Uc2((B, k2) | sB(k1, k2)) if εA < υ1

υA
and

1−k1
1−k2 ≤ c. This leads to the following strategies of politicians.

Step 3. Set c = υ2−εAυA
υ1−εAυA

, the strategies of politicians c1 and c2, qc1 and qc2, are
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• qc1(k1, k2) = k1 with k1 in [0, 1] if υ1
υA
≤ εA

• qc1(k1, k2) = k1 with k1 such that 1−k1
1−k2 ≥ c if εA < υ1

υA

• qc2(k1, k2) = k2 with k2 in [0, 1] if υ1
υA
≤ εA

• qc2(k1, k2) = k2 with k2 such that 1−k1
1−k2 ≤ c if υ1

υA
> εA

Our last step concerns the utility maximization of politicians. We next analyze their best

responses. Step 4. First note that if υ1
υA
≤ εA, then q∗c1(k1, k

∗
2) is not a function of k∗2, nor is

q∗c2(k
∗
1, k2) of k∗1. This implies that each candidate maximizes her utility with respect to her

own offer. Thus,

1. q∗c1 = 1 if υ1
υA
≤ εA

2. q∗c2 = 1 if υ1
υA
≤ εA

If εA < υ1
υA
, then q∗c1(k1, k

∗
2) and q∗c2(k

∗
1, k2) are functions of the strategy of the other politician.

Holding them as given, and reacting accordingly leads to the following.

1. q∗c1 = 0 if εA < υ1
υA

2. q∗c2 = 1− υ1−εAυA
υ2−εAυA

if εA < υ1
υA
.

Steps 2 and 4 lead to Theorem 7.

12 Simulations

It is our interest to study the long-run implications of term limits in terms of the average time

spent by parties in power, the relative competence of the winner, and the share of power.

To this end, we program the dynamics of each model: single term, single term with party

offers, single term with candidate offers, two term, two term with party offers, and two term

with candidate offers, and run 50 simulations of elections. From these, we obtain measures
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like the average time that parties spend in power, the percentage of elections in which the

lesser candidate is elected, and the power share of parties, and compare them across all the

models. The R code for the simulations as well as a brief explanation of the programs can

be found in Appendix H.

12.1 Convergence

From chapter 2, we know that if there is a single term limit and voters always prefer alter-

nation, or alternatively, if there is negative partisan advantage in every election, then each

party is expected to spend half of the time in office in the long run. We find that this is also

the case in the rest of the models, nevertheless, the speed of convergence varies according to

the limit of terms.

Figure 15 plots for each dynamics, the per period average number of victories of party A

when there is negative partisan advantage. In these simulations, we have assumed that the

valences of candidates have exponential distribution of parameter 1, and that the partisan

advantages have uniform distribution between 0 and 1.

Figure 15: Stationary state with negative advantage
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One sees that all three single term models have a faster convergence to 0.5, which is

the stationary state obtained in chapter 2, while the three two term models have averages

above the analytical prediction. The intuition behind this result is that incumbents that

win in spite of being affected by a negative advantage, are positively selected, and therefore

perform well against other contenders if they run for a second term in office. This increases

the number of victories of the winning party, and explains why the stationary state of two

terms is above (or below, in case the winning party is the opposition B) the one of single

term.

Another prediction of chapter 2, is that if voters have a high preference for stability, or in

other words, if the partisan incumbency advantage is positive and very large, then the first

winning party has a high chance of staying in power, and therefore, its stationary state is

one. Figure 16 plots the per period average number of victories of A when there is positive

partisan advantage. In these simulations, we have assumed that the valences of candidates

are exponentially distributed with rate 1, and that the partisan advantages are uniformly

distributed between 40 and 50.

Figure 16: Stationary state with large positive advantage
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It can be seen that all 6 models abide by the theoretical prediction of chapter 2. In this

case, however, the result needs to be reinterpreted, as the first winning party is not A, but

its opponent, B. Given the little preference for alternation of voters, alternation is not likely

to occur, as is the case in the first 33 elections. It is worth noting however, that transitions

are in fact possible, since they have a very small yet positive probability of occurring. This

explains the increase in the average number of victories of A in the right part of the graph.

Lastly, we present the stationary state of A for in-between values of partisan advantage.

The conjecture is that if voters are not consecutively in favor of alternation, or against it,

then we should expect a more frequent alternation of parties than the absorbing state case,

but less than when there is perfect alternation. That is, the average number of victories can

range anywhere between 0 and 1, depending on the realizations of the advantages. Figure

17 shows the per period average number of victories of A when there are both positive and

negative advantages. We have assumed that the valences of candidates are exponential with

rate 1, and that the advantages have uniform distribution between 0 and 2.

Figure 17: Stationary state with mixed advantages

One sees that the single term models with party and candidate offers have a higher
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average number of victories than the single term model alone. This is because the single term

model is not strategic, in the sense that it does not consider the most beneficial matchings

between candidates and parties, whereas the former models do. However, the two term

models do not exhibit this monotonic improvement with respect to the single term model. A

reason for this is that even though the benefits of running for re-election with a competent

candidate are clear, the disadvantages of running with the less competent politician are also

straightforward. Explicitly, a party can win an election not because its candidate is the

best, but because voters wanted alternation or were in favor of stability. Such cases lead

to a politician with low valence running for re-election, possibly against a better opponent

than him. This is why the effects of two terms depend on what type of advantage got the

incumbent in office.

We next analyze the effects of partisan incumbency advantage on the relative competence

of the winner.

12.2 Efficiency

To measure the efficiency of a model, we compute the percentage of elections in which

voters choose the candidate with the lowest valence. Since we are interested in the effect

of partisan advantage, we sample advantages from different distributions and obtain the

measure of efficiency of each. We have assumed that valences are drawn from an exponential

distribution of rate 1, and that the advantages are drawn from uniform distributions ranging

from (0,1) to (0,20). Figure 18 shows the percentage of elections in which the lesser candidate

is chosen.

Note that the single term models with party and candidate offers have the lowest per-

centage of elections choosing the lowest valence valued candidate, or alternatively, have the

highest efficiency. This is consistent with the observation that agents that make the offers

chose the option that grants them the highest chance of winning, so the assignments that
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Figure 18: Efficiency with varying advantages

result from bargaining are in fact optimal. Recall that in the single term model with of-

fer making by parties, the highest valued candidate is matched to the advantaged party,

whether it be the ruling party if there is positive partisan advantage, or the opposition if

the advantage is negative. In the model with offer making by candidates, the advantaged

party is also matched to the most competent candidate, the only difference being the shares

of power agreed to. Since efficiency accounts only for the matches themselves and not the

agreement under which they took place, the measure of both models is the same.

Notably, this is not observed in either of the two term models with offer-making. The

reason is that all agents are myopic, meaning that they only care about the current period’s

utilities. Consequently, they do not take into account the re-election scenario, and may end

up running with a less competitive candidate for the second period. In addition, whenever

there is a re-election, the opposition is virtually forced to accept its contender, and therefore

is at a relative disadvantage with respect to the sitting party. Recall that in the two term

model with offer-making by parties, the opposition chooses between two candidates. If they

are both low-valued, at least with respect to the incumbent, the opposition is left to pick
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the lesser of two evils. It is still the case however, that despite the described inefficiencies,

the percentage of elections in which the less competitive candidate is chosen is below that

of the single term and the two term limits.

It is also worth pointing out that for the single and two term models, efficiency decreases

as the partisan advantage increases. The idea is that higher advantages translate into voters

being more prone to stability, so they are more likely to vote for the incumbent or the

successor for the sake of being loyal to the sitting party rather than for merit. This logic also

explains the relative peaks to the left of the graphs, where voters are partial to alternation,

and vote for challengers for the sake of trying something new. The lowest percentages are

those closer to an advantage of 1, or to unbiased voting.

12.3 Power share

Our last concern is the amount of power of agents as a function of candidate valence. One

may conjecture that increasing the valence parameter leads to a higher bargaining power of

candidates (on average) and thus, to a higher share of power, at least in the models where

parties make offers. Nevertheless, since the candidate valences are drawn from the same

distribution, one could also expect that the distance between the realizations is relatively

preserved. A good indicator of the effect of the increase of the parameter in the distance

between observations is variance, and since we have assumed that the distribution of the

valences is exponential, we know that variance decreases in the parameter.3 This implies

that as we increase the average candidate valence, the power share function becomes flatter.

Conversely, if we decrease it, the function is expected to have more variation. Figure 19

confirms this logic. We have ranged the valence parameter from 0.1 to 2, that is, we have

increased exponentially and also halved the average valence of candidates with respect to

the reference value which was 1, and we have plotted the average power of parties.
3Recall that if X has exponential distribution with rate λ, then Var(X) = 1

λ2 .
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Figure 19: Share of power

One sees that parties get a bigger share of power when they propose to candidates than

when they are proposed to, and this holds for all the valence values displayed. The general

idea is that parties take advantage of the preference of candidates and offer as little as

possible to secure their preferred match. Candidates do the same and maximize their utility

by lowering the share of parties just enough so that they still prefer to sign with them.

We conclude that in our election games, suitors have a bigger impact on the power shares

than term limits do. In other words, setting the political agenda has a larger effect on the

empowering of candidates than the possibility of reelection. In this sense, the 2014 electoral

reform is expected to have a minor impact on the political life in Mexico.

We now analyze the differences between single term and two terms when parties propose,

and single term and two terms when candidates propose. We start by noting that in both

scenarios, the power share of parties is higher when there are two terms than when there is

a single term limit. Since the shares are the same in every election with single term and an

open election in the two term, we focus on the case when an incumbent runs for office.

In the parties propose dynamics there are two possibilities: either the ruling party wins,
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in which case, it matches the previous offer, or the opposition wins and keeps all the power

to itself. This last possibility implies that if the incumbent were to seek and win re-election,

then the ruling party would keep all the power for a second time. So, not only does the

opposition benefit from monopolistic power in re-elections, but manages to keep it in case

of a second victory. On the other hand, in the single term model, the preferred party has to

grant its candidate either her indifference share, or no share in the best case scenario, but

does this every single period. In other words, competition is inevitable in the single term

model, and this drives the share of parties down.

In candidate offer-making models, competition is observed in the two term limit case,

meaning that in re-elections, the highest valued candidate does not enjoy monopolistic power.

Indeed, her bargaining power is lowered if the second best candidate stands a chance of

winning. In this case, she agrees to receive the indifference share. Nevertheless, the possibility

of matching a previous share of power through re-election is still present, this potentially

explains the empirical result.
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Appendix F Single term model

Offer making by parties, positive advantage case

Theorem 8. Let i in {A,B} be the incumbent party of period t, and let 1 < εi be its

incumbency advantage. The requirement on candidates cr and cs in {c1, c2} is that υr < υs.

1. If εi ≤ υs
υr
, then subgame perfect Nash equilibrium is unique and is s∗i =

(
cs,

υs−εiυr
εiυs−υr

)
,

s∗j = (cs, 1), q∗cr = σcr , and q∗cs = Ocs
i .

2. If υs
υr
< εi, then subgame perfect Nash equilibria are s∗i = (cs, 0), s∗j = σj with k in

[0, 1], q∗cr = σcr , and q∗cs = Ocs
i .
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Preference �c2
kA
kB

< c = c > c

Most B A/B A

Least A B/A B

Table 5: Preference order with positive incumbency advantage

Proof. Throughout the proof, we assume that the valences of c1 and c2 are such that υ1 < υ2,

and that party A is incumbent at time t. This involves no loss of generality. The utilities

given in (42) and (43) give rise to the following observation.

Step 1. If 1 < εA ≤ υ2
υ1
, then Uc1(A, kA) = Uc1(B, kB) = 0 for all kA, kB ≥ 0. If εA > υ2

υ1
,

then Uc1(B, kB) < Uc1(A, kA) for all kA > 0, and kB ≥ 0. If εA ≥ υ2
υ1
, then Uc2(B, kB) <

Uc2(A, kA) for all kA > 0, and kB ≥ 0. Lastly, if 1 < εA <
υ2
υ1
, then Uc2(A, kA) = kA(εAυ2 −

υ1), and Uc2(B, kB) = kB(υ2 − εAυ1).

Table 5 shows the preference of c2 when 1 < εA <
υ2
υ1
, as a function of the ratio of offers kA

kB
.

We define c = υ2−εAυ1
εAυ2−υ1

to be the indifference curve of offers, obtained by equalizing Uc2(A, kA)

and Uc2(B, kB), and clearing the ratio kA
kB

. The information is displayed graphically in Figure

20. From these preference we obtain the following strategies of candidates.

Step 2. We define c := υ2−εAυ1
εAυ2−υ1

. The strategies of c1 and c2, qc1 and qc2, are

• qc1(sA, sB) = σc1 for all 1 < εA ≤ υ2
υ1

and kA
kB
≥ 0

• qc1(sA, sB) = Oc1
A for all εA > υ2

υ1
and kA

kB
> 0

• qc2(sA, sB) = Oc2
B for all 1 < εA ≤ υ2

υ1
and kA

kB
< c

• qc2(sA, sB) = Oc2
A for all 1 < εA ≤ υ2

υ1
and kA

kB
> c

• qc2(sA, sB) = σc2 for all 1 < εA ≤ υ2
υ1

and kA
kB

= c

• qc2(sA, sB) = Oc2
A for all εA > υ2

υ1
and kA

kB
> 0.
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Figure 20: Preferences of c2 with positive incumbency advantage

Given the strategies of candidates, we analyze the decision-making of parties in stage 2. Here

again, we turn to the definition of utilities given in (41), plugging the dominant strategies of

candidates established at step 2, we find that the only strictly positive utilities are

UA((c1, kA) | qc1(kA, kB), qc2(kA, kB)) = (1− kA)(εAυ1 − υ2) εA >
υ2
υ1

and
kA
kB

> 0

UA((c2, kA) | qc1(kA, kB), qc2(kA, kB)) = (1− kA)(εAυ2 − υ1) if 1 < εA ≤
υ2
υ1

and
kA
kB
≥ c

UA((c2, kA) | qc1(kA, kB), qc2(kA, kB)) = (1− kA)(εAυ2 − υ1) if εA >
υ2
υ1

and
kA
kB

> 0

UB((c2, kB) | qc1(kA, kB), qc2(kA, kB)) = (1− kB)(υ2 − εAυ1) if 1 < εA <
υ2
υ1

and
kA
kB
≤ c.

This leads to the following strategies of parties.

Step 3. Let c = υ2−εAυ1
εAυ2−υ1

. If εA > 1, the strategies of parties A and B, sA and sB, are

• sA(kA, kB) = (c2, kA) with kA such that kA ≤ ckB if εA ≤ υ2
υ1

• sA(kA, kB) = σA if υ2
υ1
< εA

• sB(kA, kB) = (c2, kB) with kB such that ckB ≤ kA if εA ≤ υ2
υ1
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• sB(kA, kB) = (c2, kB) with kB in (0, 1] if υ2
υ1
< εA.

We proceed with the analysis of best responses.

Step 4. First note that if υ2
υ1
< εA, then sA(kA, k

∗
B) is not a function of k∗B, nor is sB(kA, k

∗
B)

of k∗A. Thus,

1. s∗A(kA, kB) = σA if υ2
υ1
< εA

2. s∗B(kA, kB) = (c2, 0) if υ2
υ1
< εA.

If υ2
υ1
≤ εA, then sA(kA, k

∗
B) and sB(kA, k

∗
B) are functions of the strategy of the other

party. This implies

1. s∗A(kA, kB) =
(
c2,

υ2−εAυ1
εAυ2−υ1

)
if υ2

υ1
≤ εA

2. s∗B(kA, kB) = (c2, 1) if υ2
υ1
≤ εA.

Steps 2 and 4 yield Theorem 8.

Appendix G Single term model

Offer making by candidates, positive advantage case

Theorem 9. Let i in {A,B} be the incumbent party of period t, and let εi > 1 be its

incumbency advantage. The requirement on candidates cr and cs in {c1, c2} is that υr < υs.

1. If εi ≤ υs
υr
, then the subgame perfect Nash equilibria are s∗i = Oi

cs, s
∗
j = σj, q∗cr = σcr ,

and q∗cs = (i, 1).

2. If υs
υr
< εi, then the subgame perfect Nash equilibrium is s∗i = Oi

cs, s
∗
j = σj, q∗cr = (i, 0),

and q∗cs =
(
i, 1− εiυr−υs

εiυs−υr

)
.
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Preference �A
m1

m2
< c = c > c

Most c2 c1/c2 c1

Least c1 c2/c1 c2

Table 6: Preference order with positive incumbency advantage

Proof. We continue to assume that the valences of c1 and c2 are such that υ1 < υ2, and that

party A is incumbent at time t. The utilities given in (45) and (46) give rise to the following

observation.

Step 1. If 1 ≤ εA ≤ υ2
υ1
, then UA(c1, k1) = 0 < UA(c2, k2) for all k1 ≥ 0 and k2 > 0. If

εA > υ2
υ1
, then UA(c1, k1) = (1 − k1)(εAυ1 − υ2), and UA(c2, k2) = (1 − k2)(εAυ2 − υ1). If

1 ≤ εA ≤ υ2
υ1
, then UB(c1, k1) = 0 < UB(c2, k2) for all k1 ≥ 0 and k2 > 0. If εA > υ2

υ1
, then

UB(c1, k1) = UB(c2, k2) = 0 for all k1, k1 ≥ 0.

Table 6 shows the preference of A when εA > υ2
υ1
, as a function of the ratio of offers m1

m2
= 1−k1

1−k2 .

We define c = εAυ2−υ1
εAυ1−υ2

to be the indifference curve of offers, it is obtained by equalizing

UA(c1, k1) and UA(c2, k2), and clearing the ratio 1−k1
1−k2 . The information is displayed graphi-

cally in Figure 21. From these preferences we obtain the following strategies of parties.

Step 2. We define c := εAυ2−υ1
εAυ1−υ2

. The strategies of A and B, sA and sB, are

• sA(qc1 , qc2) = OA
c2

for all 1 < εA ≤ υ2
υ1

and 1−k1
1−k2 ≥ 0

• sA(qc1 , qc2) = OA
c2

for all εA > υ2
υ1

and 1−k1
1−k2 < c

• sA(qc1 , qc2) = OA
c1

for all εA > υ2
υ1

and 1−k1
1−k2 > c

• sA(qc1 , qc2) = σA for all εA > υ2
υ1

and 1−k1
1−k2 = c

• sB(qc1 , qc2) = OB
c2

for all 1 < εA ≤ υ2
υ1

and 1−k1
1−k2 ≥ 0

• sB(qc1 , qc2) = σB for all εA > υ2
υ1

and 1−k1
1−k2 ≥ 0.
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Figure 21: Preferences of A with positive incumbency advantage

Given the best responses of parties, our next concern is the decision-making of candidates in

stage 2. We turn to the definition of utilities given in (44), plugging the dominant strategies

of parties established at step 2, we find that the only strictly positive utilities are

Uc1((A, k1) | sA(k1, k2), sB(k1, k2)) = k1(εAυ1 − υ2) if εA >
υ2
υ1

and
1− k1
1− k2

≥ c

Uc2((A, k1) | sA(k1, k2), sB(k1, k2)) = k2(εAυ2 − υ1) if 1 < εA ≤
υ2
υ1

and
1− k1
1− k2

≥ 0

Uc2((A, k1) | sA(k1, k2), sB(k1, k2)) = k2(εAυ2 − υ1) if εA >
υ2
υ1

and
1− k1
1− k2

≤ c

Uc2((B, k1) | sA(k1, k2), sB(k1, k2)) = k2(υ2 − εAυ1) if 1 < εA <
υ2
υ1

and
1− k1
1− k2

≥ 0.

Note that Uc1((B, k1) | sA(k1, k2), sB(k1, k2)) < Uc1((A, k1) | sA(k1, k2), sB(k1, k2)) if εA > υ2
υ1

and 1−k1
1−k2 ≥ c, and Uc2((B, k1) | sA(k1, k2), sB(k1, k2)) < Uc2((A, k1) | sA(k1, k2), sB(k1, k2)) if

1 < εA ≤ υ2
υ1

and 1−k1
1−k2 ≥ 0, or if εA > υ2

υ1
and 1−k1

1−k2 ≤ c. This leads to the following strategies

of candidates.

Step 3. Let c = εAυ2−υ1
εAυ1−υ2

, the strategies of candidates c1 and c2, qc1 and qc2, are

• qc1(k1, k2) = σc1 with k1 ≥ 0 if 1 < εA ≤ υ2
υ1
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• qc1(k1, k2) = (A, k1) with k1 such that 1− k1 ≥ c(1− k2) if εA > υ2
υ1

• qc2(k1, k2) = (A, k2) with k2 in (0, 1] if 1 < εA ≤ υ2
υ1

• qc2(k1, k2) = (A, k2) with k2 such that 1− k1 ≤ c(1− k2) if εA > υ2
υ1

We proceed with the analysis of best responses.

Step 4. First note that if 1 < εA ≤ υ2
υ1
, then qc1(k1, k

∗
2) is not a function of k∗2, nor is

qc2(k
∗
1, k2) of k∗1. Thus,

1. q∗c1 = σc1 if 1 < εA ≤ υ2
υ1

2. q∗c2 = (A, 0) if 1 < εA ≤ υ2
υ1

If εA > υ2
υ1
, then qc1(k1, k

∗
2) and qc2(k∗1, k2) are indeed functions of the strategy of the other

candidate. Holding them as given, and reacting accordingly leads to the following.

1. q∗c1 = (A, 1) if εA > υ2
υ1

2. q∗c2 =
(
A, 1− εiυr−υs

εiυs−υr

)
if εA > υ2

υ1

Steps 2 and 4 lead to Theorem 9.

Appendix H Simulations

In this section the reader will find the R code for simulations of elections. The main idea

is to define the distributions of candidate valence and partisan advantage, and to obtain

realizations of each in every period: one for each candidate if there is an open seat election, or

one for the contender if two terms are permitted and the incumbent is running for reelection,

and one for the advantage. We next use the values to determine the winning party, as well as

the power share if offers are made by either the parties or the candidates. For this purpose,

we Lastly, we use the track of victories of parties to compute the average time spent by each

party in power.
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For the simulations we assume that candidate valences are exponentially distributed with

rate 1, and we also assume that the partisan advantages are uniformly distributed between

0 and 1.

# R is the number of simulations of r.

v.

# R/2 is the number of periods

R=100

# E is vector of advantages

E=NULL

# X is the vector of candidate valences

X=NULL

# W’s are the per period indicators of

# victories of A: 0 if it wins, 0 if not

# W1 Single term, W2 Two terms,

# W3 Single term Parties Propose

# W4 Single term Candidates Propose

# W5 Two terms Parties Propose

# W6 Two terms Candidates propose

W1=NULL

W2=NULL

W3=NULL

W4=NULL

W5=NULL

W6=NULL

# V vector of highest valence per period

V=NULL

# V’s vectors of valences of winners

# according to model: 1 to 6

V1=NULL

V2=NULL

V3=NULL

V4=NULL

V5=NULL

V6=NULL

# C’s smallest valence ratio

C3=NULL

C4=NULL

C5=NULL

C6=NULL

# G’s biggest valence ratio

G3=NULL

G4=NULL

G5=NULL

G6=NULL

# A’s power share

A3=NULL

A4=NULL

A5=NULL

A6=NULL

# B’s power share

B3=NULL

B4=NULL

B5=NULL

B6=NULL

# S’s power share of the winning party

S3=NULL

S4=NULL

S5=NULL

S6=NULL

# P’s partial number of

# victories of A

P1=NULL

P2=NULL

P3=NULL

P4=NULL

P5=NULL

P6=NULL

# K’s partial average number

# of victories of A

K1=NULL

K2=NULL

K3=NULL
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K4=NULL

K5=NULL

K6=NULL

# N’s vectors of number of terms in

power

N2=NULL

N5=NULL

N6=NULL

# D’s difference between actual highest

valence and that of winning candidate

D1=NULL

# Obtain R realization of exponential

# random variables of rate 1

# these are candidate valences

for (i in 1:R){

X[i]=rexp(1,rate=1)

}

# Obtain R/2 uniform advantages,

# one per period

k=R/2

for (i in 1:k)

{

E[i]=runif(1, min=0, max=1)

}

# Save highest valence per period

for (i in 1:k){

j=2*i

if (X[j-1]<X[j]){

V[i]=X[j]

} else {

V[i]=X[j-1]

}

}

# First winning party, no advantage

if (X[1]<X[2]){

W1[1]=0

W2[1]=0

W3[1]=0

W4[1]=0

W5[1]=0

W6[1]=0

V1[1]=X[2]

V2[1]=X[2]

V3[1]=X[2]

V4[1]=X[2]

V5[1]=X[2]

V6[1]=X[2]

} else {

W1[1]=1

W2[1]=1

W3[1]=1

W4[1]=1

W5[1]=1

W6[1]=1

V1[1]=X[1]

V2[1]=X[1]

V3[1]=X[1]

V4[1]=X[1]

V5[1]=X[1]

V6[1]=X[1]

}

# Single term begins

for (i in 2:k){

j=2*i

if (W1[i-1]==1){

if (E[i]*X[j-1]>X[j]){

W1[i]=1

V1[i]=X[j-1]

} else if (E[i]*X[j-1]<X[j]){

W1[i]=0

V1[i]=X[j]

}

} else if (W1[i-1]==0){

if (E[i]*X[j]>X[j-1]){

W1[i]=0

V1[i]=X[j]

} else if (E[i]*X[j]<X[j-1]){

W1[i]=1

V1[i]=X[j-1]

}

}
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}

# Single term ends

# Two term begins

N2[1]=1

for (i in 2:k){

j=2*i

if (N2[i-1]==2){

if (W2[i-1]==1){

if (E[i]*X[j-1]>X[j]){

W2[i]=1

V2[i]=X[j-1]

N2[i]=1

} else if (E[i]*X[j-1]<X[j]){

W2[i]=0

V2[i]=X[j]

N2[i]=1

}

} else if (W2[i-1]==0){

if (X[j-1]<E[i]*X[j]){

W2[i]=0

V2[i]=X[j]

N2[i]=1

} else if (X[j-1]>E[i]*X[j]){

W2[i]=1

V2[i]=X[j-1]

N2[i]=1

}

}

} else if (N2[i-1]==1){

if (W2[i-1]==1){

if (E[i]*X[j-3]>X[j]){

W2[i]=1

V2[i]=X[j-3]

N2[i]=N2[i-1]+1

} else if (E[i]*X[j-3]<X[j]){

W2[i]=0

V2[i]=X[j]

N2[i]=1

}

} else if (W2[i-1]==0){

if (X[j-1]<E[i]*X[j-2]){

W2[i]=0

V2[i]=X[j-2]

N2[i]=N2[i-1]+1

} else if (X[j-1]>E[i]*X[j-2]){

W2[i]=1

V2[i]=X[j-1]

N2[i]=1

}

}

}

}

# Two term ends

# Single term parties propose begins

for (i in 2:k){

j=2*i

if (X[j-1]<X[j]){

C3[i]=X[j-1]/X[j]

G3[i]=1/C3[i]

V3[i]=X[j]

} else if (X[j-1]>X[j]){

C3[i]=X[j]/X[j-1]

G3[i]=1/C3[i]

V3[i]=X[j-1]

}

if (W3[i-1]==1){

if (C3[i]<E[i] & E[i]<1){

W3[i]=0

B3[i]=1-(E[i]-C3[i])/(1-E[i]*C3[i])

S3[i]=B3[i]

} else if (E[i]<C3[i]){

W3[i]=0

B3[i]=1

S3[i]=B3[i]

} else if (G3[i]<E[i]){

W3[i]=1

A3[i]=1

S3[i]=A3[i]

} else if (1<E[i] & E[i]<G3[i]){

W3[i]=1

A3[i]=1-(G3[i]-E[i])/(E[i]*G3[i]-1)
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S3[i]=A3[i]

}

} else if (W3[i-1]==0){

if (C3[i]<E[i] & E[i]<1){

W3[i]=1

A3[i]=1-(E[i]-C3[i])/(1-E[i]*C3[i])

S3[i]=A3[i]

} else if (E[i]<C3[i]){

W3[i]=1

A3[i]=1

S3[i]=A3[i]

} else if (G3[i]<E[i]){

W3[i]=0

B3[i]=1

S3[i]=B3[i]

} else if (1<E[i] & E[i]<G3[i]){

W3[i]=0

B3[i]=1-(G3[i]-E[i])/(E[i]*G3[i]-1)

S3[i]=B3[i]

}

}

}

# Single term parties propose ends

# Single term candidates propose begins

for (i in 2:k){

j=2*i

if (X[j-1]<X[j]){

C4[i]=X[j-1]/X[j]

G4[i]=1/C4[i]

V4[i]=X[j]

} else if (X[j-1]>X[j]){

C4[i]=X[j]/X[j-1]

G4[i]=1/C4[i]

V4[i]=X[j-1]

}

if (W4[i-1]==1){

if (C4[i]<E[i] & E[i]<1){

W4[i]=0

B4[i]=0

S4[i]=B4[i]

} else if (E[i]<C4[i]){

W4[i]=0

B4[i]=(C4[i]-E[i])/(1-E[i]*C4[i])

S4[i]=B4[i]

} else if (G4[i]<E[i]){

W4[i]=1

A4[i]=(E[i]-G4[i])/(E[i]*G4[i]-1)

S4[i]=A4[i]

} else if (1<E[i] & E[i]<G4[i]){

W4[i]=1

A4[i]=0

S4[i]=A4[i]

}

} else if (W4[i-1]==0){

if (C4[i]<E[i] & E[i]<1){

W4[i]=1

A4[i]=0

S4[i]=A4[i]

} else if (E[i]<C4[i]){

W4[i]=1

A4[i]=(C4[i]-E[i])/(1-E[i]*C4[i])

S4[i]=A4[i]

} else if (G4[i]<E[i]){

W4[i]=0

B4[i]=(E[i]-G4[i])/(E[i]*G4[i]-1)

S4[i]=B4[i]

} else if (1<E[i] & E[i]<G4[i]){

W4[i]=0

B4[i]=0

S4[i]=B4[i]

}

}

}

# Single term candidates propose ends

# Two term parties propose begins

N5[1]=1

for (i in 2:k){

j=2*i

if (X[j-1]<X[j]){

C5[i]=X[j-1]/X[j]

G5[i]=1/C5[i]
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} else if (X[j-1]>X[j]){

C5[i]=X[j]/X[j-1]

G5[i]=1/C5[i]

}

if (N5[i-1]==1){

if (W5[i-1]==1){

if (E[i]*X[j-3]>X[j]){

W5[i]=1

A5[i]=A5[i-1]

S5[i]=A5[i]

V5[i]=X[j-3]

N5[i]=N5[i-1]+1

} else if (E[i]*X[j-3]<X[j]){

W5[i]=0

B5[i]=1

S5[i]=B5[i]

V5[i]=X[j]

N5[i]=1

}

} else if (W5[i-1]==0){

if (E[i]*X[j-2]>X[j-1]){

W5[i]=0

B5[i]=B5[i-1]

S5[i]=B5[i]

V5[i]=X[j-2]

N5[i]=N5[i-1]+1

} else if

(E[i]*X[j-2]<X[j-1]){

W5[i]=1

A5[i]=1

S5[i]=A5[i]

V5[i]=X[j-1]

N5[i]=1

}

}

} else if (N5[i-1]==2){

if (W5[i-1]==1){

if (C5[i]<E[i] & E[i]<1){

W5[i]=0

B5[i]=1-(E[i]-C5[i])/(1-E[i]*C5[i])

S5[i]=B5[i]

if (X[j-1]<X[j]){

V5[i]=X[j]

} else {

V5[i]=X[j-1]

}

N5[i]=1

} else if (E[i]<C5[i]){

W5[i]=0

B5[i]=1

S5[i]=B5[i]

if (X[j-1]<X[j]){

V5[i]=X[j]

} else {

V5[i]=X[j-1]

}

N5[i]=1

} else if (G5[i]<E[i]){

W5[i]=1

A5[i]=1

S5[i]=A5[i]

if (X[j-1]<X[j]){

V5[i]=X[j]

} else {

V5[i]=X[j-1]

}

N5[i]=1

} else if (1<E[i] & E[i]<G5[i]){

W5[i]=1

A5[i]=1-(G5[i]-E[i])/(E[i]*G5[i]-1)

S5[i]=A5[i]

if (X[j-1]<X[j]){

V5[i]=X[j]

} else {

V5[i]=X[j-1]

}

N5[i]=1

}

} else if (W5[i-1]==0){

if (C5[i]<E[i] & E[i]<1){

W5[i]=1
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A5[i]=1-(E[i]-C5[i])/(1-E[i]*C5[i])

S5[i]=A5[i]

if (X[j-1]<X[j]){

V5[i]=X[j]

} else {

V5[i]=X[j-1]

}

N5[i]=1

} else if (E[i]<C5[i]){

W5[i]=1

A5[i]=1

S5[i]=A5[i]

if (X[j-1]<X[j]){

V5[i]=X[j]

} else {

V5[i]=X[j-1]

}

N5[i]=1

} else if (G5[i]<E[i]){

W5[i]=0

B5[i]=1

S5[i]=B5[i]

if (X[j-1]<X[j]){

V5[i]=X[j]

} else {

V5[i]=X[j-1]

}

N5[i]=1

} else if (1<E[i] & E[i]<G5[i]){

W5[i]=0

B5[i]=1-(G5[i]-E[i])/(E[i]*G5[i]-1)

S5[i]=B5[i]

if (X[j-1]<X[j]){

V5[i]=X[j]

} else {

V5[i]=X[j-1]

}

N5[i]=1

}

}

}

}

# Two term parties propose ends

# Two term candidates propose begins

N6[1]=1

for (i in 2:k){

j=2*i

if (X[j-1]<X[j]){

C6[i]=X[j-1]/X[j]

G6[i]=1/C6[i]

} else if (X[j-1]>X[j]){

C6[i]=X[j]/X[j-1]

G6[i]=1/C6[i]

}

if (N6[i-1]==1){

if (W6[i-1]==1){

if (E[i]*X[j-3]>X[j]){

W6[i]=1

A6[i]=A6[i-1]

S6[i]=A6[i]

V6[i]=X[j-3]

N6[i]=N6[i-1]+1

} else if (E[i]*X[j-3]<X[j]){

W6[i]=0

u=runif(1,0,1)

if (u<0.5){

B6[i]=0

} else {

r=E[i]*X[j-3]

s=X[j]

v=runif(1,min=r,max=s)

B6[i]=(v-E[i]*X[j-3])/(X[j]-E[i]*X[j-3])

}

S6[i]=B6[i]

V6[i]=X[j]

N6[i]=1

}

} else if (W6[i-1]==0){

if (E[i]*X[j-2]>X[j-1]){

W6[i]=0

B6[i]=B6[i-1]
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S6[i]=B6[i]

V6[i]=X[j-2]

N6[i]=N6[i-1]+1

} else if

(E[i]*X[j-2]<X[j-1]){

W6[i]=1

u=runif(1,0,1)

if (u<0.5){

A6[i]=0

} else {

r=E[i]*X[j-2]

s=X[j-1]

v=runif(1,min=r,max=s)

A6[i]=(v-E[i]*X[j-2])/(X[j-1]-E[i]*X[j-2])

}

S6[i]=A6[i]

V6[i]=X[j-1]

N6[i]=1

}

}

} else if (N6[i-1]==2){

if (W6[i-1]==1){

if (C6[i]<E[i] & E[i]<1){

W6[i]=0

B6[i]=0

S6[i]=B6[i]

if (X[j-1]<X[j]){

V6[i]=X[j]

} else {

V6[i]=X[j-1]

}

N6[i]=1

} else if (E[i]<C6[i]){

W6[i]=0

B6[i]=(C6[i]-E[i])/(1-E[i]*C6[i])

S6[i]=B6[i]

if (X[j-1]<X[j]){

V6[i]=X[j]

} else {

V6[i]=X[j-1]

}

N6[i]=1

} else if (G6[i]<E[i]){

W6[i]=1

A6[i]=(E[i]-G6[i])/(E[i]*G6[i]-1)

S6[i]=A6[i]

if (X[j-1]<X[j]){

V6[i]=X[j]

} else {

V6[i]=X[j-1]

}

N6[i]=1

} else if (1<E[i] & E[i]<G6[i]){

W6[i]=1

A6[i]=0

S6[i]=A6[i]

if (X[j-1]<X[j]){

V6[i]=X[j]

} else {

V6[i]=X[j-1]

}

N6[i]=1

}

} else if (W6[i-1]==0){

if (C6[i]<E[i] & E[i]<1){

W6[i]=1

A6[i]=0

S6[i]=A6[i]

if (X[j-1]<X[j]){

V6[i]=X[j]

} else {

V6[i]=X[j-1]

}

N6[i]=1

} else if (E[i]<C6[i]){

W6[i]=1

A6[i]=(C6[i]-E[i])/(1-E[i]*C6[i])

S6[i]=A6[i]

if (X[j-1]<X[j]){

V6[i]=X[j]

} else {
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V6[i]=X[j-1]

}

N6[i]=1

} else if (G6[i]<E[i]){

W6[i]=0

B6[i]=(E[i]-G6[i])/(E[i]*G6[i]-1)

S6[i]=B6[i]

if (X[j-1]<X[j]){

V6[i]=X[j]

} else {

V6[i]=X[j-1]

}

N6[i]=1

} else if (1<E[i] & E[i]<G6[i]){

W6[i]=0

B6[i]=0

S6[i]=B6[i]

if (X[j-1]<X[j]){

V6[i]=X[j]

} else {

V6[i]=X[j-1]

}

N6[i]=1

}

}

}

}

# Two term candidates propose ends

# Stationary distribution plots begin

P1[1]=W1[1]

P2[1]=W2[1]

P3[1]=W3[1]

P4[1]=W4[1]

P5[1]=W5[1]

P6[1]=W6[1]

for (i in 2:k)

{

P1[i]=P1[i-1]+W1[i]

P2[i]=P2[i-1]+W2[i]

P3[i]=P3[i-1]+W3[i]

P4[i]=P4[i-1]+W4[i]

P5[i]=P5[i-1]+W5[i]

P6[i]=P6[i-1]+W6[i]

}

# Average number of victories per pe-

riod

for (i in 1:k)

{

K1[i]=P1[i]/i

K2[i]=P2[i]/i

K3[i]=P3[i]/i

K4[i]=P4[i]/i

K5[i]=P5[i]/i

K6[i]=P6[i]/i

}

plot(K2, type="l", lty=1, lwd=2,

col="red", xlab="Periods",

ylab="Average no. of victories of A",

xlim=c(0, 50), ylim=c(0, 0.7))

points(K3, type="l", lty=1, lwd=2,

col="orange1")

points(K4, type="l", lty=2, lwd=2,

col="chocolate4")

points(K5, type="l", lty=1, lwd=2,

col="yellowgreen")

points(K6, type="l", lty=2, lwd=2,

col="mediumblue")

points(K1, type="l", lty=1, lwd=2,

col="black")

legend("topright", legend=c("Single

term", "Single term PP", "Single term

CP", "Two terms", "Two terms PP",

"Two terms CP"), fill=c("black", "or-

ange1", "chocolate4", "red", "yellow-

green", "mediumblue"), bty="n")

# Stationary distribution plots end
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